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Abstract: The Internet of bio-nano things (IoBNT) is an emerging paradigm employing nanoscale
(~1–100 nm) biological transceivers to collect in vivo signaling information from the human body
and communicate it to healthcare providers over the Internet. Bio-nano-things (BNT) offer external
actuation of in-body molecular communication (MC) for targeted drug delivery to otherwise inacces-
sible parts of the human tissue. BNTs are inter-connected using chemical diffusion channels, forming
an in vivo bio-nano network, connected to an external ex vivo environment such as the Internet
using bio-cyber interfaces. Bio-luminescent bio-cyber interfacing (BBI) has proven to be promising
in realizing IoBNT systems due to their non-obtrusive and low-cost implementation. BBI security,
however, is a key concern during practical implementation since Internet connectivity exposes the
interfaces to external threat vectors, and accurate classification of anomalous BBI traffic patterns is
required to offer mitigation. However, parameter complexity and underlying intricate correlations
among BBI traffic characteristics limit the use of existing machine-learning (ML) based anomaly
detection methods typically requiring hand-crafted feature designing. To this end, the present work
investigates the employment of deep learning (DL) algorithms allowing dynamic and scalable feature
engineering to discriminate between normal and anomalous BBI traffic. During extensive validation
using singular and multi-dimensional models on the generated dataset, our hybrid convolutional and
recurrent ensemble (CNN + LSTM) reported an accuracy of approximately ~93.51% over other deep
and shallow structures. Furthermore, employing a hybrid DL network allowed automated extraction
of normal as well as temporal features in BBI data, eliminating manual selection and crafting of input
features for accurate prediction. Finally, we recommend deployment primitives of the extracted
optimal classifier in conventional intrusion detection systems as well as evolving non-Von Neumann
architectures for real-time anomaly detection.

Keywords: deep learning; internet of bio-nano things; bioluminescence; bio–cyber interface; intrusion
detection; anomaly detection; traffic classification; neuromorphic computing

1. Introduction

The Internet of Things (IoT) presents a connected environment where real-life objects
like sensors, actuators, and electronic devices can interact with each other through enabling
technologies such as the Internet. The concept of IoT has recently been revised in the light
of novel nanotechnology tools and synthetic biology, which have resulted in the fabrication
of biologically embedded computing devices at the scale of nanometers (1–100 nm) called
Bio-Nano things (BNT) [1]. The minute size puts constraints on their operational resources
like computational complexity and storage capabilities. Therefore, bio-nano things are only
able to perform trivial tasks like sensing, data storage, and actuation. The capabilities of a
single BNT device, in terms of complexity and range of operation, can be expanded when
allowed to interact with counterparts forming a network called bio-nanonetwork (BNN).
Nanonetwork enables bio-nano things to share, fuse, and coordinate their information in
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the biological environment through a novel communication technology called Molecular
Communication (MC) [2]. MC enables the biochemical processing of data, the transforma-
tion of chemical energy, and the exchange of information through the transmission and
reception of molecules. These characteristics of MC can be advantageous for environments
like the human body, where the use of electromagnetic (EM) radiation for healthcare could
result in unwanted effects on human tissue. The connection of MC to external networks
such as the Internet leads to a novel communication paradigm called the Internet of Bio-
Nano Things (IoBNT) [1,3]. IoBNT opens up a plethora of biomedical applications such
as real-time intra-body sensing and actuation, targeted drug delivery (TDD), and tissue
re-engineering [4]. IoBNT applications, allow TDD and remote patient monitoring, in the
ease of patients’ home or workplace by the healthcare provider. It can, therefore, be inferred
that IoBNT interfaces will aid in connecting the biological environment of the human body
to the electrical cyber world. In this scenario, where the human body can be monitored and
injected with drugs remotely, the security of the users is of paramount importance. Several
cyber-attacks and viruses can be launched on the bio-cyber interface to disrupt in vivo
MC-related information being sent to the healthcare provider, as well as alter or disrupt
physiological functions and homeostasis of the body, giving birth to a new form of terror-
ism called bio-cyber terrorism [1,4]. Among the existing proposals for bio-cyber interfacing
technologies, bioluminescent-based interfaces (BBI) have demonstrated realistic incorpo-
ration in the IoBNT paradigm due to their low cost and highly efficient operation [4,5].
Securing BBI against inherent threat vectors requires state-of-the-art intrusion detection
systems (IDS). This work proposes a comprehensive anomaly detection framework for
bioluminescence-based bio–cyber interface (BBI) in IoBNT systems using deep learning
classification. A combination of Deep Learning-Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) based profiling scheme is used to differentiate the
anomalous activity of bio–cyber interface. In the case of traffic classification, CNN alone
cannot perform well as it does not specifically account for temporal characteristics. In a
malicious attack, several traffic modalities can be altered in a short period of time to modify
in-vivo bio-interface parameters. In this situation applying CNN alone may lead to missed
alerts. Therefore, CNN is combined with LSTMs, which support sequence prediction and
account for time-related characteristics of abnormal operations. The hybrid CNN-LSTM
architecture involves using CNN layers for feature extraction on input data and LSTM
to analyze sequence prediction and temporal information. The proposed security frame-
work is trained using extensive simulations on data presenting significant attributes of
bioluminescence-based bio–cyber interface. We address the system engineering perspective
by proposing and comparing different scenarios for implementing deep learning (DL)
classifiers for anomaly detection in IoBNT systems. The rest of this paper is organized
as follows. Section 2 highlights the background on the Internet of Bio Nano things and
bio–cyber interfacing, presents related work, and presents applications of deep learning
in cyber security. Section 3 discusses bio–cyber interfacing, and measurement parameters
to be used for anomaly detection. Section 4 discusses the proposed methodology, data
collection and pre-processing, and the neural network structures used. Section 5 evaluates
the results from a qualitative and quantitative perspective and presents system deployment
scenarios for the derived classifier. Final conclusions are drawn in Section 6.

2. Background

In the present section Internet of Bio Nano Things, related work, and an overview of
deep learning techniques in network security are summarized.

2.1. Internet of Bio Nano Things-Overview

The architecture of IoBNT is a holistic framework that encapsulates heterogeneous
devices (nano-macro scale) and communication protocols (nano communication to macro-
scale communication). A reference architecture of IoBNT is presented in Figure 1. The
IoBNT paradigm was first proposed by Akyildiz et al. [1] and followed by further research



Sensors 2023, 23, 8972 3 of 27

contributions in the design and technological aspects of IoBNT such as bio–cyber inter-
facing by Chude-Okonkwo et al. [5] and Nakano et al. [2], and molecular communication
primitives by Nakano et al. [6,7] and and Felicetti et al. [8]; nanonetworks by Akyildiz
et al. [3]; communication channel characteristics by Garralda et al. [9], Kuran et al. [10],
and Gregori and Akyildiz [11]. The basic unit of IoBNT is the Bio-Nano Thing (BNT).
Bio-Nano things are often referred to as nano things, nanomachines, and nano devices in
literature. The size of bio nano things is of the order of nanometres (100 nm). Bio-Nano
things can be composed of only biological materials (lipids, proteins, etc.) or can be coated
with non-biological materials like magnetic particles. The design of bio-nano things can
be customized according to the task at hand, e.g., liposomes are capable of storing and
releasing molecules, long circulation, targeting, and stimuli responsiveness [12,13]. Ge-
netically engineered biological cells, bacterium, and artificial cells have the capabilities to
synthesize and emit specific molecules and thus can also be used as bio-nano things [5].
To equip the bio-things with sensing abilities, a special nanosensor can be designed using
a whole cell [14,15] and sensor molecule entrapped in a chemically inert matrix [16]. All
the above-mentioned bio-nano things collaboratively work in the nano-networking setup.
Bio-nano things traverse the blood vessel network and transport the encoded molecular
information to the bio–cyber interface. The design of Bio–cyber interface is an open research
issue in the realization of the IoBNT paradigm. Research efforts have been devoted towards
interfacing technologies such as electronic tattoos, hydro-gel conductors, and chemo-electro
transduction units to offer connectivity between the human body and the Internet with
considerable success [5,17–19]. Among the existing interfacing technologies bioluminescent
interfacing has provided promising results in practical implementation owing economy of
cost and ease of deployment [4,5,7,9].
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Figure 1. IoBNT architecture: command-feedback signal transceiver using bio–cyber interface over
the Internet.

2.2. Related Work

The realization of a secure bio–cyber interface will aid in wider adoption of the promis-
ing healthcare applications of IoBNT. Bioluminescence-based IoBNT is moving towards
greater realization, requiring security primitives able to monitor and identify in vivo traffic
anomalies triggered by external (Internet) cyber-attacks [4]. A brief overview of the state-
of-the-art IoBNT security and complementary research in associated domains is presented
in Table 1. Pioneering surveys such as [1,2,4,6] have primarily focused on systematically
reviewing bio–cyber interfacing technologies and documenting underlying security require-
ments. Research contributions in formulating a holistic intrusion detection and prevention
(IDS, IPS) framework for IoBNT are, however, still nascent. In the direction of molecu-
lar communication (MC), some preliminary studies have been conducted to explore the
security requirements of nanonetworks, attack categorization, as well as authentication
mechanisms [20,21]. Giaretta et al. [22] classified different attack types (black hole and
sentry) along with their countermeasures for BNT security. Zafar et al. [23] proposed an
authentication scheme for diffusion-based MC using Channel Impulse Response (CIR) as a
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device fingerprint. Recent studies have sought to use machine learning-based approaches
to classify and discriminate network traffic for bio–cyber interface security. El-Fatyany
et al. [24] presented an authentication scheme for bio luminescence-based bio–cyber inter-
face (BBI). The proposed chaotic model utilizes a modified logistic map to control drug
release in a targeted drug delivery system. Similarly, an earlier work, by Bakhshi et al. [25]
devised an authentication scheme for bio–cyber interface technologies using ML-enabled
profiling. The security framework was designed for three types of bio–cyber interfacing
technologies namely bioFET, bioluminescence, and reduction-oxidation (redox) modality.
However, the study focused on using only a limited number of external traffic parameters
as input features for ML training. While ML-based profiling utilizing manually crafted
input parameters have proven to be somewhat efficient in traditional IDS (and IPS), the
inter-dependence and inherent complexity of bio-nano traffic constrains their optimality
for anomaly detection in the IoBNT domain. Increasing levels of data (traffic) intricacy
and a requirement for greater classification accuracy have led researchers to investigate
applications of deep learning neural networks in the mainstream IoT domain. DL network
structures have been shown to aid dynamic feature selection and significantly reduce
false positives during traffic classification in heterogeneous IoT settings [26,27]. Abusitta
et al. [26] highlighted a preference for DL-based classification to recognize abnormal behav-
ior in IoT traffic, prone to external noise over common ML algorithms. Using de-noising
autoencoders during the data pre-processing stage, the DL classifier was able to discrimi-
nate malicious traffic patterns by dynamically extracting useful features despite an unstable
operational environment. Similarly, Rosero-Montalvo et al. [27] used a hybrid DL ensemble
to detect anomalies with minimal memory and computational footprint in high-noise IoT
environments. Real estate and workload economy enabled DL classifier realization on
off-shelf IoT sensory hardware as well as ensured high bandwidth efficiency. Chander
et al. [28] focused on industrial IoT (IIoT) sensors, developing metaheuristic feature selec-
tion, and tested single and multidimensional cascaded recurrent neural networks for the
identification of anomalies. The resulting classifier allowed satisfactory anomaly detection
accuracy which was further improved by model tuning. Hameed et al. [29] compared the
efficacy of existing ML solutions for IoT traffic classification in smart cities. The authors
were of the view that fine-grained flow characteristics and correlations among IoT traffic
parameters presented a computational concern in typical ML-based classifiers. Using
multi-layer perceptron—artificial neural networks (MLP-ANN), and a two-stage learning
framework researchers were able to achieve high accuracy and precision in identifying IoT
devices based on network traffic, significantly outperforming well-known ML algorithms.
Guan J. et al. [30] highlight the scarcity of IoT labeled data in 5G environments, the limited
capability of devices, and the significant efforts involved in artificially designing features
for traffic classification. Employing deep transfer learning, the researchers used customized
convolutional networks trained on resource-constrained targets to provide strong traffic
classification accuracy. Reducing human intervention during feature selection, the frame-
work decreased system complexity for future adoption in 5G IoT networks to isolate traffic
of interest. Etemadi et al. [31] surveyed abnormality detection at the molecular commu-
nication level and compared different ML, heuristics, and DL primitives for this purpose.
The work discussed the viability of ML approaches, as well as the utilization of naturally
inspired systems based on genetic, particle swarm, and colony optimization algorithms
for identifying anomalous (traffic) activity. It was observed that while these techniques
are appropriate for stationary sensors and objects, it became very challenging to address
moving sensors and abnormality sources. The authors recommended using a combination
of heuristic deep learning methods and localized customization to identify anomalous
behavior in IoBNT. The application of DL techniques for anomaly detection in network
engineering, however, remains prevalent [32,33]. Preliminary efforts in using DL-based
anomaly detectors for bioFETs have been investigated by Zafar et al. [33]. The authors
proposed an Artificial Neural Network-based classifier for biological field effect transistor
(bioFET) based bio–cyber interface. Particle Swarm Optimization (PSO) was used to adjust
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the weights and biases of the neural networks to provide better classification. The proposed
model utilizes communication and design parameters of bioFET-based bio–cyber interface
to classify normal versus abnormal traffic behavior. The present work seeks to expand on
the utility of DL-based network structures through parameter profiling of bioluminescent
interfaces and allowing timely detection of anomalies to realize secure avenues for IoBNT
deployment in future healthcare applications.

Table 1. Related work and cross-connecting themes.

Research Domain Scope of Work Cross-Connecting Themes

IoBNT Systems [1–6,31] Comprehensive survey, technology
reviews, and use cases

Threat analytics, IoBNT interface,
molecular communication, TDD

Attack analysis and mitigation [22,23] Attack taxonomy (black-hole, sentry),
countermeasures, authentication schemes

Threat analytics, IoBNT interface, OS
fingerprinting, access control

BBI Security [24,25] BBI authentication, design, decision
tree-based IDS

ML, traffic classification, logistic
mapping, TDD

BioFET Security [25,33] C5.0, ANN, PSO-based IDS for BioFET
interfaces

ML, Traffic classification, anomaly
detection, deep learning

Redox Security [25] Decision tree and regression-based IDS ML, traffic classification, feature
engineering

MC and in-vivo Security [20,21] Security requirements, deployment Threat analytics, access control, TDD

IoT (IDS, IPS) [26–30,32]
Neural network-based IDS for IoT
environments (applications in IIoT,
SmartCity, 5G networks)

ML, traffic classification, feature
engineering, anomaly detection, deep
learning, performance comparison,
de-noising (data)

2.3. Deep-Learning Enabled Traffic Analysis

Traditional machine learning techniques including Iterative Dichotomiser 3 (ID3),
decision tree (C 5.0), classification and regression tree (CART), and artificial neural network
(ANN) have been previously recommended to provide a measure of security for IoBNT
biocyber interfaces [25,26]. Deep learning is a sub-field of traditional machine learning,
providing increased flexibility and accuracy over classical learning algorithms, and offering
the ability to incrementally learn and extrapolate new features from a limited set of training
data [34,35]. Moreover, the thin and layered structure of sequential deep neural network
models makes them ideal for being deployed over a low-powered and resource-constrained
bio–cyber interface, still facilitating real-time anomaly detection. Two of the popular deep
learning network types being used in several image recognition, video editing, industrial,
and security systems include the convolutional and recurrent neural networks [34].

Convolutional neural network (CNN) is an extension of the traditional feed-forward
neural network. CNN has been proven significantlyly successful in image processing
tasks including object identification in robotics, and self-driven cars, and are now gaining
traction in cyber security application particularly anomaly detection [32,34–36]. Four main
operations of CNN comprise of a convolution layer responsible for feature extraction,
a non-linear activation function such as Rectified Linear Unit (ReLu) for fast(er) model
learning, a pooling layer for generalization, and a fully connected layer (to be used for
classification) [37]. The number of neurons in hidden layers relates to model learning
ability, albeit at the cost of computation. CNNs are extremely useful in image processing
applications, however, usually offer limited capability in effectively interpreting temporal
data characteristics inherent in cyber security primitives, traffic classification, and intrusion
detection systems [36].

Recurrent neural networks (RNN) structures are used for processing time-series data
by employing neurons capable of remembering previously processed (data) states [38].
RNNs are based on human-cognitive functionality and can generate input-output mappings
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considering time-dimensionality (i.e., order of occurrence). The network structure is based
on feedback loops, using the previous state to compute the next state. For longer data
sequences, RNNs however, suffer from a vanishing gradient problem (short-term memory)
resulting in high latency and signal transfer deviation from one (prior) iteration to the
next. To deal with vanishing gradient and to address memory problems, variations in RNN
including the long-short term memory (LSTM) and gated recurrent unit (GRU) have been
proposed [39].

Long short-term memory (LSTM) is a refined extension of RNNs, developed to reduce
the gradient explosion and dispersion issue. LSTM introduces memory blocks, in contrast
to the conventional simple RNN units. A memory block contains a memory cell and a set
of gates i.e., input, forget, and output. This has emerged to be more effective in sequence
information analysis and capturing long-range dependencies with applications in network
security [35]. LSTM filters prior states based on greater influence on the present.

Gated recurrent unit (GRU) is also a type of RNN comprising of an update and reset
gate, trained to select, and retain information that needs to be fed to the output. The update
gate allows the determination of past information to be sent to future states fully or partially
and significantly reduces the vanishing gradient problem. The reset gate determines the
scope of forgetting past information. While the applicability of CNN and RNN structures
is widespread in image processing and handwriting recognition, their applicability in
anomaly detection systems is relatively nascent [4,24]. To the best of our knowledge, the
present work is the first to consider deep learning structures for the security of IoBNT
devices and interfaces.

3. Bioluminescence Based Bio–Cyber Interface Architecture

Bio–cyber interface is a hybrid device capable of transducing in-body biochemical
signals into electromagnetic signals and vice-versa. Several modalities can be used for trans-
duction between biochemical and electromagnetic signals such as bioFET-based molecular
antenna [17], reduction-oxidation (Redox) modality [18,19], and other interfaces offering
biologically inspired capabilities like thermo-responsiveness and photo-responsiveness [5].
The choice of interfacing modality depends upon the assigned application requirements and
propagation channel [4]. In this work, we have considered the bioluminescence-based bio-
cyber interface model proposed by Chude-Okonkwo et al. [5] based on biologically inspired
properties such as biocompatibility, biodegradability, and non-toxicity. The bioluminescent
biocyber interface (BBI) provides a practical opportunity for healthcare professionals to
connect the Internet to in-body (in vivo) bio nanonetworks and studies in the domain are
maturing to prototype evaluations [40]. We present a sample architecture and bio-cyber
interface model illustrated in Figure 2. The bio-cyber interface utilizes thermal and light
responsiveness to certain biomolecules producing information signals (biochemical reac-
tions) propagated using the blood vessel network to an in vivo nanonetwork location for
targeted drug delivery. The architecture of the bio–cyber interface includes two units: an
electro-bio transduction unit and a bio-electro transduction unit. A detailed description of
these units is given below.

3.1. Electro-Bio Transduction Unit

Electro-bio transduction unit (EBTU) converts electrical signals/commands received
from medical personnel into biochemical signals. A visual illustration of EBTU is provided
in Figure 3.
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Figure 3. Electro-bio transduction unit on left when the optical source is ON and on the right when
the thermal source is ON.

The command received from external devices is in the form of a binary code. This
binary code is used to drive logic gates to produce an optical or thermal effect. The unit
also contains a small chamber/drug reservoir that contains nano-sized (1–100 nm) carri-
ers. These nanocarriers are designed in such a way that they release their contents upon
stimulation from external factors such as changes in temperature, light, pH, etc. The
bio–cyber interface model based on [5] adopted for this work employs two types of lipo-
somes: photo-responsive liposomes and thermo-responsive liposomes. The photo-responsive
release is considered through photoisomerization, where liposomes encapsulate molecules
that excite upon the light illumination from an external source, this causes a conforma-
tional change and destabilization of the lipid membrane that allows molecule release. For
thermo-responsiveness, molecules are encapsulated in temperature-sensitive liposomes or
dendrimers [41], which deteriorate upon receiving nonlinear sharp changes in the temper-
ature. To preserve the contents during propagation, thermo-responsive liposomes must
retain their load at body temperature (37 ◦C) and may release their contents within a
locally heated microenvironment. The release process of liposomes can be expressed in the
following equation:

v(t) = εT (1 − e(γt)) (1)

where εT is the cumulative molecular concentration and γ is the release rate of liposomes.
The output of the electro-bio unit can be expressed as follows.

c(f) =
∫

(0→Tin) ε Ψ (t) dt (2)
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where Tin is the time difference between injection and the start of the release process and Ψ
is the total number of liposomes that release their content. The communication path of the
electro-bio transduction unit is from bio–cyber interface towards in-body nanonetworks.
The concentration of molecules may change during the propagation time i.e., after being
injected from the bio–cyber interface into the blood vessel network and reaching the nano
network or designated tissue. This rate of change of molecular communication from electro-
bio transduction unit towards nanonetwork can be modeled through the equation below [5]:

dtv1(t) = v1(t) (k12 + k10) + k21 v2(t) (3)

dtv2(t) = k12 v1(t) − k21 v2(t) (4)

with initial conditions v1(0) = c(f) and v2(0) = 0. Where k12 and k21 are first-order rate
constants, k10 is the elimination rate, v1(t) is the molecular concentration in the blood
vessel network, and v2(t) is the concentration of information molecules when they reach
nanonetwork. k10 is the elimination rate and vel(t) is the function of k10. The elimination
rate represents the number of molecules that undergo biochemical modification, phagocy-
tosis, elimination by liver or adhesion, and absorption by non-targeted sites, during the
propagation process. Generally, the rate constants depend on the concentration difference
between the blood vessel network and nanonetwork, the size of the aperture through the
endothelial cell network, and the properties of the diffusing information molecules [42].

3.2. Bio-Electro Transduction Unit

This unit presents reverse communication, i.e., detection of biochemical signals in the
blood vessel network and converting it to an equivalent electromagnetic signal. A visual
illustration of bioreporter activity is presented in Figure 4.
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Figure 4. Representation of the bioreporter as a cellular structure, in which information molecules
diffuse and a reporter protein (LU) is produced and undergoes a bioluminescence reaction in
the bioreporter.

This unit works on the principle of bioluminescence reaction. The conceptual model
of this unit is a ligand–receptor transdermal system whose nanopores are extended into the
blood vessels. The ligands here can be thought of as information molecules that circulate
the blood vessel network and are detected by complementary receptors/nanopores. This
ligand–receptor pairing results in the production of an equivalent electrical signal. Typically,
luminescent materials are used to convert chemical signals into optical signals so that
they can be detected by external devices. Bioluminescence is a phenomenon where a
chemical reaction produces an electronically excited substance, called an enzyme-substrate
system. The enzyme is Luciferase (LU), and the substrate is Luciferin(L) (from Lucifer
in Latin “Light-bringer”) [43]. Bioluminescent molecules such as LU catalyze a chemical
reaction with L in the presence of oxygen, which consumes chemical energy e.g., Adenosine
triphosphate (ATP). ATP is a central metabolite that plays the role of an energy transfer
molecule, a phosphate donor, as well as a signaling molecule inside the cells and produces
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light. The resultant light in turn is detected by a highly sensitive light sensor and is
transduced into an electrical signal afterward. Bioluminescence intensity factor I can be
expressed in the form of the Michaelis-Menten mechanism as follows [5]:

l(t) = al.la.atp/(atp + aM) (5)

where al is the catalytic reaction, la is the concentration of LU, atp is the concentration
of ATP and aM is the Michaelis-Menten constant. Let I0 be the bioluminescence intensity,
hence when I(t) ≥ I0 the transmitter is in the ON state, and, if I(t) ≤ I0 the transmitter
is in the OFF state. Bio-electro transduction unit receives signal from nanonetworks in
the form of molecular concentration. The concentration of information molecules may
change during the propagation time i.e., from nanonetwork/designated tissue into the
blood vessel network and reaching the bio–cyber interface. This rate of change of molecular
communication of the bio-electro transduction unit can be expressed through the equations
below [5]:

c(r) (t) = kl w1 (t) (6)

dtw1(t) = k21,r w1(t) − (k12,r + k10+ kl) v1(t) (7)

dtw2(t) = k12,r w1(t) − k21,r w2(t) (8)

with the initial conditions w1(0) = 0 and w2(0) = m0, where m0 represents the molecular con-
centration released from nanonetworks. k12,r and k21,r is reverse equivalents of kinetic con-
stants k12; and k21 respectively and kl is the detachment constant of ligand–receptor pairing.

4. The Proposed Methodology

In the present section, we discuss the methodology employed for anomaly detection
using deep learning technologies in bioluminescent interfaces of IoBNT systems. The
proposed scheme comprises the following components: (i) data generation and pre-processing
of bioluminescence parameter values, (ii) neural network structures, (iii) experiment testbed,
and measurement metrics. The scheme monitors in vivo bio interface parameters to discrimi-
nate and identify anomalous operations. Using in-body parameter profiling allows higher
accuracy in the classification of anomalies generated by external attack vectors compared to
earlier studies solely relying on in vitro metrics such as bioFET electric voltage and current
used [25], which may significantly vary due to electromagnetic interference and/or system
faults, resulting in discrepancies. The following sub-sections detail each component of the
proposed methodology.

4.1. Data Pre-Processor

The data pre-processor module accounts for collecting and sanitizing data. The
parameters employed in the proposed scheme are unique to bio-luminescence-based cy-
ber interface [4]. This work uses a synthetic dataset that consists of 12 key parameters
based on existing literature in bioluminescence-based bio–cyber interface proposal for
IoBNT [5,20,24]. The usage of synthetic data is a necessity due to the novelty of molecular
communication using bio–cyber interfacing in IoBNT devices, which is yet to be fully
realized practically. The data for this work depends upon the typical output generated
by a bioluminescence-based bio–cyber interface. As described in Section 3, bio–cyber
interface consists of two units: an electro-bio transduction unit and a bio-electro trans-
duction unit. Each unit generates an output which is expressed in Equations (2) and (5).
The performance of the IoBNT system depends on the output of bio–cyber interface units.
Various parameters are required to derive these output equations. The description and
value ranges of these parameters are presented in Table 2. These parameters are unique to
bioluminescence-based bio–cyber interfaces and inappropriate values of these parameters
represent anomalies in the system. The target is to ensure that appropriate values of these
parameters are employed in the IoBNT system operation in order to achieve the required
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output. It is desired to find a set of parameters with minimal elements (features) whose
values can be adjusted to ensure efficient communication. These parameters will be used
as features to train our neural networking models. In the simulation, values of evaluation
parameters used are taken from the literature and scaled up or down in the same order. A
brief description of parameters and possible consequences of their abnormal values (out of
the given range) are provided in Table 1 and described below:

Table 2. Simulation Parameters.

Parameter Description Value

Ψ0 Cumulative concentration of released molecules 0.62–1.50 mL
k10 Elimination rate 0.172–0.472 min−1

aM Michaelis-Menten constant 10–17 µM
k12 Kinetic constant 0.073–0.373 min−1

k21 Forward rate constant 0.00053–0.00103 min−1

al Catalytic reaction constant 4.1–4.4 × 10−2 µM
kl Ligand–receptor binding constant 0.001–0.0015 min−1

Atp Concentration of ATP 10–40 µL
m0 Concentration of information molecules 5–10 µM
Λ Release rate 0.0104–0.0404 min−1

k12,r Reverse Kinetic constant 0.00043–0.00103 min−1

k21,r Forward rate constant 0.073–0.373 min−1

Ψ0 is the concentration of message molecules encapsulated in liposomes, injected by
an electro-bio transduction unit. A sufficient value of 0 ensures that accurate information is
delivered to the targeted site. Tampered or manipulated values of this parameter, in (2),
result in malfunctioning of nanomachines at the target site.

k10 is the elimination rate that elucidates the loss of information molecules due to
the adhesion process, reaction process, absorption by non-targeted sites, phagocytosis,
and elimination by the liver. Increased values of this parameter, used in (3), indicate that
system might be under blackhole attack and information molecules are attracted by some
malicious nanosystems [22,23].

aM is the Michaelis-Menten constant. This parameter is an essential cofactor for
ATP and its intracellular availability is dynamically regulated. It is observed as a weak
parameter here as there is little effect of this constant on the bioluminescence intensity
compared to other parameters as given in (5).

al is the catalytic reaction constant. This parameter aids in adjusting the bioluminescent
intensity.

ATP is the concentration of adenosine triphosphate (ATP) and it is an important
parameter as its appropriate value contributes to the bioluminescence intensity I0, which
turns on the transmitter.

m0 is the molecular concentration parameter. It should be high enough to turn ON the
transmitter and low enough to guarantee that the drug concentration does not reach toxic
levels around healthy cells.

λ is the release rate constant and an important parameter. It is necessary to realize
complete control of the drug release, from the initial release to a suitable release rate to
ensure the best delivery profile for maximizing the treatment benefits while minimizing
the amount of drugs in the other parts of the body.

kl is the ligand–receptor binding constant. kl is a crucial parameter as it represents
whether the ligand–receptor bond happened or not. Inappropriate values of this pa-
rameter in (6), might indicate congestion, due to hits of ligand molecules with already
busy receptors.

k21,r is the forward rate constant. k21,r, and other rate constants i.e., k12, k12,r and
k21 depends upon the concentration difference in the blood vessel network and nanonet-
work, size of endothelial cell separating the blood vessel network and nanonetwork, and
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properties of the diffusing molecules. A sufficient value of this parameters indicates that
more information molecules are received by the bio–cyber interface, resulting in higher
bioluminescence.

Data set quality influences deep learning classification results. In the present work,
data from simulated in vivo parameters of bioluminescent interfacing summarized in
Table 1, will be used using binary classification. Binary classification will require anomalous
or normal labeling of generated data during experimentation. Data will be split for testing
and training, with a lower proportion of anomalous (attack) data conforming to realistic
scenarios and to provide an accurate estimation of classification ability.

4.2. Neural Network Structures

The present work utilizes deep learning methods to analyze anomaly detection capa-
bility using bioluminescence intensity parameters of BBI. We first employ the convolutional
neural network (CNN) algorithm offering lower latency during training and then offering
weightage adjustment after setting initial parameters. The CNN allows the reduction of
higher dimensionality using maximum pooling on features and indicates the most suitable
feature traits. After testing CNN, recurrent neural network (RNN) structures are used
to extract temporal characteristics of data. During extensive validation testing is done
to observe the efficiency of different models and to devise a hybrid structure providing
maximum classification benefits. The network structures and respective construction are
discussed in the following sub-section.

Convolutional model: CNNs offer optimality in feature extraction at relatively lower
latency through the creation of associations within data. Traditional implementations
use the entry-level input layers to determine as well as learn features while secondary
layers can derive more complex characteristics, representing data correlations. Convolution
layer kernels filter features, each iteration producing a graph of features provided by each
kernel. A pooling layer can be used for feature compression and selection, and the network
converges on a final layer allowing connectivity to combine and categorize the model.

The complexity of CNN layers increases with the number of input parameters (ex-
ponentially) and can reduce network performance. The error rate is calculated using loss
functions. Convolution operation depends on the number of kernels that produce propor-
tional output, the step size determining the amount of data processed in any given internal
and the filling factor to smooth out the learning. The convolution operation is given by (9).

O(I,j) = Σ(x=0) Σ(y=0) K(x,y).A(q-−x,j-−y) (9)

In total, the present study used six convolution layers, having a kernel size of 4 × 4
providing feature extraction capability. The first CNN layer has a relatively lower number
of only twelve neurons for initial data processing. Successive layers provide 64 neurons
each to improve classification. A dropout layer is added afterward to deal with overfitting,
a common challenge in CNN. The maximum pooling layer provides feature differentiation,
while the convolution layer processes the final set of features, compressed, and mapped by
the dense layer at the end. A visual description of the employed CNN structure is provided
in Figure 5.

Recurrent model: RNN models incorporate interconnected neurons in each layer
so that the output of preceding layers is taken into consideration while computing the
input to subsequent layers. Stateful structure and feedback mechanism allow RNN to
understand temporal characteristics for anomaly detection [39]. RNN however, suffers
from the vanishing gradient problem, and therefore, practical applicability on larger data
series may require the use of long-short term memory (LSTM) and gated recurrent unit
(GRU) implementations. In the present study, we utilize LSTM and GRU models using
similar network structures and operational values. Data is input to the first layer, succeeded
by the dropout layer adding an element of uncertainty for better training. Models and the
individual cell structures are illustrated in Figure 5. Fewer neurons in hidden layers are
used in LSTM (36) compared to GRU (64) in the hidden layers, as the former requires a
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greater number of training parameters and results in higher training latency. The dense
layer is the final processing primitive in either model. The sigmoid activation is used in
GRU and LSTM for filtering and output is sent using a tangential function (TanH) [38]. The
LSTM and GRU operations are represented by (10)–(13) and (14)–(16) respectively.
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Long short-term memory (LSTM) model input and variables.

it = σ(Wi[ht−1, xt] + bi) (10)

ot = σ(Wo[ht−1, xt] + bc) (11)

ft = σ(Wf[ht−1, xt] + bf) (12)
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ct = tanh(WC·[ht−1, xt] + bC) (13)

Gated recurrent unit (GRU) model input and variables.

rt = sigmoid(Wr[ht−1, xt] + br) (14)

zt = sigmoid(Wr[ht−1, xt] + bz) (15)

rt = sigmoid(Wr[rt.ht−1, xt] + bc) (16)

The sigmoid, rectified linear unit (ReLU), and general loss functions are given by
(17)–(19), respectively.

g(z) = 1/[1 + e−z], g’(z) = g(z)(1 − g(z)) (17)

g(z) = max (0, z), g(z) = {1, z > 0, 0 otherwise (18)

L(W) = 1/n ∑k=0→n y(i)log (f(x(i); W)) + (1 − y(i)) log (1 − f(x(i); W)) (19)

In (18), (19), y(i) is the actual value while f(x(i); W) is the prediction.

4.3. Experiment and Measurements

The present section discusses the experiment specifics of the study, detailing data gen-
eration, the tools used for implementing deep learning algorithms, and the measurements
recorded.

4.3.1. Data Processing

The primary steps involved in data processing involve class derivation and labeling, value
normalization, and encoding for improved model fitting. An illustration of the main steps is
illustrated in Figure 6, and these are discussed in detail as follows.
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Step 1: Class-derivation and labelling: In total 7,985,539 records each having twelve
feature values were generated using the bioluminescence parameters given by (1)–(8), and
equally split for training and testing summarized earlier in Table 2. As per existing literature,
out-of-bound variation in a minimum of three out of twelve (or greater) parameters of any
given input vector constitutes an anomaly [2,7,20,33,41]. Therefore, in two-dimensional
(2D) class distribution abnormal parameters constituting more than ~25% of an input vector
result in final class derivation being anomalous, and otherwise normal. Using 2D binary
distribution, 6,866,701 samples represent normal and 1,117,829 anomalous vectors, indicating
an overall ~86:14 probability split between normal and anomalous data as given in Table 3.
However, having uniform 2D class labeling does not completely account for the scarcity of
instances where normal in vivo channel communication presents realistic outliers, and the
resulting operation is not necessarily anomalous due to realistic variations in molecular
traffic [2,7,15,23]. In 4D classification, the normal-anomalous (NA) class realizes the normal
operation even though the threshold parameter varies outside the threshold; and the
anomalous-normal (AN) class represents abnormal operation despite parameters ranging
within the stipulated threshold. NA and AN vector instances constitute ~3.4–3.9% of
normal and anomalous vectors based on existing studies [7,8,21,22]. The resulting data is
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stored in matrix X ∈ Rmxn where m represents the number of samples and n is the number
of variables (twelve). Vector L ∈ Rmx1 provides a class label (string).

Table 3. Dataset Specification.

Distribution Class Label Training Data Test Data

1 D Normal + Anomalous 3,992,268 3,992,271

2 D
Normal - 3,433,351

- Anomalous 558,917

4 D

Normal - 3,316,617
Normal {abnormal
parameters > 25%} - 116,734

- Anomalous 538,796

-
Anomalous

{abnormal parameters
< 25%}

20,121

Total - - 6,866,701

Step 2: Data normalization and scaling: The parameter density distribution of gener-
ated data (training and testing) for each of the 4Dclass-labels is provided in Figure 7, and an
online dataset representation is provided in [44]. The data follows a Gaussian probability
distribution given by (20) and is symmetric about the mean.

f(x) = 1/σ
√

(2π) × e−1/2(x−µ/σ)ˆ2 (20)
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In (20), x represents the class variable being examined, f(x) is the probability function,
µ is the mean, and the σ standard deviation. The generated data follows a Gaussian
distribution and does not require smoothing filtration [37]. However, normal BBI operations
may encompass signal fluctuations, and nonlinear responses resulting in outliers that can
affect classification accuracy. Although these outlier values on data distribution edges (NA,
AN) have a low occurrence probability, yet capable of over-representation during training.
To avoid model skewing inherent relative variability in BBI parameters requires redressal
using statistical methods to achieve high throughput during classification. Complementary
techniques such as local-neighbor density deviation (LOCAL), isolation using modeling
(ISO), and elliptic envelope (ELLI) can cause decision edge confusion, data scattering, and
computationally intensive [27,28,37]. Statistical outlier detection using robust scaling is
used in the present study to maintain data characteristics while reducing data scattering
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with minimal overhead. Using the median (50th percentile), and 25th and 75th percentiles,
in robust scaling each parameter median is subtracted and divided by the interquartile
range (IQR) [32]. This ensures resulting variables conform to zero mean, median, and
standard deviation of one while remaining non-skewed by outliers and maintaining relative
relationship with other variables (parameters). Outliers depicting normal class with MC
channel variation are, therefore, upheld and contribute to the discriminatory ability of
the resulting classifier in recognizing false positives, as well as negatives. Robust scaling
for the present experiment is achieved using Python SciKits RobustScalar class, setting
with_centring argument centered to zero, and with_scaling set to IQR, and both values
defaulting to True, as listed in Table 4 [37]. Given the stochastic ability of algorithms
differences in numerical precision are possible in iterative runs during classification and
as such the percentile ranges for scaling were varied (20–80, and 30–70) to derive optimal
accuracy. Compared to similar studies, the proposed data normalization technique fits
well on low-dimensional tall data offering minimum scattering while exploring full (traffic)
characteristics for optimal classification [28,29].

Table 4. System Variables.

Property Parameters Comments

System

Core i7-960 16 MB 3.2 GHz 64 GB Intel architecture DDR3L 1066
Ubuntu 18.04.5 Kernel 4.15.0-135- 64
Keras 2.4.0. DL API (Python) [32]
TensorFlow 2.8.0. ML Library (Opensource) [33]

Data Processing

Data density distribution Gaussian PDF
RobustScalar (options) SciPi toolkits using RobustScalar class [37]

with_centering controls value centering at 0 (median is subtracted)
and set to default True.

with_scaling controls IQR scaling (standard deviation of 1) and set
to default True.

quantile_range Tuple (0–100), default (25, and 75)

Data encoding Non-intrinsic traffic labeling using the
OneHotEncoder class [37]

Neural Network
Convolutional/Recurrent

Rectified Linear Unit (ReLU) Non-linear (piece-wise linear) activation function used
in DL classifiers [37]

FATE/FederatedAI The final layer in the DL model to aid logistic
regression [45]

Dropout = 0.5 Regularization method reducing over-fitting by
minimizing weight learning per iteration [14,16,37]

Softmax output function The normalized exponential function used as the last
activation in neural networks to normalize output [37]

Optimizer = Nadam Gradient descent algorithm employed to minimize
cost function [37,38].

Loss function = Categorical cross-entropy Loss function to benchmark neural network reduction
in the training phase [37,39]

Step 3: Data encoding: The data composition matrix (X ∈ Rmxn) comprises twelve
continuous data parameters (n = 12) with range-bound probable values, as well as one
nominal variable (L) representing 4D class labels without any intrinsic ordering. One
hot encoding using SciKits OneHotEncoder class is a used for numerical conversion of
this nominal data before the application of classification algorithms [37]. Since the class
labeling does not have any intrinsic order, hence ascending encoding (0–3) cannot be
used otherwise ML algorithms will give priority to higher numbers. Each category is
hence, transformed into a new column and given a binary range (0,1) depending on the
occurrence of the respective label. Post-transformation dataset, therefore, results in a
greater number of features due to one hot encoding of traffic class labeling. Compared
to other nominal conversion schemes such as Bag-of-Word (BoW), and MinMaxScaling,



Sensors 2023, 23, 8972 16 of 27

one hot encoding provides a single-stage conversion suitable for BBI parameters relying
on substantially lower computing capability favored in IoT environments [29,31]. The
pre-processed dataset is subsequently input to neural algorithms using control variables
described in the next sub-section.

4.3.2. Neural Network Structures and Control Variables

The neural network structures tested include CNN, LSTM, and GRU. The model
structures used are provided in Figure 5. The CNN model comprised a single input layer
containing 12 neurons, four hidden convolutional layers each containing 64 neurons, and a
maximum pooling, dropout, and flattening layer. LSTM also comprises one input layer
(16 neurons) as well as a dropout in hidden layers. The GRU model has an input layer
(12 neurons), and three GRU layers having a greater number of neurons (64, 128, 156) and
dropout in hidden layers. As discussed earlier, GRU has an overall greater number of
neurons in comparison with LSTM models, but the operational values used are smaller.
The dropout for all models was set to the commonly used value of 0.5. For activation,
ReLU was employed as preferred in earlier studies [34,37]. The output layer uses federate
AI (FATE) [45] and is classified using softmax activation [37]. Control variables used for
experimentation are listed in Table 4. Training and testing on each neural network model
are conducted using an epoch of 10 on a trial-and-error basis with the same input–output
dimensions and class (category) labeling. To reduce overall cost-function Nadam-Nesterov-
acceleration adaptive moment estimation (gradient descent) is employed using Keras [46].
Nadam optimizes model learning and classification by summative exponential reduction of
floating averages on preceding and successive gradient values. For computing the overall
loss function, seeking to minimize the training phase, categorical cross entropy available in
Keras is used [47]. The experiment was carried out on a researcher’s machine with an Intel
Core i7-960 16 MB chipset at 3.2 GHz with RAM 64 GB. The operating system used was
Ubuntu 18.04.5 (64-bit) hosting a testing platform using Keras 2.4.0 and TensorFlow library
2.8.0. [48]. The designed neural network models were evaluated on the generated dataset
to record accuracy, precision, recall, as well as the false positive and negative rates given in
Table 5.

Table 5. Metric Rubric.

Metric and Description Calculation

Accuracy: The ratio is correctly identified and
divided into total samples. Accuracy = TP+FP

TP+FP+TN+FN

Precision: Positive predictions (correctly
identified). Precision = TP

TP+FP

Recall: Ratio of anomalies correctly classified to
total samples. Recall = TP

TP+FN

F1-Score: Metric defining mean value
determined for P and R times two. F1score = 2*P.R

P+R

False Positive Rate (FPR): Ratio of anomalous
to normal samples. FPR = FP

FP+TN

Normalization factor: The data set is
normalized using the max. and min. of input
(column-wise), then to each data value.

Z = z−min
max−min

Time- Latency: The total time involved in
training and testing a neural network

Training duration = TD
Testing duration = TD’

5. Results and Discussion

The present section discusses the evaluation results of proposed deep learning struc-
tures from a quantitative and qualitative perspective as well as an analysis of the optimum
classification model.
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5.1. Quantitative Results

The recorded efficiency of each model for four-dimensional parameter classification
using the network structures and system variables discussed earlier is given in Table 6. The
quantitative results are systematically analyzed to determine the best classifier from an
operational perspective considering training latency, testing duration, as well as reported
accuracy and precision. CNN is considered first, with additional structures subsequently
added to the testbed for evaluation. For comparison purposes, a 1D shallow CNN is
also considered.

Table 6. Result Evaluation—Quantitative.

Metric

Neural Network Structure

Non-Hybrid Hybrid

1D CNN CNN LSTM GRU CNN + LSTM CNN + GRU

TD (s) 26.81 215.89 785.61 921.24 315.6 468.12
TD’(s) 11.5 116.81 256.84 312.89 129.31 221.51
A (%) 73.42 91.56 82.24 81.17 93.51 87.52
P (%) 69.14 92.21 89.31 81.62 91.81 89.61
R (%) 76.15 88.15 89.62 88.11 90.11 82.61

FPR (%) 1.21 1.45 14.12 6.89 1.10 2.81
F1- (%) 81.98 92.21 90.51 87.58 92.01 89.51

The time complexity of each neural network structure is considered to indicate the
time involved in training and testing the classifier. Each classification model was considered
under ten successive training iterations. The shallow network outperforms all others in
terms of latency which is expected. Each training iteration of the shallow neural network
(1D-CNN) was recorded at approximately 2.7 s having a total training time of 26.81 s. Deep-
layered CNN training time was the lowest among all remaining non-hybrid and hybrid
classifiers at 215.89 s. CNN processed 399,226 samples for each training iteration in ~21.58 s.
The LSTM consumed 78.56 s and GRU 92.12 s for each training iteration recording a total
training time of 785 s and 921 s respectively. Among the hybrid models, the CNN + LSTM
model offered the advantage of faster extraction of relevant features (due to CNN) and a
higher cross-dimensionality analysis (provided by LSTM) at a relatively lower training time
of 315.6 s compared to the CNN + GRU model at 468.12 s. During testing and validation,
the 3,992,271 samples were completed in ~117 s by CNN, ~257 s by LSTM, and ~312.89 s by
GRU. Similarly, the CNN + LSTM consumed around 129.31 s during testing compared to
the CNN + GRU, which recorded 221 s.

Accuracy, precision, recall, and f1-score for each of the neural network models is
demonstrated in Figure 8. Among non-hybrid classifiers, the CNN reported highest
accuracy (91.56%) and precision (92.21%) when compared to LSTM and GRU classifiers.
Similarly, the false positive rate (1.45%), recall value (88.15%), and f1-score (0.92) were
optimal among non-hybrid models. Among all classifiers the CNN + LSTM network
reported the highest accuracy (93.51%), while the precision (91.81%) was slightly lower in
comparison with CNN, the recall (90.11%) and FPR (1.10%) was again optimal while the f1-
score was only slightly lower than CNN. The CNN + GRU structure fared well in accuracy
(87.52%), and precision (85.61%) with 1D CNN (shallow), LSTM, and GRU classifier.
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5.2. Qualitative Observations

Deep neural networks aid in data dimensionality reduction by learning features of
interest applicable to real IoBNT operation. From the empirical results, it is witnessed that
the overall training and testing time of the CNN model is better in comparison with the
other non-hybrid and hybrid classifiers. The overall efficiency of CNN is also significantly
high albeit lower than the CNN + LSTM hybrid. As discussed earlier, LSTM and GRU
models are from the recurrent neural network (RNN) family having different operational
focus compared to typical CNN structures. RNN-based models help in extracting interdi-
mensional correlations in data to identify the anomalies in bioluminescence operational
parameters. It was observed that the GRU and LSTM training and validation require a
longer time, however, the efficiency in comparison was relatively lower. The relatively low
accuracy of RNN models in the evaluation is attributed to over-fitting and the absence
of high visibility time-related parameters in data. LSTM and GRU models, therefore, did
not produce the highest classification accuracy in standalone non-hybrid mode. It was
also observed that the convergence time of LSTM and GRU was quite similar, with the
classification accuracy and precision of LSTM being better. The shallow model reported
minimum time latency, but the accuracy and precision were the lowest among all mod-
els. The shallow model appeared to provide significant data fitting, but the absence of a
deep(er) neural network affected the overall generalization in discriminating anomalous
traffic parameters. The hybrid models performed well in comparison with LSTM, GRU,
and the shallow model. The CNN + LSTM hybrid provided the highest accuracy, with
precision fractionally less than CNN. The remaining metric values of the CNN + LSTM
outperformed all classification structures.

5.3. Hybrid Structure: Analysis and Discussion

The hybrid CNN + LSTM proved effective with respect to classification results ob-
tained for non-hybrid, shallow, and hybrid neural networks. The CNN part offers low-
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latency feature extraction capability by using iterative convolutions on traffic parameters,
allowing a relatively accurate weight representation using small-sized kernels. Convolu-
tional layers are succeeded by the LSTM structure. The complete model is depicted in
Figure 9. Architectural insight into each layer of the hybrid model is detailed below.
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Figure 9. Hybrid neural network model.

Convolutional (entry-level) input layer: input layers comprise twelve neurons for
data processing and early feature selection. Employing a relatively lower number of input
neurons aligns with a fundamental IDS/IPS requirement to allow faster initial processing
with complex data correlations being extracted in secondary (hidden) layers [23,37].

Hidden (secondary) layers: the hybrid model used two (fully connected) hidden layers
having sixty-four neurons each, and a 4 × 4 kernel size to allow comprehensive feature
extraction. Using two hidden layers, with a relatively higher number of neurons compared
to the input and final output layers results in feature filtering for large dimensional BBI
input data [34,39]. ReLU (non-linear piecewise) activation is used to reduce the vanishing
gradient issue and prevent an exponential increase in computation to operate the DL
network and improve deployment feasibility [34,37]. ReLU function, hence, helps the
hybrid model to learn faster and optimizes performance.

Pooling layer (deletion): pooling layers which provided the means to reduce feature
dimensionality in independent CNN earlier, are not used in the hybrid model. This
purposely allows the filtering of low-intensity temporal BBI features and provides greater
invariance before further processing in LSTM layers [49].

Dropout layers: dropout layers are used in fully connected layers, to address scholastic
regularization and to limit model overfitting. Dropout layers are included at the end of
CNN layers, and after LSTM input add an element of uncertainty for improved model
training. The present implementation used a typical dropout value of 0.5, to regularize
model over-fitting and minimize weight learning in each iteration [14,16].

Dense layer (LSTM): Dense layer uses sigmoid activation given in earlier in (13),
changing the output to follow a tangential function [38]. Sigmoid function guarantees any
neural unit output (weighted sum of inputs) to conform to 0 and 1, before being input to
(any) subsequent layer. ReLU activation at each preceding layer ensures that sigmoid is
only applied at the end in the hybrid model to avoid saturation at data extremes during
training which would reduce model learning ability.

Output layer: the output layer provides final feature differentiation, compression, and
mapping output to one hot encoding (class label) at the end. Softmax function is used in
the output as a last activation to predict multinomial probability distribution [36]. The
function assigns a decimal probability to each of the four BBI traffic classes (adding up to
1.0), essentially reducing the overall training convergence latency of the hybrid model.
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Optimization function: Nadam is used to minimize exponential floating averages on
all preceding and subsequent gradient values using Keras [46]. The optimization ensures
better overall loss function and faster convergence reducing the training phase. This is
an enhancement to the Adam optimizer used in several earlier classification studies and
allows better anomaly detection capability in multi-dimensional parametric data such as
IoBNT BBI.

The final structure, is an ensemble of convolutional and recurrent long-short-term
layers, allowing single-stage processing. We consider the performance of this hybrid model
in the context of individual CNN, and related studies as well as highlight the inherent
operational challenges in the following sub-sections.

5.3.1. Performance Comparison

To compute the overall loss function, signifying a reduction in training phase, categor-
ical cross entropy from Keras was used [47]. The receiver operating characteristic (ROC)
curve for the optimal classifier in comparison with CNN is given in Figure 10. The resulting
differences between the two models are subtle at certain thresholds. Although the overall
difference in recorded metrics for the CNN, and CNN + LSTM model was minimal, the
LSTM layer in the latter provides the additional benefit of extracting temporal correlations
present in the in vivo traffic diffusion parameters such as the cumulative concentration rate
released molecules (Ψ0), the diffusion rate of molecules (m0), and the drug delivery release
rate (λ). Compared to ML, and DL models for generic and IoBNT-interface-specific anomaly
detection classifiers in [23–30,33], the optimal hybrid model can classify anomalous pa-
rameter traffic by dynamically reducing feature dimensionality which would be manually
intensive if using traditional ML. Summarization of key differences and advantages of
the proposed hybrid model over complimentary schemes are detailed in Table 7. Zafar
et al. [23] provided an authentication method for IoBNT interfaces employing channel
impulse response (CIR) profiling to isolate anomalous control signals. El-fatyany et al. [24]
relied on binary-phase-shift-keying (BPSK) modulation to encryption system-IoBNT com-
munication keys. These early non-ML reliant schemes allowed limited toleration for noisy
signals affecting in-vivo TDD, while also being computationally intensive due to inherent
multi-stage encryptions. Among ML/DL classification use-cases in IoT, and IoBNT do-
main, the primary constraint has been manual or multi-stage feature engineering as is the
case in [25–31], as well as limited dataset diversity as in [33]. In the IoT domain, utilize
semi-hybrid classification strategies to detect network anomalies. Classifiers proposed by
Abusitta et al. [26], Rosero-M et al. [27], Chander et al. [28], and Hameed et al. [29], rely on
either extensive unsupervised ML-based feature engineering followed by neural network
training (semi-hybrid models), use multi-stage process(es), or allow only binary traffic
classification, limiting practical realization of these classifiers in IoBNT-specific interfacing
for timely anomaly detection. The present hybrid (CNN + LSTM) model, in contrast,
allows for automated feature processing and selection using a neural network structure.
Extensive multi-stage feature engineering prior to DL application results in significant
computational overhead which would be counter-intuitive for deployment in IDS, and IPS
if re-training were required. Furthermore, supervised feature selection represented in prior
schemes necessitates a new cycle of data collection, annotation, and training for updating
classifiers [26–31]. However, such a training primitive is not applicable for the proposed
hybrid since the addition of new data would only require preparation (pre-processing),
with convolutional layers performing necessary feature selection. The operational consider-
ations and performance challenges of the proposed model are considered in the following
sub-section.
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Table 7. Anomaly classification models—model performance comparison.

Contribution Domain Classifier Constraint(s) Features

Zafar et al. [23] IoBNT Impulse response
fingerprinting

Significant probability of
incorrect detection in noisy
data

CIR fingerprinting for
anomalous control signal
discrimination

El-Fatyany et al. [24] IoBNT Logistic mapping and
BPSK modulation

Multi-stage encryption,
in-vivo TDD disruption,
compute overhead

BPSK session key encryption
for IoBNT interface signaling

Bakhshi et al. [25] IoBNT ML (supervised
learning—C5.0)

Manually crafted features,
limited dataset, satisfactory
efficiency

Security profiling BBI,
BioFET, and Redox IoBNT
interfaces

Abusitta et al. [26] IoT Semi-Hybrid: ML
(un-supervised) + DNN

Unsupervised ML-based
feature engg., 2D
classification

De-noising traffic parameters
followed by the NN
application

Rosero et al. [27] IoT Semi-Hybrid: ML
(unsupervised) + DNN

Multi-stage feature
processing, computation
overhead

kNN, NB, SVM,
heuristics-based outlier
detection, followed by RNN

Chander et al. [28] IIoT RNN (GRU)
Multi-stage metaheuristic
feature optimization
challenges

Use of deer hunting (feature)
optimization followed by
GRU RNN

Hameed et al. [29] IoT Logistic regression +
MLP ANN

Supervised learning for
feature selection, frequent
re-training

Scheme outperforms ML
methods in smart city IoT
deployments

Guan et al. [30] IoT CNN, LSTM
Reliance on determining
appropriate data transfer
models from other domain(s)

High classification accuracy
using transfer learning
approaches from existing
classifiers

Zafar et al. [33] IoBNT PSO, ANN Limited data, and feature
diversity

NN-based profiling of
BioFET interfacing for
anomaly detection

Proposed Hybrid
Classifier IoBNT CNN, LSTM Latency-efficiency trade-off

compared to 1D CNN

High-accuracy single-stage
hybrid structure, eliminating
manual feature engineering
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5.3.2. Operational Considerations and Challenges

The primary limitation of the CNN + LSTM hybrid model is visible in the training and
testing latency (~120–316 s) which is marginally higher than the non-hybrid CNN classifier
(~117–216 s) as depicted in Table 5. The present evaluations on the test-data set reflect the
comparative accuracy and false-positive ratio of a hybrid classifier to be 93.51%, and 1.10%
over CNN which is 91.56% and 1.45% respectively. Real-time deployment of the CNN
classifier in an IoBNT-specific intrusion detection and prevention system (IDS, IPS) would,
therefore, benefit from low alarm trigger latency, albeit decrease in accuracy. Lowered
accuracy may trigger a higher number of false positive alarms, enabling mitigative mea-
sures which in turn would affect the molecular channel communication and subsequently
disrupt intended drug delivery. Correspondingly, using CNN along with LSTM realizes
greater accuracy (by ~2%), with a partial increase in anomaly detection time (around ~11%)
as observed for the present dataset. Factors impacting the effectiveness of CNN + LSTM,
CNN, or any other monolithic and hybrid DL model can, hence, mainly be analyzed across
two different operational strands (i) alarm latency, and (ii) reported accuracy. These factors
are in turn influenced by the availability of realistic, diverse, and voluminous datasets
pertaining BBI-IoBNT scenario. Time-rich features and inherent correlation among different
parameters in network traffic typically require memory-retaining structures (such as LSTM),
which when combined with convolutional models allow for better overall accuracy. Real-
istic IDS/IPDS deployments, therefore, need to realize the peculiarities of specific traffic
datasets, implementation (edge, fog, cloud) with respect to time constraints, and adequate
testing to determine the optimal configuration of the hybrid structure. From the perspective
of operational safety reduction in false positives is significant in in-vivo drug delivery in
(any) IoBNT healthcare primitive and may consequently be traded off for a partial increase
in event detection time complexity [1,12,13]. Reducing FPR, allows for greater streamlining
of delivery and monitoring of MC-based drugs, without falsely triggering and enabling
mitigation measures, and degrading performance that may negatively impact the intended
outcome of healthcare operation(s). Novel system engineering deployment primitives for
the proposed hybrid model are discussed in the following section.

5.4. System Engineering: Deployment Primitives

The CNN model and the CNN + LSTM hybrid have demonstrated high accuracy, with
the hybrid faring better in terms of overall performance. It is important to consider the
practical applicability and integration of the proposed classifiers for the bioluminescent
bio interface of IoBNT in intrusion detection systems (IDS). The hybrid model devised in
the present work utilized hardware and software resources described earlier in Table 4,
implemented on a researcher (computing) machine having the capability to process data
and deploy classifiers; a setup challenging to implement in patient homes, or medical
facilities which do not have adequate computing or personnel. IoBNT paradigm and
bioluminescent interfaces recommend smaller real-estate, as well as minimum computing
power for human (and patient) friendly integration to offer real-time anomaly detection
capability arising due to cyber-attacks coupled with the longevity of practical operation.
We explore the possibility of using conventional and emerging computing paradigms
to address the practical deployment of a hybrid DL-based IoBNT anomaly classification
proposal as follows.

Fog and cloud computing: A possible solution to timely processing and deployment
of intrusion detection monitors is the use of fog-based classifiers, coupled with back-end
cloud computing for data processing and updating of DL structure to address unseen and
new(er) threats [20,34]. The anticipated challenge would be addressing the feasibility of
a fog computing server/node in patient premises, with satisfactory Internet connectivity
to back-end monitors. Such a scheme primarily relies on software-based systems for data
processing, monitoring, and intrusion (anomaly) detection.

Neuromorphic computation: A complimentary system deployment approach is to
employ hardware-based processing for real-time anomaly detection through in-situ de-
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ployment of a derived hybrid DL classifier in a bioluminescent bio-cyber interface using a
neuromorphic (chipset) module [50]. Emerging neuromorphic computing chipsets such
as Loihi by Intel [51] and Systems of Neuromorphic Adaptive Plastic Scalable Electronics
(SyNAPSE) TrueNorth program by IBM [52,53] comprise programmable neural network
learning engines that can self-train as well as adapt to external model parameters. Loihi
uses spiking neural network (SNN), and neural spike through directed synapses. The
learning engine can be tuned by updating synaptic weights and spike timings using custom
learning rules based on required network parameters through a 4-bit microcode and an
API. The chip, therefore, allows programming according to externally derived classifiers
such as the hybrid DL network structure proposed in the present work. Additionally,
learning can also be done on-chip using flexible supervised, unsupervised, reinforced, and
configurable neural networking architectures using a Python-based API, similar to Python
Neural Network Ensemble (PyNN) [54]. SyNAPSE by IBM is based on a multicore neural
network chip. The chip comprises 4096 cores and over one million neurons, each neuron
having 256 programmable synapses, conveying inter-neuron signals representing over
268 million synapses. Loihi and SYNAPSE architectures handle memory, computation,
and communication in neuro-synapses. Hence, these chipsets are not bottlenecked by the
power requirements of typical von Neumann architecture, proposing low-power, efficient
intrusion detection classifier incorporation in IoBNT devices. Intel claims 1000 times the
energy efficiency of Loihi over traditional computing power needed to train the same neural
network. IBM claims the SyNAPSE (TrueNorth) ecosystem to have 70 mW consumption
with a power profile of 0.01% to conventional processors. Low spatial requirements of
Loihi2 (60 mm2) and SyNAPSE (~35 mm2) may offer integration into the IoBNT system
eliminating the need for an additional local computing/fog node in the patient enclosure.
On-chip learning capability results in more localized DL classifier updating reducing re-
liance on peripheral and cloud computing devices [55]. In theory, machine learning and
monitoring via the same silicon, independent of (any) external cloud connections provide a
very useful deployment paradigm in IDS.

Analog memristor crossbars: Studies in neuromorphic computing have realized the
implementation of neural network structures on cross-connecting circuits, where resistive
circuits can be programmed to represent neural network structures at a fraction of the cost
associated with commercial chipsets. Analog circuitry has been researched to successfully
build on-chip neural network classifiers [56,57]. Multilayer neural networks have been
shown for successful deployment on One Transistor One Resistor (1T1R) memristor-based
crossbars [58]. We present a representative approach of employing analog (crossbar)
circuits to implement the proposed hybrid DL-based intrusion detection classifier at the
system level. Using Ta/HfO2/Pt memristors, the hybrid DL-based classifiers, such as one
derived for attack classification and anomaly detection in the present study can be ported to
hardware circuitry. A typical hardware implementation of the hybrid DL intrusion detection
classifier influenced by earlier research is illustrated in Figure 10. Each memristor can be
connected in series to a transistor forming a 1T1R structure, where multiple 1T1R arrays can
be assembled to represent the multi-layer neural network structure illustrated in Figure 11.
The number of input voltage sources directly corresponds to the number of parameter
inputs (12 bio-luminesces metrics) to the CNN + LSTM classifier. The weight training
(synapses) of the hardware circuitry would need mapping to the derived CNN + LSTM
parameters at each neural layer. In the crossbar(s), each synapse (weight) is represented
by the conductance difference between two memristors, and the weighted sum of input
voltages (v1, ..., vn) is calculated at each cross-point. Integrated circuitry in the crossbar
arrays reads current values at each cross-point, converting it to equivalent voltage to
represent the activation function (which is non-linear). Ubiquitous availability of 1T1R, and
on-demand foundry-fabrication of transistor arrays as depicted in Figure 11, are practically
realizable. Furthermore, fully trained memristor networks can be integrated with analog-
to-digital (ADC) and digital-to-analog (DAC) converters for peripheral integration with
IoBNT devices. IoBNT modules such as the BBI bio-cyber interface can read analog signals,
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processed on fully trained memristor arrays according to the operational characteristics
of the pre-built DL model, and further communicated to off-site monitors. Memristor
crossbars embed the benefits of non-Von Neumann architecture while allowing lower
power utilization at a fraction of traditional computing.
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The derived hybrid DL anomaly detection classifier, therefore, can be used with differ-
ent software and hardware primitives to fulfill intrusion detection requirements. While
classifier derivation can be conducted on typical computing machines as demonstrated in
the present work, IDS and real-time attack monitoring can benefit from hardware-based
classifier ports. The suggested proposal of hardware porting of the built hybrid classi-
fier, employing commercial neuromorphic chipsets as well as foundry-fabricated analog
crossbar circuitry allows real-time inference, training, and anomaly detection in IoBNT
(bio-cyber bioluminescence) interface security at highly economized power and real-estate
costs. Using a chipset or circuitry of the scale of a few square millimeters allows a greater
scope of inclusion in the bioluminescent interface module, increasing the ergonomic value
of the design.

6. Conclusions and Future Work

The present work proposed a hybrid deep-learning neural network structure to detect
anomalous attack traffic and secure the bioluminescent bio-cyber interface (BBI) of the
Internet of Bio-Nano Things (IoBNT) framework. During testing and validation, the deep
learning-based classifier based on a CNN + LSTM hybrid structure reported an accuracy of
approximately 93.51% in comparison with other models including standalone CNN, LSTM,
GRU, and CNN + GRU hybrid (ranging between ~73–91.6%). It was observed that the CNN
model marginally excelled in feature extraction latency (~117 s) relative to CNN + LSTM
(~130 s). However, the later hybrid structure demonstrated higher discriminatory precision
in classifying anomalous traffic by being able to account for temporal characteristics in
traffic, provisioned by the LSTM part. The hybrid CNN + LSTM structure, therefore,
allowed higher accuracy which is essential in real-time IDS deployments to minimize the
impact of adversarial anomalous traffic through accurate identification and subsequent
mitigation during in-vivo drug delivery and monitoring.

The present work also explored the utilization of neuromorphic chipsets, and analog
circuitry to port the proposed classifier at the hardware level; aiming to economize power
consumption, and spatial efficiency in ergonomic IoBNT healthcare deployments. In our
future work, we will map the pre-determined classifier attributes (synaptic weights) on
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memristor crossbars as well as investigate the possibility of in-situ classifier training, to
reduce resource consumption using non-Von Neumann architecture(s).
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