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Abstract
Background  Nutrition guidance for athletes must consider a range of variables to effectively support individuals in meeting 
energy and nutrient needs. Resistance exercise is a widely adopted training method in athlete preparation and rehabilitation 
and therefore is one such variable that will influence nutrition guidance. Given its prominence, the capacity to meaningfully 
quantify resistance exercise energy expenditure will assist practitioners and researchers in providing nutrition guidance. 
However, the significant contribution of anaerobic metabolism makes quantifying energy expenditure of resistance exercise 
challenging.
Objective  The aim of this scoping review was to investigate the methods used to assess resistance exercise energy expenditure.
Methods  A literature search of Medline, SPORTDiscus, CINAHL and Web of Science identified studies that included 
an assessment of resistance exercise energy expenditure. Quality appraisal of included studies was performed using the 
Rosendal Scale.
Results  A total of 19,867 studies were identified, with 166 included after screening. Methods to assess energy expenditure 
included indirect calorimetry (n = 136), blood lactate analysis (n = 25), wearable monitors (n = 31) and metabolic equivalents 
(n = 4). Post-exercise energy expenditure was measured in 76 studies. The reported energy expenditure values varied widely 
between studies.
Conclusions  Indirect calorimetry is widely used to estimate energy expenditure. However, given its limitations in quantify-
ing glycolytic contribution, indirect calorimetry during and immediately following exercise combined with measures of 
blood lactate are likely required to better quantify total energy expenditure. Due to the cumbersome equipment and technical 
expertise required, though, along with the physical restrictions the equipment places on participants performing particular 
resistance exercises, indirect calorimetry is likely impractical for use outside of the laboratory setting, where metabolic 
equivalents may be a more appropriate method.
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Key Points 

Indirect calorimetry is used widely but is limited in 
quantifying the glycolytic cost of resistance exercise.

Indirect calorimetry measures during and immediately 
following resistance exercise in combination with blood 
lactate measures before and after exercise may be the 
most valid means of estimating total energy expenditure 
of resistance exercise. Metabolic equivalents may be the 
easiest tool to implement in the field.

Future research should aim to develop a more valid sys-
tem to quantify the glycolytic contribution to resistance 
exercise and better understand how resistance exercise 
energy expenditure is currently estimated by practition-
ers in the field.

1  Introduction

Resistance training can increase strength and power while 
reducing injury risk, and has been established as an essen-
tial auxiliary training tool in elite [1, 2], amateur [3], young 
[4], old [5], individual [6, 7] and team sport athletes [1, 
2]. Furthermore, in sports such as bodybuilding, Olympic 
weightlifting, powerlifting and CrossFit, resistance exercise 
can be considered a primary mode of training [7–10]. Out-
side of a performance context, resistance exercise is used 
as an essential tool in athlete rehabilitation [11]. The often-
periodised nature of competition preparation dictates vari-
ation in training characteristics based on the goals of each 
cycle. From a resistance exercise perspective, such variation 
would involve adjustments in training frequency (sessions 
per week), load (percentage of repetition maximum), vol-
ume (sets and repetitions) and movement velocity, amongst 
others. Such characteristics would therefore influence the 
overall workload experienced by the athlete, requiring a 
consideration of complementary facets of overall health and 
performance including nutrition.

The dietary requirements of athletes are primarily influ-
enced by daily training load, but also impacted by other vari-
ables including health, injury status and environment [12, 
13]. The variable nature of these factors within and across 
training phases and competition means sports dietitians must 
be dynamic with their nutrition support, providing custom-
ised direction around energy and nutrient requirements. 
Ultimately, energy intake requirements will be determined 
by the energy expended through resting metabolic rate and 
non-exercise activity energy expenditure, and, specifically 

in the context of the athlete, the hugely variable energy 
expenditure of exercise [14, 15]. As such, it is pertinent for 
sports dietitians to gather and assess athlete and training 
data to provide accurate guidance around dietary energy 
requirements for individual athletes. In particular, captur-
ing estimates of exercise energy expenditure will support 
practitioners in providing this dietary energy guidance [12].

The reference method for quantifying total energy 
expenditure is direct calorimetry, but this is largely unavail-
able to researchers and practitioners [16]. Doubly labelled 
water, considered the reference measure for free living total 
energy expenditure, has been used to quantify the energy 
expenditure of various athlete cohorts [17–20]. However, 
this technique is limited in day-to-day practice due to costs 
and accessibility, while also failing to determine daily fluc-
tuations in expenditure and lacking the capacity to quantify 
the energy expenditure of individual exercise sessions [15]. 
Physiological and metabolic complications that can result 
from imbalances in energy intake and the energy expendi-
ture of exercise (low energy availability) include reductions 
in muscle protein synthesis and resting metabolic rate, as 
well as menstrual dysfunction, hormonal disruption and 
increased injury risk [21, 22]. Emerging evidence also sug-
gests potential detrimental outcomes of acute imbalances 
between intake and expenditure within a day [23–25]. These 
physiological and metabolic complications demonstrate a 
clear justification for quantifying the energy expenditure of 
exercise [26]. As such, tools that allow this measurement 
are warranted. Given the prevalence of resistance exercise 
in athlete preparation, and by extension its contribution to 
exercise energy expenditure, the capacity to meaningfully 
quantify the energy expenditure of a resistance exercise ses-
sion specifically will assist practitioners in providing energy 
requirement guidance. This will support athlete health 
and performance by optimising energy intake within and 
between days.

Indirect calorimetry is typically used to measure the 
energy cost of continuous, aerobic-based exercise. This 
technique relies on the subject achieving steady-state con-
ditions and most of the energy being expended via aerobic 
energy pathways. Unlike aerobic exercise, though, resist-
ance exercise depends on the significant contribution of 
anaerobic metabolism [27, 28]. Furthermore, the typically 
high-intensity, short-duration characteristics of a resistance 
exercise effort (i.e. a single set) means steady-state is not 
achieved [29]. As such, values of energy expenditure esti-
mated through indirect calorimetry likely neglect a signifi-
cant fraction of the energy cost of resistance exercise [29]. 
Depending on training variables, this anaerobic fraction 
may be over 40% of energy expenditure [30]. Attempts have 
been made to quantify the anaerobic contribution to resist-
ance exercise energy expenditure. Blood lactate changes 
from pre- to post-exercise have been used to estimate the 
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glycolytic energy cost [30, 31], with an energy equivalent 
used per unit increase in blood lactate concentration [32]. 
This method may be limited given that blood lactate is only 
an approximation of muscle blood lactate production. Indi-
rect calorimetry during recovery periods between and imme-
diately after exercise sets captures the energy supplied by 
the phosphagen system via measurement of the fast phase of 
excess oxygen uptake [33, 34]. Estimations of total energy 
expenditure have also been made on the basis of the Com-
pendium of Physical Activities, with metabolic equivalent 
(MET) values of 3.5–6.0 used depending on the nature of 
the resistance exercise [35], while regression analyses have 
been performed to predict energy expenditure factoring in 
participant and training variables [36]. Both MET values and 
regression analyses are limited, though, by their dependence 
on indirect calorimetry to estimate energy expenditure, and 
resistance exercise MET values fail to account for disparity 
in energy expenditure depending on variability in muscle 
mass activation. Despite each of these methods being rec-
ognised, the range of techniques used to date suggests no 
accepted standard for quantifying the energy expenditure of 
resistance exercise. Further exploration of this field is there-
fore needed to establish recommendations for the accurate 
quantification of resistance exercise energy expenditure.

Factors within a resistance exercise session likely contrib-
ute to overall energy expenditure. The intensity of the exer-
cise will influence the contribution of anaerobic systems to 
metabolic output [27], as will the proximity to failure, while 
movement velocity also influences energy expenditure [37]. 
Unlike continuous exercise, the high-intensity, intermittent 
nature of resistance exercise will result in significant energy 
expenditure during recovery periods (i.e. between sets and 
exercises) despite no external work being performed, largely 
attributed to the replenishment of high energy phosphates 
[28, 30]. The specific exercise itself also influences energy 
expenditure. Exercises activating larger amounts of muscle 
mass will inherently result in greater expenditure than those 
utilising smaller amounts of muscle mass, across a range 
of lifting intensities. For example, single sets of half squat 
and biceps curl performed to momentary failure at 80% one 
repetition maximum resulted in expenditures of 150.9 ± 20.9 
and 35.8 ± 9.5 kJ/min, respectively [38]. The capacity to 
quantify total energy cost of a resistance exercise session 
will therefore require a system that considers these factors.

Given the prominent incorporation of resistance exer-
cise in athlete programming, from both performance and 
rehabilitation perspectives, along with the importance of 
dietary guidance centred around individual energy and 
nutrient needs, accurately quantifying the energy cost of 
resistance exercise is warranted. Such a quantification would 
allow practitioners to better service athletes in meeting their 
dietary, health and performance goals. Researchers would 
also benefit through increasing the capacity to quantify the 

energy cost of training interventions, allowing a more accu-
rate link between training variables and physiological out-
comes. In addition, the capacity to quantify resistance exer-
cise energy expenditure would also allow for a more accurate 
assessment of energy availability, given the critical role of 
quantifying energy expenditure of exercise. Therefore, the 
aim of this scoping review is to investigate the methods used 
to assess the energy expenditure of resistance exercise. This 
will support practitioners and researchers in estimating the 
energy cost of resistance exercise, and therefore enable more 
individual guidance around energy and nutrient needs.

2 � Methods

Reporting of this scoping review follows the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) extension for scoping review guidelines. The pro-
tocol for this scoping review is registered at Open Science 
Framework (https://​doi.​org/​10.​17605/​OSF.​IO/​PUZWB).

2.1 � Eligibility Criteria

Experimental and observational study designs were eli-
gible for inclusion. Review papers, abstracts and grey lit-
erature were not eligible. Studies not reported in English 
were excluded. Any study that included an assessment of 
the energy expenditure of resistance exercise was eligible 
for inclusion. This included single- and multi-set resistance 
exercise, circuit-based resistance exercise and exercise 
where body weight was used as resistance. Studies quanti-
fying the energy expenditure of the usual training program 
of athletes, where the usual program included some form 
of resistance exercise, were also included, regardless of 
whether energy expenditure of the resistance training ses-
sion itself was reported. No restrictions on participant age, 
sex, level of activity or health status were imposed.

2.2 � Search Strategy

The systematic search to identify studies was conducted by 
one researcher (L.M.) from the earliest record until 8 Janu-
ary 2024. Databases searched included Medline via Ovid, 
SPORTDiscus via EBSCOHost, CINAHL via EBSCOHost, 
and Web of Science. The search used key words and con-
trolled vocabulary in the following combination: (“resist-
ance train*” OR “resistance exercise*” OR “progressive 
resistance” OR “Weightlift*” OR “weight lift*” OR “Body-
build*” OR “body build*” OR “weight train*” OR “strength 
train*” OR “progressive train*” OR “athlet*”) and (“energy 
expend*” OR “metabol*” OR “calorimet*” OR “energy 
availab*”). The full electronic search strategy is presented 
in Supplementary Fig. 1.

https://doi.org/10.17605/OSF.IO/PUZWB
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2.3 � Selection of Studies and Data Extraction

After the search was conducted and duplicates removed, 
manuscripts were screened by title and abstract by one 
researcher (L.M.). Full texts of all potentially eligible texts 
were independently screened by two researchers (L.M. and 
L.W.). Disagreements were resolved by discussion between 
screening authors. If a resolution could not be achieved, a 
third author (G.S.) made the final decision. All screening 
steps were conducted using Covidence systematic review 
software (Veritas Health Innovation, Melbourne, Australia).

A standardised Microsoft Excel spreadsheet (Microsoft 
Corporation, Redmond, WA, USA) was used for data extrac-
tion. All publications were extracted by L.M. Duplicate 
extraction was divided between L.W., G.D., K.P., J.W. and 
G.S. Extracted data included study characteristics (author, 
publication year, country and design), participant character-
istics (sample size, age, sex and training status), resistance 
training details (exercises, sets, repetitions, load, rest and 
movement velocity), and outcome measures (energy expend-
iture assessment technique, energy expenditure values and 
post-exercise energy expenditure). A computer program 
(WebPlotDigitizer, Version 4.6) was used to calculate the 
mean and standard deviation of data reported in figures [39]. 
Final data extraction was crosschecked by L.M.

2.4 � Assessment of Reporting Quality

Although assessment of methodological quality is not 
required for scoping reviews, researchers deemed it appro-
priate for the overview of literature on the topic. The meth-
odological quality of all included publications was assessed 
using the Rosendal Scale [40]. This scale assesses several 
factors associated with the minimisation of bias in areas such 
as participant selection, performance and data analysis. The 
scale is a combination of items from the Jadad scoring sys-
tem [41], the Physiotherapy Evidence Database (PEDro) 
scale [42], and the Delphi List [43], in addition to recom-
mendations contained in the CONSORT statement [44]. 
Scoring of each publication was determined by dividing the 
number of ‘yes’ responses by the number of relevant items, 
with excellent methodological quality indicated by a score 
of ≥ 60%. Each publication was scored by two researchers 
(L.M. and L.W.), with discrepancies resolved by discussion.

2.5 � Data Synthesis

A narrative approach to data synthesis was used. Charac-
teristics of resistance exercise performed within included 
studies were categorised (single-exercise, multi-exercise, 
circuit training and group exercise). The technique used 
to estimate resistance exercise energy expenditure in each 
study was described, with studies grouped together on the 

basis of the assessment technique utilised. Due to vari-
ability in how energy expenditure was reported, the energy 
expenditure value within included studies was synthesised 
and presented as ranges. Tables and figures are used to 
summarise findings.

3 � Results

3.1 � Study Selection and Characteristics

The initial search yielded 24,725 citations. Following the 
removal of duplicates (n = 4858) and assessment of full 
text for eligibility (n = 391), a total of 166 articles met 
inclusion criteria [1, 14, 25, 27, 28, 30, 31, 33, 34, 36–38, 
45–198]. Figure 1 outlines the flow of study identifica-
tion. A total of 14 studies were published before 2000, 32 
studies were published between 2000 and 2009, 89 studies 
were published between 2010 and 2019 and 31 studies 
were published between 2020 and 2023. By design, studies 
were cross-over studies (n = 84), cross-sectional studies 
(n = 39), repeated measures studies (n = 19), randomised 
controlled trials (n = 16), longitudinal observational stud-
ies (n = 4), single-group intervention studies (n = 2), a 
non-randomised controlled trial (n = 1) and a retrospective 
study (n = 1). Studies were conducted in the USA (n = 83), 
Europe (n = 34), South America (n = 18), Canada (n = 8), 
Australia (n = 6), Japan (n = 5), the UK (n = 6), New Zea-
land (n = 4), India (n = 1), and Singapore (n = 1).

The sample size of the studies ranged from 2 to 417. The 
mean age of participants ranged from 12.9 to 73.1 years. 
Six studies did not report mean participant age; however, 
two of these reported the age range of participants. Studies 
recruited trained participants (n = 99), recreationally active 
participants (n = 21), untrained participants (n = 23), clini-
cal participants (n = 9) and a combination of trained and 
untrained participants (n = 4). Participant training status 
was not described in 10 studies.

3.2 � Resistance Training Characteristics

Details of the resistance training conducted in the included 
studies are presented in Supplementary Table 1. Of the 
166 included studies, 42 used a single-exercise resistance 
training session, 60 used a multi-exercise resistance train-
ing session, 31 used a circuit training session, 5 measured 
group exercise classes, 2 studies used both single- and 
multi-exercise resistance training sessions and 26 studies 
had participants perform their usual resistance training 
program but did not describe the details of these programs.



Methods to Assess Energy Expenditure of Resistance Exercise

3.3 � Energy Expenditure Assessment

The methods used to assess energy expenditure of resistance 
training are presented in Supplementary Table 1 and Fig. 2. 
Indirect calorimetry (n = 136) was the predominant method 
used to assess energy expenditure in included studies, along 
with blood lactate (n = 25) and wearable monitors (n = 13). 
Other methods reported were metabolic equivalents (MET) 
via the Compendium of Physical Activities (n = 4), a stand-
ard energy cost of resistance exercise per minute (n = 3), and 
an individual rating of perceived exertion–energy expendi-
ture regression equation (n = 1).

3.3.1 � Indirect Calorimetry

In total, 136 studies utilised indirect calorimetry to meas-
ure the energy expenditure of resistance exercise. These 

studies collected expired gas for either a portion or the 
entire duration of the resistance training. Whole room 
indirect calorimetry was used in 3 of 136 studies [94, 124, 
125], with the remaining studies using either a metabolic 
cart (n = 131) or Douglas bags (n = 2). Most (n = 99) of the 
136 studies defined how energy expenditure was calculated 
from indirect calorimetry. This calculation was based on 
a set energy equivalent per litre of oxygen (for example, 
21.1 kJ/L O2; n = 58), an equation based on volume of oxy-
gen (VO2) and volume of carbon dioxide (VCO2; for exam-
ple, the Weir equation [199]; n = 21), an energy equivalent 
based on the respiratory exchange ratio (n = 17) or stoi-
chiometric values (n = 3). The remaining 37 studies did 
not describe how energy expenditure was calculated from 
indirect calorimetry. A separate energy equivalent per litre 
of oxygen during inter-set and inter-exercise rest periods to 
that during the exercise period was used in seven studies.

Fig. 1   PRISMA flow diagram

Records identified from:
Databases (n = 24725; 
CINAHL n = 6503, Medline n 
= 16200, SPORTDiscus n = 
1021, Web of Science = 
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Duplicate records removed (n 
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3.3.2 � Glycolytic Energy Expenditure

The glycolytic contribution to energy expenditure was esti-
mated in 26 studies [27, 28, 30, 31, 33, 34, 37, 38, 47, 52, 
99, 105, 107, 108, 117, 119, 121, 122, 141, 150, 154, 160, 
168, 173, 174, 197]. Each of these studies included glyco-
lytic measures in addition to indirect calorimetry measures. 
Blood lactate was measured in 25 of the 26 studies, with 
the change in blood lactate concentration (peak-rest [La−]) 
converted to an oxygen equivalent (3 mL O2/kg body mass/
mmol [La−]), with energy expenditure calculated from this 
oxygen volume. One study used the accumulated oxygen 
deficit to quantify combined anaerobic energy expenditure 
[38].

3.3.3 � Wearable Monitors

Wearable monitors were used in 31 studies to estimate 
energy expenditure of resistance exercise. This included 
18 studies that measured total activity energy expendi-
ture of athletes performing their usual training program 
that included resistance training. Monitors used were the 
Sensewear armband (n = 10) [1, 46, 51, 53, 71, 79, 80, 109, 
157, 185], chest-mounted heart rate monitor (n = 5) [98, 117, 
155, 156, 177], accelerometer (n = 5; wrist-mounted, n = 3; 
hip-mounted, n = 1; or waist-mounted, n = 1) [140, 147, 162, 
163, 192], combination heart rate and accelerometer (n = 7; 
chest-mounted, n = 5; wrist- and chest-mounted, n = 1; or 
wrist-mounted, n = 1) [115, 129, 165, 167, 186, 190] and 
multiple wearable sensors (n = 4; wrist- and chest-mounted, 
n = 2; wrist-mounted, n = 1; and wrist-, hip- and waist-
mounted, n = 1) [25, 57, 96, 131, 196]. Five of these studies 

were attempting to validate wearable monitors for measure-
ment of energy expenditure against indirect calorimetry [51, 
57, 96, 131, 157].

3.3.4 � Post‑exercise Energy Expenditure

Energy expenditure was measured in the period immediately 
post-exercise in 76 studies. Indirect calorimetry was used in 
each of these studies to assess post-exercise energy expendi-
ture. Measurements continued for a pre-specified time frame 
(n = 57), ranging from 3 to 180 min, or until VO2 returned 
to a pre-determined value (n = 15) based on pre-exercise 
resting energy expenditure measurements or a defined O2 
consumption (range: 4–5 ml O2/kg/min). In addition, resting 
metabolic rate was compared with pre-exercise metabolic 
rate at one or more of 12, 24, 36, 48, and 72 h after resist-
ance training in four studies [45, 91, 101, 118].

3.4 � Resistance Training Energy Expenditure

Energy expenditure was reported as both an absolute 
expenditure (total kJ) and as a rate of expenditure (kJ/
min). Energy expenditure values reported varied widely 
between studies. Absolute values ranged from 6–1575 kJ 
for single-exercise studies, 38–2957 kJ for multi-exercise 
studies, 235–1822  kJ for circuit exercise studies, and 
1050–1402 kJ for group exercise studies. Relative expendi-
ture values ranged from 8–151 kJ/min for single-exercise 
studies, 6–62 kJ/min for multi-exercise studies, 11–55 kJ/
min for circuit exercise studies, and 4–6 kJ/min for group 
exercise studies. Reporting standard also varied, with stud-
ies reporting expenditure values as exercise alone, exercise 

Indirect calorimetry
(n = 136)

Glycolytic 
metabolism (n = 26)

Wearable monitor
(n = 31)

Other method
(n = 8)

Energy expenditure 
calculated from:

VO2 (n = 58)
VO2 & VCO2 (n = 21)
RER (n = 17)
Stoichiometry (n = 3)
Not described (n = 37)

Inter-set rest energy 
expenditure a (n = 7)

Post-exercise energy 
expenditure b (n = 76)

Glycolytic system:
Δ blood [La-] (n = 25)

O2 deficit c (n = 1)

Sensewear armband (n = 
10)
Heart rate monitor (n = 5)
Accelerometer (n = 5)
Combination heart rate and 
accelerometer (n = 7)
Multiple wearable sensors 
(n = 4)

MET (n = 4)
Standard EE per minute (n 
= 3)
RPE-EE regression 
equation (n = 1)

Fig. 2   Methods of energy expenditure assessment reported in 
included studies. RER, respiratory exchange ratio; La−, lactate; MET, 
metabolic equivalents; EE, energy expenditure; RPE, rating of per-
ceived exertion. aStudies used a separate energy equivalent value for 

inter-set and inter-exercise rest periods to that used during exercise 
periods. bStudies included a measure of energy expenditure in the 
period following resistance training. cO2 deficit purported to capture 
both the glycolytic and phosphagen systems
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plus inter-set rest, and exercise plus inter-set rest plus post-
exercise recovery expenditure. Only a small number of stud-
ies (n = 34) accounted for resting metabolic rate within the 
reported energy expenditure values.

3.5 � Assessment of Reporting Quality

Results of the quality assessment are presented in Supple-
mentary Table 2. Average Rosendal score was 66.7 ± 15.1%, 
with 118 of 166 studies achieving a score rated as excellent 
(≥ 60%).

4 � Discussion

This study aimed to review the methods used to assess resist-
ance exercise energy expenditure. A total of 166 studies 
were included in the review, with the majority utilising indi-
rect calorimetry to estimate energy expenditure. A smaller 
proportion of studies complemented indirect calorimetry 
by using methods to estimate the glycolytic contribution to 
energy expenditure. Wearable sensors were also utilised in 
included studies, many of which examined athletes perform-
ing their usual resistance training program as a component 
of a broader assessment of energy expenditure and quantify-
ing energy availability. A range of resistance exercise ses-
sions were examined in studies, including single and multi-
exercise sessions, low and high intensity sessions, circuit 
training, and group exercise classes. Given the variability 
of metabolic characteristics of this range of exercises, the 
choice of method to quantify energy expenditure requires 
consideration of these characteristics. Although the majority 
of studies employed indirect calorimetry, there are limita-
tions to this method pertinent to its application in resistance 
exercise.

4.1 � Indirect Calorimetry

Of the 166 studies included in this scoping review, 136 
used indirect calorimetry to estimate energy expenditure. 
Although a valid method to measure the aerobic metabolic 
output during steady state exercise, indirect calorimetry 
is unable to quantify the glycolytic contribution to energy 
expenditure [168]. Resistance exercise is typically character-
ised by short duration, high intensity efforts. Loads of 80% 
of one repetition maximum or more are recommended for 
increasing muscular strength [200]. Exercises programmed 
to increase muscular power may vary in relative load, but 
movement velocity is emphasised [201]. Finally, while 
muscle hypertrophy can be achieved at a range of lifting 
intensities, proximity to failure is likely required [202]. This 
emphasis on high intensity, high velocity, fatigue-inducing 
exercise requires a significant anaerobic contribution to 

metabolic output. Therefore, to accurately quantify the 
energy expenditure of such exercise, employment of a sys-
tem that can capture the anaerobic component accurately 
is necessary. Although indirect calorimetry is capable of 
accounting for the energy expended by the phosphagen sys-
tem through the fast phase of oxygen uptake immediately 
after exercise [32], it is limited in measuring the anaero-
bic glycolytic component of expenditure. As such, indirect 
calorimetry alone is likely to underestimate the total energy 
expenditure of resistance exercise [203].

4.2 � Glycolytic Energy Expenditure

Given the limitations of indirect calorimetry for quantifying 
total expenditure, it is likely a requirement of any resist-
ance exercise measure to include a method of gauging the 
glycolytic contribution to energy expenditure. Twenty-six 
of the reviewed studies used a measure of glycolytic energy 
expenditure in addition to indirect calorimetry. Specifically, 
blood lactate accumulation during the resistance exercise 
was measured to quantify glycolytic energy expenditure. The 
importance of including a measure of the glycolytic expendi-
ture is reinforced when examining the contributions of aero-
bic and glycolytic systems during resistance exercise. For 
example, single sets of bench press performed to failure at 
70% 1 repetition maximum showed a glycolytic expenditure 
of 26.5 ± 4.4 kJ and an aerobic expenditure of 4.9 ± 2.0 kJ. 
Similar differences in contribution were reported in loads 
ranging from 37 to 90% 1 repetition maximum [28]. Simi-
larly, across two sets of bench press performed to failure 
at 70%, 80% or 90% 1 repetition maximum, the glycolytic 
pathway contributed a greater proportion of total energy 
expenditure compared to the aerobic pathway (32.9 ± 8.6 
vs 14.2 ± 6.0 kJ, 33.1 ± 9.7 vs 8.9 ± 2.8 kJ, 21.5 ± 5.7 vs 
6.2 ± 2.2 kJ, respectively) [27]. Sets of submaximal resist-
ance exercise terminated prior to failure also showed signifi-
cant contributions from glycolytic energy expenditure, albeit 
less than the aerobic contribution [47, 105]. In addition to 
these measures of glycolytic energy expenditure, previous 
studies have shown significant reductions in muscle glyco-
gen content following resistance training, particularly in 
type II glycolytic muscle fibres, indicating a heavy reliance 
on glycolysis [204–207]. Clearly there is merit in including 
a measure of glycolytic expenditure when quantifying the 
energy cost of resistance exercise. Program design factors 
such as intensity and proximity to failure will likely influ-
ence the magnitude of the anaerobic system contribution to 
overall energy expenditure.

The accumulation of blood lactate, indicative of a positive 
balance between lactate production and clearance, represents 
an overall energy turnover greater than the rate of oxygen 
consumption. An energy equivalent value has been deter-
mined for each unit increase in blood lactate, established as 
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3 mL O2/kg body mass/mmol lactate, allowing the calcula-
tion of the glycolytic contribution to total expenditure [32]. 
Blood lactate accumulation can be measured using the dif-
ference in lactate pre- to post-exercise. A challenge though 
in the resistance exercise context is the intermittent effort, 
whereby relatively long duration rest intervals are typically 
interspersed amongst short duration sets. Because of this, 
measuring the change in blood lactate between each set may 
provide further insight into anaerobic expenditure than the 
pre- and post-exercise difference alone. This serves to high-
light the nuanced approach required to quantify resistance 
exercise energy expenditure, where consideration of training 
specific characteristics is necessary. A degree of pragmatism 
is also necessary; although further insight may be gained 
from inter-set measures, the intrusive nature of blood lactate 
measurement needs to be recognised, particularly outside 
the laboratory setting. For this reason, a lactate monitor-
ing system akin to continuous glucose monitoring may pro-
vide additional insight. The use of blood lactate measures 
is not itself without limitations though. One such limitation 
is that blood lactate concentration at best provides only an 
approximate description of muscle lactate levels and glyco-
lytic ATP resynthesis [203]. Further research elucidating 
a more valid measure of glycolytic energy expenditure is 
therefore required. The influence of muscle fibre compo-
sition of athletes on glycolytic energy expenditure during 
resistance exercise also warrants investigation based on the 
differing metabolic capacities of muscle fibre types [208].

4.3 � Wearable Monitors

Wearable monitors were utilised in 31 included studies, with 
the Sensewear armband the most frequently used (n = 10). 
Of these 28 studies, 18 estimated total energy expenditure 
of participants conducting their usual training routine that 
included resistance exercise. While accessibility and ease 
of application make wearable technologies an attractive 
tool for monitoring energy expenditure, such tools have 
shown limited capacity to provide an accurate quantifica-
tion of resistance exercise expenditure [57]. Five included 
studies attempted to validate wearable devices against indi-
rect calorimetry [51, 57, 96, 131, 157]. Resistance exercise 
protocols included body weight exercises, circuit resistance 
exercise, and traditional resistance exercise. The devices 
used included wrist-, chest-, waist-, hip-, and arm-worn, 
such as the Sensewear armband. Overall findings varied, 
but four of the five studies found either poor correlation 
or significant differences in absolute energy expenditure 
values between monitors and indirect calorimetry [51, 57, 
96, 131]. Monitors were found to both under- and overes-
timate energy expenditure values against indirect calorim-
etry, with mean absolute percentage errors ranging mark-
edly (15.1–57.0%) [51, 57, 96, 131], and similar marked 

variance in correlations (r = 0.02–0.74) [57, 96, 131]. One 
study found the Sensewear armband Mini and BodyMedia 
FIT had very large correlations with indirect calorimetry 
(r = 0.77–0.78) and a trivial to small percent mean change 
from indirect calorimetry during traditional resistance train-
ing [157]. It is notable though that none of these validation 
studies included a measure of glycolytic expenditure with 
indirect calorimetry, meaning the criterion measures used 
in these studies may themselves be limited. In addition, 
the location of devices on the body may influence validity, 
with suggestions that arm-worn devices may have limited 
capacity to capture lower extremity exercise and vice versa 
[157]. Given the limited validity currently available for 
wearable devices in a resistance training context, the use of 
such devices should proceed with caution when quantifying 
energy expenditure, particularly with commercially available 
devices which show significant variability [131].

4.4 � Post‑exercise Energy Expenditure

Resistance exercise consistently demonstrates an elevation 
in energy expenditure beyond the acute exercise period. This 
is evidenced by an increased heart rate and VO2 relative to 
pre-exercise for at least 30 min after the cessation of lifting 
[55, 149, 151, 161]. Four of the reviewed studies included 
a measure of metabolic rate at one or more of 12, 24, 36, 
48, and 72 h after resistance exercise. Results in these stud-
ies varied, with metabolic rate remaining elevated for up to 
12–72 h [101, 118], although these longer-term elevations 
are likely trivial, and in part attributable to exercise-induced 
muscle damage [209] along with measurement noise [210]. 
Contrary to this is the acute elevation in VO2 and energy 
expenditure immediately following a resistance exercise 
effort relative to pre-exercise. The VO2 measured in the 
first minute following an exercise set has been observed to 
increase beyond values measured during the set [151]. This 
increase in VO2 in the minutes following a resistance effort 
is considered the fast phase of oxygen kinetics and accounts 
for the energy expenditure of the phosphagen system. The 
absolute contribution of this measure may be equivalent 
to, if not greater than, the contribution from either aerobic 
metabolism or glycolytic metabolism during the exercise 
set [27, 31]. Acknowledging the dependence on anaerobic 
energy systems during resistance exercise and the observ-
able metabolic output immediately following a resistance 
exercise effort related to the phosphagen system, it appears 
pertinent to include measures of post-exercise oxygen con-
sumption in any calorimetric estimation of resistance exer-
cise energy expenditure. These measures should include rest 
periods between sets and the recovery period following the 
final set. It is suggested that recovery measures continue 
until VO2 returns to 5 mL/kg/min (a typical standing oxygen 
uptake) [28].
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4.5 � Metabolic Equivalents

An underutilised approach to estimating energy expendi-
ture in the reviewed studies was the use of MET values. 
Four studies quantified the energy expenditure of resistance 
exercise using MET [14, 68, 132, 194]. Each study assessed 
total energy expenditure of participants during their regular 
training and competition routines, which included resistance 
exercise. Resistance exercise was assigned a MET value 
according to the Compendium of Physical Activities [35], 
from which energy expenditure was calculated. A strength of 
the MET system is its simplicity of application in estimating 
energy expenditure. No equipment is necessary, with users 
assigning an appropriate value based on training character-
istics before undertaking basic calculations to convert MET 
into an energy expenditure. For this reason, its use is appeal-
ing for practitioners in the field. A challenge, though, in the 
resistance training context is selecting an appropriate MET 
value to assign. The most recent iteration of the Compen-
dium provides MET values of 3.5, 5.0 and 6.0 for resistance 
exercises on the basis of the type and intensity of training, 
derived from published literature [35]. Previous research 
has measured MET values during resistance exercise and 
compared these with the Compendium of Physical Activi-
ties. Depending on population and training characteristics, 
measured values range between 3.0 and 8.0 MET, with the 
higher values observed in circuit style training characterised 
by high repetitions with minimal rest periods [144, 145, 183, 
211]. Similar variability was identified in the energy expend-
iture measured in studies included in the current review, 
suggesting a range of equivalent MET values. The almost 
twofold difference between highest and lowest MET values 
from the Compendium of Physical Activities, and the large 
variability in energy expenditure values of reviewed studies, 
highlights the importance of clearly defining resistance exer-
cise and considering the amount of muscle mass activated 
during exercise when using the MET system. In addition 
to the challenge of selecting the most relevant MET value, 
this system may also underestimate energy expenditure of 
resistance exercise on the basis of how the values have been 
derived. The MET values are obtained from measurements 
of the oxygen cost of the activity, thus neglecting the mean-
ingful contribution to expenditure from glycolysis. Further-
more, Compendium instructions recommend applying the 
MET value to the active exercise period and excluding peri-
ods of rest between sets [35]. This process would likely then 
miss the substantial energy expenditure associated with the 
phosphagen system. At minimum though, the MET system 
may be applied in the field to provide an estimate of approxi-
mate energy expenditure. Consideration should also be given 
to the health status of the individual. A modified MET value 
may be more suitable for athletes presenting with anomalies 
relating to muscle activation, including some paralympic 

athletes, given that the resistance exercise MET value for 
wheelchair users is 2.2 [212].

4.6 � Limitations

This scoping review has limitations which should be consid-
ered. Many studies did not define how energy expenditure 
was calculated from expired gas analysis, and few studies 
reported the reproducibility of energy expenditure measures. 
The variability in units used to report energy expenditure 
(absolute expenditure and rate of expenditure) limited the 
capacity to report the values identified in reviewed studies. 
The energy expenditure of resistance exercise may vary on 
the basis of training age and training goals. Due to the incon-
sistencies in energy expenditure reporting, the influence of 
these variables was unable to be examined.

5 � Conclusion

The capacity to quantify the energy expenditure of resist-
ance exercise would allow researchers and practitioners to 
better address the energy and nutrient needs of athletes. 
Most included studies in this scoping review used indirect 
calorimetry to estimate energy expenditure during resist-
ance exercise. This technique captures the aerobic energy 
expenditure, with oxygen uptake measured in the minutes 
immediately following exercise also estimating the energy 
expenditure of the phosphagen system. A small number of 
studies included blood lactate analysis before and after exer-
cise to account for the glycolytic contribution to expenditure. 
Wearable monitors and the MET system were also used to 
estimate energy expenditure in a small number of studies.

Based on these findings, it is suggested that laboratory 
measures of resistance exercise energy expenditure utilise 
blood lactate analysis to capture the glycolytic system in 
addition to indirect calorimetry measured during and in 
the minutes immediately following exercise to account for 
the aerobic and phosphagen systems. Measures of energy 
expenditure in the field will likely rely largely on estima-
tions. The MET system may be viable despite having limita-
tions, whereas wearable monitors should be used with cau-
tion based on current validity measures. The use of multiple 
devices, capturing both upper and lower body as well as 
variable sensor inputs, may provide more valid estimates of 
resistance exercise energy expenditure. Additional evidence 
is required to validate such a method.

There are several questions future research could inves-
tigate. Identifying other means to quantify the glycolytic 
contribution to expenditure beyond change in blood lactate 
would be valuable. Investigating the influence of muscle 
fibre composition on glycolytic energy expenditure would 
also be of value based on differences in substrate utilisation 
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between fibre types. Developing a compendium of resistance 
exercises and their approximate energy expenditure values 
may assist practitioners. Currently, there is a paucity of liter-
ature examining energy expenditure in paralympic athletes. 
Future research in this population is warranted to confirm 
transferability of the measurement techniques identified in 
this review. Finally, understanding the methods currently 
used by practitioners in the field to estimate energy expendi-
ture of resistance exercise would support the findings of the 
present scoping review.
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