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EC-YOLOX: A Deep-Learning Algorithm for
Floating Objects Detection in Ground Images

of Complex Water Environments
Jiaxin He , Yong Cheng , Wei Wang , Yakang Gu , Yixuan Wang , Wenjie Zhang , Achyut Shankar ,

Shitharth Selvarajan, and Sathish A. P. Kumar , Senior Member, IEEE

Abstract—Correct detection of floating objects in complex water
environments is a challenge because of the problems of obscu-
ration and dense floating objects. In view of the above issues,
this article proposed a network called EC-YOLOX by introduc-
ing the coordinate attention (CA) and efficient channel attention
(ECA) mechanism and improving the loss function to further the
multifeature extraction and detection accuracy of floating objects.
In this article, ablation experiments and comparison experiments
were conducted on the river floating objects dataset. The ablation
experiments showed that the ECA and CA mechanism played a
great role in EC-YOLOX, which can reduce the missed detection
rate by 5.86% and increase the mean average precision (mAP) by
5.53% compared with YOLOX. The EC-YOLOX was also appli-
cable to different types of floating objects; the mAP of the ball,
plastic garbage, plastic bag, leaf, milk box, grass, and branches
were, respectively, improved by 4%, 4%, 4%, 6%, 4%, 18%, and
5%. The mAP of the comparison experiments was improved by
15.13%, 9.30%, and 8.03% compared to faster R-CNN, YOLOv5,
and YOLOv3, respectively. This method facilitates the precise ex-
traction of floating objects from images, which holds paramount
importance for monitoring and safeguarding water environments.
It offers significant contributions to water environment monitoring
and protection.

Index Terms—Attention mechanism, floating objects, loss
function, missed detection rate, YOLOX.
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I. INTRODUCTION

F LOATING objects not only pollute water environments
but also cause water quality degradation [1], [2], [3], [4].

Floating objects can be classified into degradable and non-
degradable types, with the latter being the majority, e.g., plastic
bottles and garbage bags. The quantity and type of floating
objects can reflect water quality, which is relatively easy to
identify and acquire compared to the chemical composition.
Automatic detection of floating objects through video or image
processing is more convenient and efficient than manual recog-
nition [38]. Consequently, image-processing-based methods for
detecting floating objects on water surfaces have emerged as a
prominent research area within the field of small object detection
[5], [39].

Traditional image processing typically consists of three fun-
damental steps: preprocessing, feature extraction, and classifica-
tion recognition. During the preprocessing stage, operations like
filtering, enhancement, and denoising are performed on the im-
age with the goal of improving image quality and reducing noise
and errors in subsequent processing. Techniques, such as average
filtering [8] and histogram equalization [9], are examples of this.
Kataoka and Nihei [10] employed histogram equalization as a
method to investigate the transportation of macrodebris in rivers.
However, this technique can be susceptible to adverse effects
caused by factors, such as aquatic plants, sunlight reflection,
and water conditions. As a result, it may not be suitable for
accurately detecting floating objects in complex water areas. In
the feature extraction step, local features, morphology, color, and
other information from the image are analyzed to extract features
relevant to the target recognition. This prepares the ground-
work for subsequent classification and recognition. However,
feature extraction is typically performed manually and lacks
adaptability and generalization [37]. Finally, in the classification
recognition stage, traditional image processing employs support
vector machines or clustering methods to classify and recognize
the extracted features, thereby accomplishing tasks, such as
detection, recognition, and tracking of the target [6], [7], [40].
However, traditional classifiers are typically based on artifi-
cial features and shallow models, making them less capable
of handling complex image features and scenarios, and they
often yield unsatisfactory results when dealing with nonlinear
problems [41].
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With the rapid development of computer vision, deep learning
has showcased remarkable advantages in image processing, as-
suming a pivotal role in various aspects including image process-
ing, object detection, crowd sensing, semantic segmentation, and
behavior recognition [11], [12], [13], [14], [15], [16], [17], [42],
[43]. Object detection algorithms can be categorized into two
main groups: two-stage detectors, such as mask R-CNN [18] and
faster R-CNN [19], and one-stage detectors, such as the YOLO
series [20], [21], [22], [23], [24]. Among the two-stage detec-
tors, Liu et al. [25] introduced a water surface floating object
detection model by improving mask R-CNN, which effectively
enhances the recognition capability of irregular floating objects.
Li et al. [26] incorporated the Class Activation network into
Faster R-CNN to tackle the problem about low recognition and
localization accuracy of floating objects. Although two-stage
detection algorithms improve the recognition of floating objects
to a certain extent, they may extract some regions that are irrel-
evant to the target during the region proposal process, leading
to false alarms [20].

Single-stage detection algorithms have gained popularity over
two-stage detection algorithms due to their ability to directly
generate prediction results from input images and solve the
detection task through regression, thereby enhancing the de-
tection accuracy of floating debris. Lin et al. [27] improved
YOLOv5 by introducing an enhanced algorithm that extends the
dataset and incorporates attention mechanisms, enabling rapid
detection of multiple categories of floating objects. Li et al. [28]
utilized an improved k-means clustering algorithm to obtain
prior boxes and integrated category activation mapping into the
YOLOv3 network, resulting in improved detection accuracy of
floating debris and reduced localization errors. To tackle the
challenges posed by small target sizes, complex scenes, and
various noise sources, Chen et al. [29] presented a method for
detecting and tracking floating debris. Their approach leverages
temporal–spatial information fusion and utilizes the SSD net-
work, specifically designed to address small floating debris de-
tection tasks, while simultaneously estimating the position and
size of the detected debris. Although these single-stage detection
network frameworks perform well in floating debris detection
tasks, in complex environmental backgrounds, considering the
different scales of floating debris, they may not accurately extract
each type of floating debris, resulting in missed detections and
decreased detection accuracy [30], [31].

Hence, surmounting the challenges posed by complex water
environment interferences and enhancing feature map scales are
crucial factors in improving the detection of floating objects on
water surfaces. The coordinate attention (CA) mechanism has
proven to be effective in addressing the issue of complex back-
ground interference [32]. The efficient channel attention (ECA)
module can better handle feature information of different scales
by adaptively weighting between multiscale features, effectively
addressing the problem of objects with varying sizes [33]. The
varifocal loss function can dynamically match positive samples,
solving the problem of sample imbalance [34]. To further
improve detection accuracy, this article introduces the CA and
ECA attention mechanisms, as well as the zoom loss function
module based on the YOLOX network. This approach ensures
effective detection of targets in dense and complex backgrounds

while also enhancing the detection ability of multiscale targets.
This article makes the following primary contributions.

1) We introduce a floating object detection method,
EC-YOLOX, designed for complex water environments.
Ablation experiments confirm substantial performance
enhancements attributable to the CA module, the ECA
module, and the varifocal loss function.

2) Comparative experiments conducted on a river floating
object dataset demonstrate that EC-YOLOX exhibits supe-
rior performance, thereby substantiating its effectiveness.

3) Compared to baseline models, EC-YOLOX achieves the
lowest overall missed detection rate for various categories
of floating objects. This improvement underscores its ac-
curacy and precision in detection.

II. METHODOLOGY

A. The Improved Network

In 2021, Megvii Technology introduced a novel network
called YOLOX, exhibiting superior property and advantages
over YOLOv3 and YOLOv5. YOLOX adopts anchor-free meth-
ods and dynamically matches positive samples of different target
sizes, improving both detection speed and accuracy through
data augmentation and decoupling heads. First, the network
takes in 640 × 640 images, which are further augmented us-
ing Mixup and Mosaic. Additionally, the output is subjected
to processing through the Darknet53 backbone network and the
feature pyramid network (FPN), thereby enhancing the accuracy
of detection. Finally, three decoupled heads are introduced at
the output end to predict the feature map output by the neck
layer.

YOLOX has shown good detection performance in object
detection while also having advantages, such as low parameter
count and being conducive to detecting small objects. However,
when detecting floating objects, YOLOX may encounter dif-
ficulties in accurately identifying each class of object due to
the diverse range of sizes that such objects can exhibit. The
ECA and CA attention mechanisms can effectively address this
issue. Therefore, this article chooses to improve YOLOX by
introducing the ECA and CA attention mechanisms, as shown
in Fig. 1.

As shown in Fig. 1, first, Mixup and Mosaic techniques are
used for data augmentation, and the augmented data are in-
troduced into the CSPdarknet53 module to extract feature in-
formation. Subsequently, the obtained feature maps are passed
through the ECA attention module, which effectively captures
interdependencies among different channels, enhancing the dis-
criminative ability of the characteristics. Moreover, to further
enhance the algorithm’s performance, the CA mechanism is
integrated into features at different scales, namely P3, P4, and
P5. Last, the decoupling head generates predictions for three
distinct multiscale features, capturing information from various
scales.

B. Coordinate Attention Mechanism

In the context of detecting floating objects on water surfaces,
several challenges arise, including complex water environments
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Fig. 1. Improved network structure: EC-YOLOX.

and the scattered distribution of floating objects. Existing net-
works cannot ignore the interference of background information
when facing these problems, which leads to missed detection and
other issues, as the models cannot focus on each type of floating
object. This article presents the CA attention module, which
addresses the challenge of background interference by selec-
tively attending to more relevant parts of the target. By focusing
on these specific regions, the CA attention module reduces the
influence of the background environment and extracts more
crucial features. The introduction of the CA attention module
contributes to improved detection accuracy in detecting floating
objects.

The CA attention mechanism is a position encoding-
based attention mechanism that utilizes the coordinate infor-
mation of each position in the input image to calculate attention
weights and obtain the feature representation of the entire image
[32]. This mechanism partitions the input image into multiple
grids, where each grid comprises position information, such as
the center or upper-left coordinates. Then, it uses the position
information of each grid as input to calculate its attention
weight through an attention model, which can be a simple
multilayer perceptron (MLP) or a complex neural network.
Finally, CA uses the calculated attention weights to enhance the
feature representation and obtain the feature information from
all targets in the entire image. Through the utilization of position
encoding, the CA attention mechanism is able to direct attention
to various regions within the image and effectively capture
spatial information. The CA attention module is illustrated in
Fig. 2, providing a visual representation of its structure and
functionality.

Fig. 2. Coordinate attention mechanism.

As per Fig. 2, during the recognition of floating objects, the
input feature map, denoted as “Input” with dimensions of C ×
H × W, undergoes pooling operations. This process generates
two separate feature graphs: one with dimensions of C × H
× 1, obtained from pooling along the X direction, and another
with dimensions of C × 1 × W, obtained from pooling along
the Y direction. The pooling operations in both directions are
performed to capture and extract relevant information along the
horizontal and vertical dimensions of the feature graph. Subse-
quently, the generated feature maps undergo a transformation
process and are fused together to generate a new feature graph,
called f1. Next, f1 undergoes further processing by applying
a 1 × 1 convolutional kernel, resulting in a reduction and
activation of the feature map. This operation generates a new
feature map, denoted as f2. Last, the feature map f2 is split
along the spatial dimension, resulting in the creation of two
new feature maps: f3 and f4. Subsequently, the feature maps
f3 and f4 are upsampled using 1 × 1 convolutional kernels.
This upsampling operation increases the spatial resolution of
the feature graphs, expressing more localized information. The
upsampled feature maps are then imported into the sigmoid acti-
vation function, resulting in generating final attention vectors g3
and g4.
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Fig. 3. Efficient channel attention mechanism.

C. Efficient Channel Attention Mechanism

Floating objects on water surfaces exhibit a diverse range
of types, and their sizes can vary significantly. However, the
varying sizes of these objects pose challenges for the network in
extracting accurate and discriminative features across different
types of floating objects. Current networks cannot extract fea-
ture information of floating objects at different scales, leading
to missed detection as the models cannot accurately detect each
type of floating object. This article introduces the ECA module,
which adaptively weights multiscale features for better handling
of feature information. This enables the network to improve
its feature representation ability for floating objects at different
scales, thereby enhancing detection performance. The ECA
module is depicted in Fig. 3, providing a visual representation
of its structure and functionality.

The process of the ECA is depicted in Fig. 3, and it can be
divided into several steps for its operation. First, the input feature
map undergoes global average pooling, resulting in a channel
vector. Second, the weights of each channel are computed by
a small MLP. The channel vector serves as input to the MLP,
and a scalar weight is generated as output. Third, each channel’s
feature representation is multiplied by its corresponding weight,
thereby adjusting the importance or relevance of different chan-
nels. Last, the adjusted feature representation is passed as input
to the next layer for further processing.

D. Improved Loss Function

The loss function of the YOLOX algorithm mainly includes
intersection over union (IoU) loss (LossIoU), classification
loss (Losscls), and confidence loss (Lossobj), where obj rep-
resents the predicted result of whether the feature points and
positive/negative samples contain the target object. However,
when using the BCELoss function to calculate Lossobj, the
imbalance of samples can produce error. Therefore, we use the
varifocal loss function to improve the detection ability for targets
in dense environment [34]. This loss function divides the target
samples based on their number and then selects positive samples
and rejects negative samples accordingly. This approach results
in a more precise detection ranking of dense targets. Formulas
(1) and (2) show the calculation method of the varifocal loss.

From formulas (1) and (2), it can be seen that p represents
the predicted IoU-aware classification score and q represents
the target score. For foreground points, the true value of q is the
IoU; otherwise, it is 0. On the other hand, for background points

or regions that are not part of any object, the true value of q is
0, indicating no overlap or relevance to any specific object.

In YOLOX, LossIoU represents the IoU loss, which serves
as a metric to measure the detection performance. Formula
(3) reflects the power function calculation of LossIoU. Losscls
in YOLOX represents the classification loss associated with
the recognition of floating objects. This loss term is computed
using the binary cross entropy (BCELoss) function, which is
commonly employed for binary classification tasks. By utilizing
BCELoss, the network model aims to optimize the classification
accuracy of floating objects, enhancing the stability and perfor-
mance of the overall network.

To tackle the challenges posed by the mixed distribution and
varying scales of floating objects on water surfaces, we optimize
the loss function, specifically Lossobj, by employing varifocal
loss. This approach aims to enhance the accuracy of the model’s
detection ranking and improve overall performance. By utilizing
varifocal loss, the model can effectively handle the inherent
variations in object sizes and distributions, allowing for more
precise and reliable detection results. Equation (4) is the final
expression

VFL = −q(q log(p) + (1− q) log(1− p)(q > 0) (1)

VFL = −αpγ log(1− p)(q = 0) (2)

LossIoU = 1− IoU2 (3)

Loss = LossIoU + Lossobj + Losscls. (4)

III. EXPERIMENT

A. Experiment Environment

The experimental setup involves using the Windows 10 oper-
ating system, an NVIDIA GeForce RTX 3070Ti GPU, and 8 GB
of memory. The deep-learning framework utilized is PyTorch
1.7.1 with CUDA 11.6. For this experiment, pretrained weights
from the VOC dataset are employed, and the training process
is divided into two phases: the freezing phase and the thawing
phase. Among them, the number of training times in the freezing
phase is set to 50 epochs, and the batch-size is set to 4. The
number of training times after the unfreezing phase is set to 300
epochs, and the batch-size is set to 4. The model’s optimizer
is stochastic gradient descent, and the learning rate is adjusted
using the cosine annealing method, which helps optimize the
training process over iterations. To enhance the available data,
the Mixup and Mosaic methods are employed, which provide
data augmentation techniques to improve the model’s general-
ization and robustness by combining and manipulating training
samples. These techniques collectively contribute to the perfor-
mance improvement and accuracy enhancement of the model in
object detection tasks.

B. Dataset

The dataset used in this experiment is taken from river scenes
and annotated in Pascal VOC format, containing eight object
classes, including bottle, grass, branch, milk box, plastic bag,
plastic garbage, ball, and leaf. The dataset consists of 2400
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Fig. 4. River floating objects dataset.

images and is divided into training, test, and validation sets
according to the 8:1:1 ratio [27]. Fig. 4 displays a selection of
sample images extracted from the dataset.

C. Evaluation Metrics

To assess the effectiveness of EC-YOLOX in detecting float-
ing objects on water surfaces, two evaluation metrics, namely
recall and frames per second (FPS), are employed. Equations (5)
and (8) are used to express recall and precision. The average pre-
cision (AP) and mean average precision (mAP) are represented
by (6) and (7), respectively.

In the evaluation metrics, TP represents the quantity of af-
firmative examples in which a class is correctly predicted,
FP denotes the quantity of affirmative examples in which a
class is misclassified, FN represents the quantity of unfavorable
examples in which a class is misclassified, P(r) represents the
precision, and K represents the number of categories

R =
TP

TP + FN
(5)

mAP =

∑k
i=1 APi

K
(6)

AP =

∫ 1

0

P (r)dr (7)

P =
TP

TP + FP
. (8)

D. Ablation Experiment

To explore the effectiveness of improvement strategies, ab-
lation experiments were conducted on the YOLOX baseline
model on the floating objects dataset. Ablation experiments
involve adding, replacing, or removing specific modules from

the YOLOX baseline model and are designed to explore the im-
pact of different improvement strategies on model performance.
The settings and parameters were kept consistent across all
experiments conducted, ensuring a fair and reliable comparison.
The results obtained from these experiments are presented in
Tables I and II.

According to Table I, the introduction of the CA attention
module improves the AP (mAP) of the improved network by
3.31% compared to the baseline network, while the recall rate is
improved by 3.29%. As depicted in Fig. 5(a) and (b), the incorpo-
ration of the CA module has resulted in notable enhancements
in object detection. Specifically, the CA attention module has
enabled the network to accurately detect and classify various
objects, such as plastic bags, plastic garbage, leaves, branches,
grass, and balls. The introduction of the CA attention module
has significantly improved the detection accuracy of plastic
bags, plastic garbage, and leaves. Moreover, it has also yielded
a notable enhancement in the detection accuracy of branches,
grass, and balls, with an increase of 14%, 10%, and 16%,
respectively. These findings demonstrate the CA module that
can improve the detection ability of the network across various
categories of floating objects in complex water environments.
The successful integration of the CA attention module has re-
sulted in improved accuracy and robustness. According to Table I
and Fig. 5(a) and (c), introducing the ECA attention module at
the FPN structure results in a 3.42% increase in mAP and a
3.44% increase in recall rate. The enhancement of detection
capabilities for objects, such as bottles, branches, plastic bags,
and grass, was observed, with a significant improvement in
detection accuracy for grass, branches, and balls by 17%, 14%,
and 26%. This underscores that the ECA module can enhance
the representational capacity of floating objects across diverse
scales. As indicated by Table I and Fig. 5(a) and (d), the imple-
mentation of the improved loss function has resulted in notable
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TABLE I
ABLATION EXPERIMENT OF THE IMPROVED MODULE

TABLE II
ABLATION EXPERIMENT RESULTS OF THE IMPROVED STRATEGY IN TERMS OF AP VALUES ARE SHOWN, WHERE B1–B8 REPRESENT BOTTLE, MILK BOX, BALL,

PLASTIC BAG, PLASTIC-GARBAGE, BRANCH, GRASS, AND LEAF, RESPECTIVELY

TABLE III
COMPARISON EXPERIMENT RESULTS

improvements in the detection performance. Specifically, the
improved loss function has enhanced the ability to screen and
eliminate unfavorable examples, leading to a 2.08% increase in
mAP and a 0.45% increase in recall rate. The improved loss func-
tion achieves this by more effectively penalizing false negatives
and false positives, thus reducing their impact on the overall
model performance. The enhanced screening and elimination
capabilities enable the model to more accurately and reliably
classify floating objects. The detection accuracy of bottles, balls,
branches, plastic bags, and grass is improved, with the detection
accuracy of branches, balls, grass, and plastic bags increasing
by 2%, 20%, 17%, and 11%, respectively. In summary, the
incorporation of the CA and ECA attention modules, along with
the varifocal loss, has significantly enhanced the detection ability
of EC-YOLOX. These improvements have resulted in a 5.53%
gain in mAP and a 5.86% gain in recall rate, demonstrating that
EC-YOLOX can achieve better detection property compared to
YOLOX. Overall, the CA and ECA attention modules, as well
as the varifocal loss, enhanced the detection performance of
the model, resulting in a 5.53% mAP gain and a 5.86% recall

rate gain. The obtained results provide strong evidence of the
effectiveness of EC-YOLOX in achieving significantly better
detection accuracy than the baseline network.

E. Comparison Experiments Results

To assess the viability of EC-YOLOX, comparative ex-
periments were conducted utilizing detr, faster R-CNN,
Retinanet, SSD, Efficientdet, YOLOv3, YOLOv5, and YOLOX
algorithms. As indicated in Table III, EC-YOLOX demonstrated
superior detection accuracy compared to detr, faster R-CNN,
Retinanet, SSD (Mobilenet), Efficientdet, YOLOv5, YOLOv3,
SSD (vgg), and YOLOX, with mAP improvements of 16.94%,
15.13%, 12.61%, 11.43%, 9.30%, 9.30%, 8.03%, 6.09%, and
5.53%, respectively. Regarding prediction speed, while EC-
YOLOX was outperformed by SSD (Mobilenet), YOLOv5,
and YOLOX, it exhibited superior speed compared to all
other algorithms at 80.59 FPS. These findings demonstrate that
EC-YOLOX achieves both high detection accuracy and rapid
prediction speed, affirming its feasibility and efficiency for the
water surface detection of floating objects task.



HE et al.: DEEP-LEARNING ALGORITHM FOR FLOATING OBJECTS DETECTION IN GROUND IMAGES OF COMPLEX WATER ENVIRONMENTS 7365

Fig. 5. Results of the improved strategies are presented as follows: (a) result for YOLOX, (b) results about adding CA for YOLOX, (c) results about adding ECA
for YOLOX, and (d) results about adding varifocal loss for YOLOX.

As shown in Fig. 6, YOLOv3, YOLOv5, and YOLOX all
exhibit missed detection issues when confronted with complex
water environments and dense distributions of floating objects.
However, as demonstrated in Fig. 6(a) and (d), EC-YOLOX
did not exhibit missed detections for any category of floating
object and even showed improved accuracy in detecting leaves
compared to YOLOv3. Moreover, as shown in Fig. 6(b) and (d),
when compared to YOLOv5, EC-YOLOX did not exhibit missed
detections for balls, plastic garbage, and branches in dense
distributions of floating objects on water surfaces, and did not
miss detecting grass or plastic bags in complex backgrounds,
such as areas densely populated with water plants. Furthermore,
EC-YOLOX showed significantly improved accuracy in detect-
ing branches and leaves, with an 11% and 17% increase in
accuracy, respectively. When comparing Fig. 6(c) and (d), it

is evident that EC-YOLOX did not exhibit missed detections
in any water environment compared to YOLOX, and exhibited
significantly improved accuracy in detecting bottles, branches,
and grass. Overall, EC-YOLOX demonstrated superior detection
performance compared to YOLOX. The AP and mAP values of
YOLOX and EC-YOLOX are shown in Fig. 7. As shown in the
figure, EC-YOLOX exhibited comparable accuracy to YOLOX
in detecting bottles, while showing an increased accuracy of
4%, 4%, 4%, 6%, 4%, 5%, and 18% in detecting balls, plastic
garbage, plastic bags, leaves, milk boxes, branches, and grass,
respectively. These results demonstrate that EC-YOLOX can
achieve further improvements in detecting floating objects on
water surfaces, and validate its effectiveness in detecting differ-
ent types of floating objects in complex and densely distributed
water environments.
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Fig. 6. Detection results for the dataset are presented as follows: (a) for YOLOv3, (b) for YOLOv5, (c) for YOLOX, and (d) for EC-YOLOX.

Fig. 7. Dataset comparison experiment AP and mAP values: (a) for YOLOX
and (b) for EC-YOLOX.

IV. DISCUSSION

According to the ablation experiments, the EC-YOLOX net-
work can improve the detection rate of floating objects on
water surfaces, with a 5.53% increase in mAP compared to
the YOLOX algorithm. The results presented in Tables I and
II, along with Fig. 5, provide compelling evidence that the

incorporation of the CA mechanism, as opposed to the base-
line network, effectively captures crucial feature information of
floating objects, overcoming the challenges posed by complex
water environments. This improvement leads to a significant
3.31% increase in mAP. The inclusion of the ECA module
effectively enhances the capability to represent floating objects
of varying scales. This improvement leads to a notable 3.42%
increase in mAP. The utilization of the varifocal loss func-
tion further enhances the detection ability of EC-YOLOX. In
the dataset comprising floating objects on water surfaces, our
method was compared against well-known algorithms, includ-
ing faster R-CNN [19], YOLOv3 [22], and YOLOv5. As shown
in Table III, EC-YOLOX achieves a higher mAP, with improve-
ments of 15.13%, 8.03%, and 9.30% compared to faster R-CNN,
YOLOv3, and YOLOv5, respectively, successfully complet-
ing the task of detecting floating objects. Overall, our method
exhibits higher accuracy compared to other mainstream object
detection algorithms.
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TABLE IV
COMPARATIVE EXPERIMENT RESULTS PRESENT AP VALUES FOR DIFFERENT CATEGORIES, AS DEPICTED IN TABLES III AND IV

The results from Tables I and II indicate that the CA at-
tention module effectively reduces the missed detection rate
and achieves the highest accuracy for detecting plastic bags.
Additionally, the mAP for plastic garbage exceeds 90%, which
is attributed to the comprehensive utilization of its features
and its resilience to interference from complex aquatic envi-
ronments. However, the overall model experiences a notable
reduction in prediction speed. When compared to the other two
enhancement strategies, the introduction of the ECA attention
module detects a greater number of floating objects, resulting
in a significant overall accuracy improvement. Nevertheless,
it marginally decreases the prediction speed. With regard to
various types of floating objects, the varifocal loss enhances
the detection accuracy for all objects except for milk box, with
bottles achieving the highest accuracy. Moreover, it slightly
improves the prediction speed. The combined results of the
three enhancement strategies demonstrate that the detection
accuracy for bottles, balls, and plastic garbage exceeds 90%.
This is primarily because these objects possess distinct features
and exhibit high-contrast coloration compared to the aquatic
environment. However, only the overall model achieves an mAP
of over 60% for grass, underscoring the effectiveness of the
improvement algorithm. Nonetheless, the detection accuracy
for grass remains significantly lower than that of other floating
object categories due to the complexity of its features and the
challenges associated with feature extraction.

According to Fig. 5(a) and (b), the improved network with
the introduced CA attention mechanism did not exhibit missed
detections for plastic bags, plastic garbage, and leaves, but
only missed detecting balls, while the detection accuracy for
balls, bottles, branches, and grass all showed significant im-
provements. This observation suggests that although the CA
mechanism improves the ability of detecting various floating
objects within complex water environments, it still exhibits
limitations in accurately detecting multiscale floating objects.
In Fig. 5(a) and (c), introducing the ECA mechanism yielded
a substantial enhancement in the detection accuracy of balls,
branches, and grass. However, plastic garbage was not suc-
cessfully detected. This indicates that while ECA can enhance
the feature extraction ability for multiscale floating objects, it

cannot achieve precise detection in densely distributed back-
ground environments. Based on the analysis of Table I and
Fig. 5(a) and (d), the introduction of the varifocal loss function
in the YOLOX network resulted in a comparatively smaller
improvement in overall detection accuracy compared to the first
two improvement strategies mentioned. However, significant
enhancements were observed, specifically in the accuracy of
detecting balls, bottles, plastic bags, and grass. This indicates
that the varifocal loss can balance positive and negative samples
within the dataset.

Based on comparative experiments detailed in Tables III and
IV, EC-YOLOX achieves the highest overall detection accuracy.
Furthermore, it exhibits a certain level of improvement in the
detection accuracy of floating objects other than bottles and milk
boxes. Particularly, for grass and leaf categories, EC-YOLOX
demonstrates the most significant enhancement in detection per-
formance. These findings indicate that in aquatic environments
with high contrast, EC-YOLOX can fully leverage its advan-
tages, especially enhancing the detection of brightly colored
floating objects. However, for small-sized floating objects like
bottles and milk boxes, EC-YOLOX may not fully extract the
corresponding features, thereby impacting detection accuracy.

Additionally, according to Fig. 6, YOLOv3, YOLOv5, and
YOLOX all exhibited missed detections of balls and plastic
garbage, while the improved algorithm did not exhibit any
missed detections. However, the detection accuracy for balls,
plastic bags, and milk boxes did not surpass 60%. This suggests
that although EC-YOLOX can detect various floating objects
in complex water environments, the lack of distinct feature
representations for different categories of floating objects in
intricate and densely populated aquatic environments hinders the
model’s ability to extract complete corresponding features, thus
affecting its detection performance. Moreover, other algorithms
also exhibited missed detections of branches and plastic bags,
indicating that compared to these algorithms, the detection of
less distinctive floating objects, such as branches and plastic
bags, in complex water environments is still challenging. The
detection accuracy of leaves, grass, branches, and plastic garbage
showed significant improvements, indicating the effectiveness
of EC-YOLOX in detecting floating objects of different scales



7368 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

(Fig. 6). In Fig. 7(b), we observed a significant improvement
in the detection accuracy of leaves and grass with EC-YOLOX,
as the feature information of these objects was fully utilized to
enhance the detector’s accuracy. However, according to Fig. 7(a)
and (b), we found that the mAP of grass and branches was much
lower than that of other targets, possibly due to occlusion by
other floating objects or missed detections due to their similar
color to the water environment. Additionally, linear discrimi-
nant analysis can cluster objects [35] and accurately describe
the internal structure of samples, thereby improving accuracy,
while marginal distribution can determine categories based on
test instances [36], allowing for improved instance detection per-
formance under multiclass supervision and achieving better
generalization performance.

Additionally, it is worth noting that the FPS of the EC-
YOLOX algorithm is measured to be 80.59, which is slightly
lower compared to the baseline network. This reduction in FPS
can be attributed to the introduction of the CA module, which in-
creases the computation of EC-YOLOX and consequently slows
down the speed of the detector. Therefore, in future article, it may
be beneficial to consider lightweighting the model to further
optimize its performance. First, from a hardware perspective,
using servers with larger memory can improve the model’s
inference speed. Second, reducing the model’s parameter count
is an achievable optimization method, such as introducing depth-
wise separable convolutional networks to maintain efficiency
and deeper feature information, enabling precise detection of
floating objects.

V. CONCLUSION

To further enhance the ability of detecting floating objects
in complex and densely populated water environments, we put
forward EC-YOLOX for detecting floating object based on
the YOLOX framework. This method incorporates three key
components: the CA mechanism, the ECA mechanism, and a
specialized loss function. These components collectively ad-
dress the challenges posed by the varying scales of floating
objects and the complexities of water environments, thereby
improving the detection accuracy and mitigating missed de-
tections. The CA module is effective in mitigating interference
from complex aquatic environments and enhancing the ability
to extract features from various types of floating objects, with
a 3.31% improvement in mAP. The ECA attention module sig-
nificantly improves the representational capacity for multiscale
floating objects, achieving an mAP gain of 3.42%. The varifocal
loss function, through detection ranking, reduces the impact
of negative samples on detection results, resulting in a 2.08%
improvement in mAP. Experimental results on the river floating
objects dataset demonstrate that EC-YOLOX exhibits superior
detection performance. According to the ablation experiments,
all three improvement strategies have been shown to enhance
the accuracy of floating object detection, resulting in an overall
increase in mAP of 5.53%. Comparative experiments indicate
that EC-YOLOX achieves an mAP of 81.80% and significantly
outperforms other mainstream algorithms in terms of the mAP
for detecting grass. Meanwhile, the detection accuracy of balls

and bottles has reached 95% and 93%, respectively. This demon-
strates the effectiveness and feasibility of EC-YOLOX. De-
spite the notable improvements in detecting grass and branches
achieved by the EC-YOLOX algorithm, its detection accuracy
still significantly lags behind that of other categories. Hence,
future article endeavors should prioritize the enhancement of
the detection capability for grass and branches, facilitating the
adoption of improved algorithms in the detection of floating
objects within river and ocean environments. This focus on
improving grass and branch detection will provide robust sup-
port for the protection of ecological environments.
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