
Citation:
Tarasyuk, O and Gorbenko, A and Yakovlev, A and Shafik, R (2025) Multi-Layer Tsetlin Machine:
Architecture and Performance Evaluation. In: 2024 International Symposium on the Tsetlin Machine
(ISTM), 29-30 Aug 2024, Pittsburgh, USA. DOI: https://doi.org/10.1109/ISTM62799.2024.10931518

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/11082/

Document Version:
Conference or Workshop Item (Accepted Version)

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/11082/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Multi-Layer Tsetlin Machine: Architecture

and Performance Evaluation

Olga Tarasyuk 1,2
1 School of Engineering, Newcastle University

Newcastle upon Tyne, UK
2 Odesa Technological University STEP

Odesa, Ukraine

https://orcid.org/0000-0001-5991-8631

Alex Yakovlev

School of Engineering, Newcastle University

Newcastle upon Tyne, UK

https://orcid.org/0000-0003-0826-9330

Anatoliy Gorbenko 3,4
3 School of Built Environment, Engineering and Computing

Leeds Beckett University, Leeds, UK
4 National Aerospace University “KhAI”

Kharkiv, Ukraine

https://orcid.org/0000-0001-6757-1797

Rishad Shafik

School of Engineering, Newcastle University

Newcastle upon Tyne, UK

https://orcid.org/0000-0001-5444-537X

Abstract—Tsetlin Machine (TM) is a recent automaton-

based algorithm for reinforcement learning. It has

demonstrated competitive accuracy on many popular

benchmarks while providing a natural interpretability. Due to

its logical underpinning, it is amenable to hardware

implementation with faster performance and higher energy

efficiency than conventional Artificial Neural Networks. This

paper introduces a multi-layer architecture of Tsetlin Machines

with the aim to further boost TM performance via adoption of

a hierarchical feature learning approach. This is seen as a way

of creating hierarchical logic expressions from original Boolean

literals, surpassing single-layer TMs in their ability to capture

more complex patterns and high-level features. In this work we

demonstrate that multi-layer TM considerably overperforms

the single-layer TM architecture on several benchmarks while

maintaining the ability to interpret its logic inference. However,

it has also been shown that uncontrolled growth in the number

of layers leads to overfitting.

Keywords—Machine learning, logic-based artificial

intelligence, learning automaton, Tsetlin Machine, multi-layer

architecture, performance, interpretability.

I. INTRODUCTION

Machine learning is an essential tool for analyzing
complex data and making predictions in various fields,
including finance, healthcare, and technology. Artificial
neural networks have been the dominant machine learning
technique in the recent years due to their high accuracy in
predictive tasks. While Artificial Neural Networks (ANNs),
especially deep neural networks (DNNs) have been successful
in many application domains, they have certain limitations,
such as high complexity and lack of interpretability. These
limitations have led researchers to explore alternative machine
learning methods, including the Tsetlin machine [1].

Tsetlin Machine (TM) is an emerging machine learning
algorithm proposed by Granmo in 2018 [2]. The algorithm is
underpinning on Tsetlin Automaton (TA) that originates from
the research on collective behavior of learning automata by
Tsetlin [3] and Varshavsky [4] and further developed in [5].

Recent studies have shown that TM provides a promising
alternative to DNNs with several advantages: TM is an
interpretable and low-complexity algorithm. It has a unique
logic-based learning mechanism supporting parallelism and
efficient hardware implementation that makes TM attractive
for embedded applications and hardware acceleration [6, 7].
TM has been successfully used in various applications
domains aimed at pattern recognition such as image
classification [6], text categorization [8, 9], speech recognition

and audio keyword spotting [10], intrusion detection [11], etc.
Unlike ANNs, TMs do not require gradient descent, which
makes them a quicker-converging learning algorithm.
Moreover, TMs have considerably fewer number of
hyperparameters to tune and are highly interpretable because
their model prediction is carried out via single-layer
propositional logic clauses. The last factor is crucial for safety
and mission-critical applications.

TM has been actively developed over the last few years
and has demonstrated competitive accuracy on different
benchmarks [12]. There is also growing interest in building
larger, more complex TM models and hierarchical capability
such as those in DNNs.

The standard TMs produce variably sized conjunctions
from a single layer followed by summative voting. While
these have produced competitive accuracies, we are keen to
explore the potential of multi-layered TMs that can provide
hierarchical conjunctions followed by summative voting. This
type of layering can also help in understanding the impact of
conjunction clausing on the accuracy and performance of a
new type of Tsetlin machines and their ability to learn
complex patterns.

In this paper, we introduce a novel multi-layer architecture

of Tsetlin Machines with the aim to reinforce TM

performance via adoption of a hierarchical feature learning.

Through this work we provide answers to the following

research questions:

Q1: How to organize effective and resource-efficient multi-

layer TM training?

Q2: How does the number of layers affect TM pattern

recognition capability, i.e. training and validation

accuracy?

Q3: How does the multi-layer TM learn patterns and how to

interpret logical clauses constructed by each layer?

II. BASICS OF TSETLIN MACHINE

The theory on which the Tsetlin Machine is based
originates from the research on collective behaviour of
learning automata by Tsetlin [3]. Tsetlin studied how rats
found their way in mazes (see Fig. 1) to determine how
biological systems learn. He demonstrated that finite automata
provided a sufficiently accurate and yet simple mathematical
model for this behaviour. Such learning automata with linear
tactics were later allocated to a special class called Tsetlin
automata (TA) [13].

Fig. 1. Tsetlin Automaton – a mathematical representation of a rat brain:

states and transitions.

The TA behaves like a finite state machine where 2N states
are divided equally into two actions: to ‘remember’ or to
‘forget’ a given decision. Reward and penalty signals transition
the TA between these states which allows it to remember the
right choice deeper or forget the wrong one as shown in Fig. 1.

Granmo incorporated propositional logic and a game-
theoretic bandit driven approach, namely the Tsetlin Machine,
to orchestrate the collective behaviour of TAs and formulate
logic statements [2]. Hundreds of such ‘rat brains’ (i.e., TAs),
each making one decision, combined through NOT and AND
operations to form logic propositions and used to solve
classification tasks are referred to as the Tsetlin Machine.

Fig. 2 presents a high-level architecture and the core
building blocks of the Tsetlin Machine.

Fig. 2. High-level TM architecture.

Input Layer. TM accepts input variables as Boolean

features (literals X and their negations X). Booleanization
means reducing the values of input variables to Boolean values
(e.g. through simple ranking or thresholding methods or using
more advanced significance-driven Booleanization algorithms
[14]) so that each of them is either True or False.

Decision Layer. The learning process for the TM centers
on building Boolean logic
expressions – conjunctive
clauses. The clause relates the
Boolean literal to its respective
TA to learn the decision
regarding inclusion (i.e.
remembering) or exclusion (i.e.
forgetting) of that feature
into/from the conjunctive
clause corresponding to a
particular class.

Each TA outputs ‘1’ if its
state is ‘include’ and ‘0’
otherwise.

For a classification problem with M classes, there are C
clauses, which are employed per class. Half of them is
assigned to be positive, i.e. to learn distinctive class features
from the class samples; the other half are negative clauses
trained to recognize data samples that do not belong to the
class. Each clause contains its own set of TAs (referred to as
TA teams). The number of clauses used per class C and the
number of TA states 2N are the two hyper-parameters defining
the TM architecture and the model size.

Output Layer. The outputs from each logic clause (which
could be 0 or 1) are referred to as votes. They are summed
together and clipped by a threshold for each class. Negative
clauses are summed with a negative sign. The class with the
highest sum of votes v is the predicted classification.

The voting threshold T and the learning sensitivity s are
other two TM hyper-parameters affecting the learning. During
TM training, feedback is issued based on the expected class
and the clause outputs generated. The feedback module
compares the expected class for the evaluated data instance
with the clause outputs and generates reward and penalty
signals to each TA according to rules described in [2].

Training and Feedback. During training TM descends
feedback from the expected class level to the clause level
where the T hyper-parameter is used, and then to the TA level
where the s parameter is used.

At the clause level the T hyper-parameter is bounded
between 0 and the number of clauses in the class. When the
clauses voting sum v is less than the user-set target T, they are
reinforced with the probability (T-v)/2T. This hyper-parameter is
used to control the probability with which a particular clause will
be given feedback at the TA level. The s hyper-parameter may
take any floating-point value above 1. This parameter is used at
the TA level where its value is used to control the probability
with which a TA will transition between states as (s-1)/s.

III. MULTI-LAYER TM ARCHITECTURE AND

THE HIERARCHICAL TRAINING APROACH

Fig. 3 shows the proposed multi-layer TM (MTM)
architecture, implementing the concept of hierarchical feature
learning. This was inspired by success of deep neural networks
in achieving state-of-the-art results in a wide range of
applications, including image and speech recognition, natural
language processing, etc.

However, unlike the multi-path multi-level regression used
in DNNs, we put forward the idea of organizing conjunctive
clauses into hierarchical patterns rather than single-layer ones,
followed by summative voting.

Fig. 3. Multi-layer TM architecture: two-layer example (clause outputs of the first-layer TM are used as input for
the second-layer TM; after the first-layer TM is trained, its clause states are frozen by replacing TA team with the
clause state memory; in turn, TA team is considered as a shared resource and is used to train the second-layer TM).

TABLE I. DATASETS

Dataset
Number of

classes

Image

size

Training

samples

Validation

samples

 Digits-MNIST 10 28×28 60000 10000

 Letters-MNIST 26 28×28 62400 10400

 Fashion-MNIST 10 28×28 60000 10000

 Kuzushiji-MNIST 10 28×28 60000 10000

The proposed architecture is composed of multiple layers
of propositional clause logic. The first-layer TM uses
Booleanized features (literals) of the original dataset as an
input. Clause outputs of the first-layer TM are then used as a
Boolean input to the second layer TM and so on.

In contrast to ANN, TM does not use back-propagation
mechanism. During training, feedback is issued based on the
expected class and the clause outputs generated. As a result,
MTM can implement a hierarchical training approach where
TMs of different layers can be trained sequentially starting
from the first layer. It was previously shown that TM is
characterised by the high rate of convergence [12].
Classification accuracy increases rapidly and quickly reaches
near-the-maximum (for the given number of clauses and other
hyperparameters) level. Further training leads to only a very
incremental accuracy gain. Thus, when the first-layer TM
reaches this stage, its training can be stopped and the state of
propositional clauses frozen. After that, the second-layer TM
can start its training by using the outputs of the first-layer TM
clauses as input. The same process is repeated hierarchically
for all subsequent layers.

When TMs of different layers are trained sequentially, the
array of Tsetlin Automata can be treated as a shared resource
and reused at each layer. This can considerably save hardware
resources and increase efficiency of MTMs as compared to
DNNs. Our further experiments, presented in Section IV, also
show that the proposed hierarchical training approach allows
us to achieve higher MTM performance compared to when
TMs of all layers are trained in parallel.

IV. EXPERIMENTAL RESULTS

In this section, we will validate the effectiveness of the
MTM approach proposed in Section III depending on the
number of layers and the number of clauses in the subsequent
layers.

A. Datasets

The paper explores pattern recognition performance of
multi-layer TM architecture using several MNIST datasets (see
in Table I). These datasets are one the most popular and widely
recognized AI benchmarks for image recognition machine
learning algorithms, the visual nature of which helps us to
provide insights into MTM clause interpretability through as
shown in Section V.

B. Performance of the Multi-layer TM Depending on the

Number of Layers

The first set of experiments aims to confirm our hypothesis
that adding extra layers to the TM architecture improves its
classification accuracy.

TM accuracy largely depends on the amount of available
hardware resources. These resources are mostly determined
by the number of used Tsetlin Automata. The overall number
of TAs depends on the number of logic clauses C that the TM
allocates to each class (half of these clauses are marked as

positive and are used to vote for the class; the other half are
negative clauses intendent to vote against the class) multiplied
by the number of classes and the number of Boolean literals
(data features) which depend on the dataset. Positive clauses
of each class form independent teams that learn persistent
class patterns from data samples belonging to their class,
without sharing knowledge between teams. Feeding the output
of first-layer clauses into the Boolean inputs of the second
layer (and so on) provides access for second-layer clauses to
the knowledge accumulated by all first-level clauses of all
classes. This hierarchical knowledge exchange increases
information awareness from layer to layer, which should
facilitate accurate decision making despite the limited number
of clauses at each layer.

Previous experiments [15] suggest that using one hundred
of clauses per class allows TM to achieve competitive
accuracy on various MNIST datasets still leaving room for
further improvement. The values of other two TM
hyperparameters (the voting threshold T and the learning
sensitivity s) were set as recommended in [15]:

1) the optimal voting threshold T approximates to the
square root of the half of the number of clauses C; according
to [16, 17] this ensures maximum voting power for each clause;

2) the optimal learning sensitivity s has logarithmic
dependence on the number of clauses C and needs to be
increased to achieve better selectivity in datasets with high
inter-class similarity [15].

Tables II and III report training and validation accuracy of
the multi-layer TM on different MNIST datasets depending on
the number of layers. The tables also indicate the values of
TM hyperparameters, which were set identical across all
layers.

TMs of different layers were trained sequentially
following the hierarchical training approach. Each layer,
starting with the first one, was trained for 100 epochs until the
TM accuracy began to saturate. The clause states were then
frozen and used to generate training data for the next TM
layer. We also continued individual training of TMs to be able
to compare their accuracy after an equal number of training
epoch. The learning dynamic of different layers of a multi-
layer TM is shown in Fig. 4.

TABLE II. MULTI-LAYER TM TRAINING ACCURACY DEPENDING
ON THE NUMBER OF LAYERS

 Training

 accuracy

 Dataset

Layer MTM
hyperparameters

(C, T, s) 1 2 3 4 5

 Digits-MNIST 97.72 99.16 99.67 99.85 99.93 (100, 8, 7.0)

 Letters-MNIST 89.47 95.37 96.60 96.86 97.25 (100, 8, 7.0)

 Fashion-MNIST 88.92 90.65 91.40 92.16 92.41 (100, 8, 10.2)

 Kuzushiji-MNIST 94.37 97.06 98.11 98.69 98.87 (100, 8, 8.6)

TABLE III. MULTI-LAYER TM VALIDATION ACCURACY DEPENDING
ON THE NUMBER OF LAYERS

 Validation

 accuracy

 Dataset

Layer MTM
hyperparameters

(C, T, s) 1 2 3 4 5

 Digits-MNIST 96.58 97.42 97.22 97.10 96.90 (100, 8, 7.0)

 Letters-MNIST 85.30 88.96 88.85 88.06 87.58 (100, 8, 7.0)

 Fashion-MNIST 86.56 86.84 86.82 86.76 86.63 (100, 8, 10.2)

 Kuzushiji-MNIST 82.41 84.71 84.33 83.91 83.13 (100, 8, 8.6)

Experimental results suggest that the multi-layer approach
can considerably improve TM performance. This is especially
noticeable for the training accuracy, which reaches almost
100% on the Digits MNIST dataset with only 100 clauses in
each of the five layers after only 500 training epochs in total.
Although one can notice that the accuracy gain decreases from
epoch to epoch.

The validation results (see Table III and Fig. 4,b) show that
multi-layer TM is prone to overfitting issue, just like DNN.
While the training accuracy continues to increase steadily
from layer to layer, the validation accuracy from the third
layer onwards begins to return to single-layer TM accuracy
after an initial rapid increase. This process, observed in all
used datasets, suggests that the two layers may be optimal for
MTM generalization ability.

The hierarchical training approach allows to consider an
array of Tsetlin Automata as a shared resource which can be
reused at each layer as discussed in Section III. The number
of epochs in each training cycle (i.e. training split) can be
considered as an additional hyperparameter. Transition to next
layer training should be performed after accuracy achieved at
the current layer begins to saturate. Reducing the split size
down to one epoch (see Fig. 5) reduces the overall efficiency
of the multi-layer TM architecture.

C. Performance of the Two-layer TM Depending on the

Number of Clauses in the Second Layer

As mentioned earlier, the number of logic clauses C that
TM allocates to each class determines the amount of hardware
resources. Minimizing used resources is important for
applying machine learning at the edge. This section examines
the two-layer TM architecture and analyses the extent to
which its performance depends on the number of clauses in
the second layer.

Used hyperparameters and experimental results obtained
for different datasets are summarised in Tables IV-VI. Fig. 6
also shows the training dynamics of a two-layer TM on the
Digits-MNIST dataset. It is shown that TM of the second layer
does not necessarily need to have the same number of clauses
as the first-layer TM to improve classification performance.
Depending on the dataset, the accuracy gain can be achieved
for as little as 20% of the clauses used in the second layer
compared to the first layer. More complex datasets such as
Fashion- and Kuzushiji-MNIST, which are characterized by
high intra-class heterogeneity and/or inter-class similarity,
require using up to 50-60% of the clauses at the second layer
to boost TM performance. In general, the more clauses used
in the second layer, the higher the training and validation
accuracy.

Fig. 4. Multi-layer TM accuracy on Digits MNIST dataset depending on the number of layers for the split training (the split size = 100 epochs):
(a) training accuracy; (b) validation accuracy.

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(a) Training

TM1

TM2

TM3

TM4

TM5

Split 1 Split 2 Split 3 Split 4 Split 5

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(b) Validation

TM1

TM2

TM3

TM4

TM5

Split 1 Split 2 Split 3 Split 4 Split 5

Fig. 5. Performance of the multi-layer TM on Digits MNIST dataset depending on the number of layers for the hierarchical micro-split training
(the split size = 1 epoch): (a) training accuracy; (b) validation accuracy.

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(a) Training

TM1

TM2

TM3

TM4

TM5

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(b) Validation

TM1

TM2

TM3

TM4

TM5

V. INTERPRETABILITY OF THE MULTI-LAYER TM

In this section, we discuss how MTM creates hierarchical
conjunctions of propositional logic and use visualization
techniques to interpret the logical rules represented by TM
clauses at different layers.

A. Impact of the First-Layer TM Clauses

Each positive TM clause of the first-layer TM can be
considered as a class pattern (or class template) constructed by
generalizing the class samples randomly selected from the
dataset. Visualisation results suggest that the s hyperparameter
plays a key role in building of such class patterns.

Fig. 7 depicts positive clauses of Class “0” for different s-
values after training a TM with 20 clauses per class on the
Digits-MNIST dataset. When the learning sensitivity s is
large, TM clauses are more specific. When s gets smaller, each

clause begins to generalize more class samples, resulting in
“broadening” of clause templates. It is also worth to notice that
when s is large, TM accuracy remains considerably low as true
predictions can only be made for a small subset of data
samples covered by narrowly specialised clauses. Smaller s
boosts generalization ability of clauses. However, when
clause templates become too general, they begin to pass
through data samples belonging to other classes and, hence,
produce false positive predictions.

Examples of Class “0” negative clauses used by TM to
recognise data samples belonging to other classes and hence
vote against Class “0” are shown in Fig. 8. Green colour () in
Figs. 7 and 8 means inclusion of the Boolean feature xi (i.e.
inclusion of a black pixel from the original black-and-white
image); read colour () means inclusion of the negated Boolean

feature xi (i.e. inclusion of a white pixel); white colour ()

means exclusion of both xi and xi.

Fig. 6. Performance of the two-layer TM depending on the number of clauses in the second layer: (a) training accuracy; (b) validation accuracy.

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(a) Training

TM1(C=100) TM2(C=10) TM2(C=20)

TM2(C=30) TM2(C=40) TM2(C=50)

TM2(C=60) TM2(C=70) TM2(C=80)

TM2(C=90) TM2(C=100)

Split 1 Split 2

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(b) Validation

TM1(C=100) TM2(C=10) TM2(C=20)
TM2(C=30) TM2(C=40) TM2(C=50)
TM2(C=60) TM2(C=70) TM2(C=80)
TM2(C=90) TM2(C=100)

Split 1 Split 2

TABLE IV. HYPERPARAMETERS USED FOR THE 1ST
 AND 2ND

 LAYER TM

 Hyperparameters

 (T, s)

 Dataset

1st Layer 2nd Layer

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100

 Digits-MNIST (8, 7.0) (2, 1.5) (3, 2.4) (4, 3.6) (4, 4.4) (5, 5.0) (5, 5.5) (6, 6.0) (6, 6.4) (7, 6.7) (8, 7.0)

 Letters-MNIST (8, 7.0) (2, 1.5) (3, 2.4) (4, 3.6) (4, 4.4) (5, 5.0) (5, 5.5) (6, 6.0) (6, 6.4) (7, 6.7) (8, 7.0)

 Fashion-MNIST (8, 10.2) (2, 2.0) (3, 3.1) (4, 4.9) (4, 6.1) (5, 7.1) (5, 7.9) (6, 8.6) (6, 9.2) (7, 9.7) (8, 10.2)

 Kuzushiji -MNIST (8, 8.6) (2, 1.8) (3, 2.8) (4, 4.3) (4, 5.3) (5, 6.1) (5, 6.7) (6, 7.3) (6, 7.8) (7, 8.2) (8, 8.6)

TABLE V. TWO-LAYER TM TRAINING ACCURACY DEPENDING ON THE NUMBER OF CLAUSES IN THE 2ND
 LAYER

 Training

 accuracy

 Dataset

1st Layer 2nd Layer

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100

 Digits-MNIST 97.72 95.39 97.44 97.84 98.23 98.47 98.73 98.90 98.92 99.06 99.16

 Letters-MNIST 89.47 86.43 90.44 91.90 92.35 93.60 93.84 94.70 94.91 95.14 95.37

 Fashion-MNIST 88.92 87.18 87.93 88.62 89.02 89.42 89.75 89.98 90.30 90.32 90.65

 K-MNIST 94.37 88.34 92.26 93.45 94.09 95.28 95.43 95.90 96.32 96.32 97.06

TABLE VI. TWO-LAYER TM VALIDATION ACCURACY DEPENDING ON THE NUMBER OF CLAUSES IN THE 2ND
 LAYER

 Validation

 accuracy

 Dataset

1st Layer 2nd Layer

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100

 Digits-MNIST 96.58 94.70 96.36 96.63 96.70 96.89 97.19 97.21 97.24 97.29 97.42

 Letters-MNIST 85.30 82.24 85.69 86.28 87.29 87.67 88.19 88.55 88.77 88.86 88.96

 Fashion-MNIST 86.56 85.13 85.81 85.93 86.12 86.50 86.53 86.60 86.71 86.78 86.81

 Kuzushiji -MNIST 82.41 72.73 77.94 79.82 80.80 82.53 82.61 83.01 83.55 83.55 84.71

Inclusion or exclusion of the certain Boolean literal depends
on the state of the Tsetlin Automaton linked to this literal: if TA
is in include state, it outputs True; otherwise – False. In general,
each TM clause at the first layer can be represented as a

conjunction of (𝑥𝑖 ∨ ¬𝑇𝐴𝑖
𝐿1) and (¬𝑥𝑖 ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿1)
disjunctions:

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0..9,𝑗=0..𝐶−1
𝐿𝑎𝑦𝑒𝑟1

=

= ⋀(𝑥𝑖 ∨ ¬𝑇𝐴𝑖
𝐿1)

𝑘−1

𝑖=0

∧ (¬𝑥𝑖 ∨ ¬𝑇𝐴2𝑘+𝑖
𝐿1),

where 𝑥𝑖 – is a Boolean feature (e.g. a single pixel of a black-
and-white image from the booleanized MNIST dataset), k – is
the total number of Boolean features (e.g. pixels).

B. Impact of the Second-Layer TM Clauses

The stochastic feedback mechanism ensures that during
training TM clauses randomly cover data samples with equal
probability, provided that T hyperparameter is set optimally
(too large T-value reduces clause diversity [15]). However, the
first-level TM clauses can be considered as autonomous
inference units that interact only during the voting process.
They do not directly exchange or share knowledge (e.g. about
covered class samples) with clauses of the same class or with
clauses of other classes.

Second-layer TM does not see the original training data
samples. Instead, it observes clause outputs coming from the
first-layer TM. Thus, each second-layer clause benefits from
seen the reaction of ALL (positive and negative) first-layer TM
clauses of ALL classes (not only clauses of the same class) to
each sample of input data. This extended awareness allows for
more accurate predictions.

Examples of the second-layer positive and negative clauses
are shown in Figs. 9 and 10. Their elements are the first-layer
positive and negative clauses of all classes, the icons of which
can be outlined with a green or blue border. The green frame
around the icon indicates that the corresponding first-layer
clause is included in the second-level proposition. The blue
frame means that the second-layer clause includes the negation
of the first-layer clause. The white box with a dashed border
indicates the exclusion of both the corresponding first-layer
clause and its negation.

Since TM only uses conjunctive clauses of propositional
logic, positive clauses of the second layer cannot directly
include positive clauses of the same class from the first layer
(as it was shown earlier, each positive clause of the first layer
TM generalises only some subset of class samples, but not all
of them).

s
=

1
0

0
0

s
=

1
0

0

s
=

1
0

s
=

1

Fig. 7. Visualisation of TM (C=20, T=3, s=1..1000) first-layer positive clauses of Class “0” after training on the Digit MNIST dataset; each positive clause
represents a certain template of Class ‘0’; the smaller the value of s, the wider the clause pattern.

L
ea

rn
in

g
 s

en
si

ti
v

it
y

,
s

s
=

1
0

0
0

s
=

1
0

0

s
=

1
0

s
=

1

Fig. 8. Visualisation of TM (C=20, T=3, s=1..1000) first-layer negative clauses of Class “0” after training on the Digit MNIST dataset; each negative clause
represents a certain template of classes other than Class “0”; the smaller the value of s, the wider the clause pattern.

L
ea

rn
in

g
 s

en
si

ti
v

it
y

,
s

Instead, positive clauses of the second layer define a
specific class by (see Fig. 9):

(i) negation of other classes (by ANDing negations of all
first-layer positive clauses of other classes);

(ii) negation of first-layer negative clauses of the same class;

(iii) reusing some first-layer negative clauses from other
classes that match the current clause class;

(iv) negation of some first-layer negative clauses of other
classes that correspond to classes different from the current
clause class.

For instance, a second-layer positive clause of Class “0”
shown in Fig. 9 can be defined as:

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1
𝐿2+ =

= ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶−1
𝐿1+ ∧ ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1

𝐿1− ∧

⋀(
(𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶

𝐿1− ∨ ¬𝑇𝐴𝑖
𝐿2) ∧

(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶
𝐿1− ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿2)
)

𝑘−1

𝑖=0

.

In turn, negative clauses of the second layer specify data
samples that do not belong to a specific class by (see Fig. 10):

(i) negation of first-layer positive clauses of the same class;

(ii) negation of some first-layer positive clauses of other
classes;

(iii) negation of some first-layer negative clauses from
other classes that match the current clause class.

At the same time, first-layer negative clauses of the same
class will be excluded from negative clauses of the second
layer. Following these reasonings, a second-layer negative
clause for Class “0” shown in Fig. 10 can be specified as:

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1
𝐿2− = ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=1..𝐶−1

𝐿1+ ∧

⋀ (
(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶

𝐿1+ ∨ ¬𝑇𝐴2𝑘+𝑖
𝐿2) ∧

(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶
𝐿1− ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿2)
)𝑘−1

𝑖=0 .

Besides, after the first-layer TM has completed training,
the state of some of its clauses may be suboptimal (i.e. some
clauses may still be too specific or too broad, resulting in too
few true predictions or too many false outputs). This can often
happen if the value of the hyperparameter T is set too small.
The second-layer TM has demonstrated the ability to detect
such ‘weak’ clauses and eliminate them from the second-layer
logical propositions.

CONCLUSION

This paper introduces a multi-layer architecture of Tsetlin
Machines. It puts forward a hierarchical feature learning
approach with the aim to further boost TM performance. It
was shown that multi-layer TM can considerably outperform
the single-layer architecture due to the accumulation and use
of more information propagating from layer to layer still
remaining a highly interpretable logic-based AI. For example,
the second-layer clauses define the certain class via negation
of first-layer positive clauses of other classes and reusing
matching negative clauses.

The hierarchical training approach introduced in the paper
also allows to reuse an array of Tsetlin Automata (main TM
computation units) at different layers, thereby saving
hardware resources and enabling distributed multi-layer
learning.

It was also shown that while increasing the number of
layers further improves training accuracy, it also causes
overfitting issue similar to that seen in DNNs.

Class TM1 positive clauses, CL1+ TM1 negative clauses, CL1–

0

1

2

3

4

5

6

7

8

9

Fig. 9. Visualisation of a second-layer positive clause of Class “0”. The clause defines its class through: (i) negation of first-layer positive clauses of other

classes; (ii) negation of first-layer negative clauses of Class “0”; (iii) reusing some negative clauses of other classes matching Class “0” samples;

(iv) negation of some negative clauses of other classes corresponding to classes other than Class “0”.

– include a first-layer clause; – include a negated first-layer clause; – exclude a first-layer clause and its negated value.

(i)

(iii)

(iv)

(ii) All L1 positive clauses of Class “0” are excluded.

Further research directions could be focused on
developing more complex multi-layer TM architectures,
including convolution layers. Besides, deep TM layers may
benefit from the use of both conjunctive and disjunctive logic
in the propositional clauses.

ACKNOWLEDGMENT

This research is supported by the British Academy’s
Researchers at Risk Fellowships Programme (RaR\100289).

REFERENCES

[1] O. Tarasyuk, A. Gorbenko, T. Rahman, R. Shafik and A. Yakovlev,

"Logic-Based Machine Learning with Reproducible Decision Model

Using the Tsetlin Machine," in IEEE 12th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), Dortmund, Germany, 2023.

[2] O.-C. Granmo, "The Tsetlin Machine - A Game Theoretic Bandit
Driven Approach to Optimal Pattern Recognition with Propositional

Logic," arXiv, vol. arXiv:1804.01508, pp. 1-14, 2018.

[3] M. L. Tsetlin, Automata Theory and Modeling of Biological Systems,
New York: Academic Press, 1973, p. 288.

[4] V. Varshavsky and D. Pospelov, Puppets Without Strings: Reflections

on the Evolution and Control of Some Man-Made Systems, Moscow:
Mir, 1988, p. 294.

[5] K. Narendra and M. Thathachar, Learning Automata: An Introduction,

Dover Publications, 2012, p. 496.

[6] S. A. Tunheim, L. Jiao, R. Shafik, A. Yakovlev and O.-C. Granmo,

"A Convolutional Tsetlin Machine-based Field Programmable Gate

Array Accelerator for Image Classification," in International
Symposium on the Tsetlin Machine (ISTM), 2022.

[7] S. Maheshwari, T. Rahman, R. Shafik, A. Yakovlev, A. Rafiev, L. Jiao

and O.-C. Granmo, "REDRESS: Generating Compressed Models for
Edge Inference Using Tsetlin Machines," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 11152-

11168, 2023.

[8] G. T. Berge, O.-C. Granmo, T. O. Tveit, M. Goodwin, L. Jiao and B.

V. Matheussen, "Using the Tsetlin Machine to Learn Human-

Interpretable Rules for High-Accuracy Text Categorization With
Medical Applications," IEEE Access, vol. 7, pp. 115134-115146,

2019.

[9] K. D. Abeyrathna, O.-C. Granmo, X. Zhang and M. Goodwin,
"Adaptive Continuous Feature Binarization for Tsetlin Machines

Applied to Forecasting Dengue Incidences in the Philippines," in

IEEE Symposium Series on Computational Intelligence (SSCI), 2020.

[10] J. Lei, T. Rahman, R. Shafik, A. Wheeldon, A. Yakovlev, O.-C.

Granmo, F. Kawsar and A. Mathur, "Low-Power Audio Keyword

Spotting Using Tsetlin Machines," Journal of Low Power Electronics
and Applications, vol. 11, no. 2, pp. 1-18, 2021.

[11] K. D. Abeyrathna, H. S. G. Pussewalage, S. N. Ranasinghe, V. A.

Oleshchuk and O.-C. Granmo, "Intrusion Detection with Interpretable
Rules Generated Using the Tsetlin Machine," in IEEE Symposium

Series on Computational Intelligence (SSCI), 2020.

[12] J. Lei, A. Wheeldon, R. Shafik, A. Yakovlev and O.-C. Granmo,
"From Arithmetic to Logic based AI: A Comparative Analysis of

Neural Networks and Tsetlin Machine," in 27th IEEE International

Conference on Electronics, Circuits and Systems (ICECS), 2020.

[13] M. Kimura, T. Ouchi, H. Nakahama, K. Shima and S. Saito, "Learning

automaton as a model to simulate and analyse learning behaviour in

rats," International Journal of Systems Science, vol. 19, no. 10, pp.
2079-2090, 1988.

[14] T. Rahman, A. Wheeldon, R. Shafik, A. Yakovlev, J. Lei, O.-C.

Granmo and S. Das, "Data Booleanization for Energy Efficient On-
Chip Learning using Logic Driven AI," in International Symposium

on the Tsetlin Machine (ISTM), Grimstad, Norway, 2022.

[15] O. Tarasyuk, A. Gorbenko, T. Rahman, R. Shafik, A. Yakovlev, O.-

C. Granmo and L. Jiao, "Systematic Search for Optimal Hyper-

parameters of the Tsetlin Machine on MNIST Dataset," in
International Symposium on the Tsetlin Machine (ISTM), Newcastle-

upon-Tyne, UK, 2023.

[16] L. Penrose, "The elementary statistics of majority voting," Journal of
the Royal Statistical Society, vol. 109, no. 1, p. 53–57, 1947.

[17] K. Zyczkowski and W. Slomczynski, "Square Root Voting System,

Optimal Threshold and π," in Power, Voting, and Voting Power: 30
Years After, M. Holler and H. Nurmi, Eds., Berlin, Heidelberg,

Springer, 2013, p. 573–592.

Class TM1 positive clauses, CL1+ TM1 negative clauses, C L1–

0

1

2

3

4

5

6

7

8

9

Fig. 10. Visualisation of a second-layer negative clause of Class “0”. The clause defines its class through: (i) negation of first-layer positive clauses of Class “0”;
(ii) negation of some first-layer positive clauses of other classes; (iii) negation of some first-layer negative clauses of other classes matching Class “0” samples.

(ii)

(i)

(iii)

All L1 negative clauses of Class “0” are excluded.

