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Abstract—Tsetlin Machine (TM) is a recent automaton-

based algorithm for reinforcement learning. It has 

demonstrated competitive accuracy on many popular 

benchmarks while providing a natural interpretability. Due to 

its logical underpinning, it is amenable to hardware 

implementation with faster performance and higher energy 

efficiency than conventional Artificial Neural Networks. This 

paper introduces a multi-layer architecture of Tsetlin Machines 

with the aim to further boost TM performance via adoption of 

a hierarchical feature learning approach. This is seen as a way 

of creating hierarchical logic expressions from original Boolean 

literals, surpassing single-layer TMs in their ability to capture 

more complex patterns and high-level features. In this work we 

demonstrate that multi-layer TM considerably overperforms 

the single-layer TM architecture on several benchmarks while 

maintaining the ability to interpret its logic inference. However, 

it has also been shown that uncontrolled growth in the number 

of layers leads to overfitting. 

Keywords—Machine learning, logic-based artificial 

intelligence, learning automaton, Tsetlin Machine, multi-layer 

architecture, performance, interpretability. 

I. INTRODUCTION  

Machine learning is an essential tool for analyzing 
complex data and making predictions in various fields, 
including finance, healthcare, and technology. Artificial 
neural networks have been the dominant machine learning 
technique in the recent years due to their high accuracy in 
predictive tasks. While Artificial Neural Networks (ANNs), 
especially deep neural networks (DNNs) have been successful 
in many application domains, they have certain limitations, 
such as high complexity and lack of interpretability. These 
limitations have led researchers to explore alternative machine 
learning methods, including the Tsetlin machine [1].  

Tsetlin Machine (TM) is an emerging machine learning 
algorithm proposed by Granmo in 2018 [2]. The algorithm is 
underpinning on Tsetlin Automaton (TA) that originates from 
the research on collective behavior of learning automata by 
Tsetlin [3] and Varshavsky [4] and further developed in [5].  

Recent studies have shown that TM provides a promising 
alternative to DNNs with several advantages: TM is an 
interpretable and low-complexity algorithm. It has a unique 
logic-based learning mechanism supporting parallelism and 
efficient hardware implementation that makes TM attractive 
for embedded applications and hardware acceleration [6, 7]. 
TM has been successfully used in various applications 
domains aimed at pattern recognition such as image 
classification [6], text categorization [8, 9], speech recognition 

and audio keyword spotting [10], intrusion detection [11], etc. 
Unlike ANNs, TMs do not require gradient descent, which 
makes them a quicker-converging learning algorithm. 
Moreover, TMs have considerably fewer number of 
hyperparameters to tune and are highly interpretable because 
their model prediction is carried out via single-layer 
propositional logic clauses. The last factor is crucial for safety 
and mission-critical applications. 

TM has been actively developed over the last few years 
and has demonstrated competitive accuracy on different 
benchmarks [12]. There is also growing interest in building 
larger, more complex TM models and hierarchical capability 
such as those in DNNs.  

The standard TMs produce variably sized conjunctions 
from a single layer followed by summative voting. While 
these have produced competitive accuracies, we are keen to 
explore the potential of multi-layered TMs that can provide 
hierarchical conjunctions followed by summative voting. This 
type of layering can also help in understanding the impact of 
conjunction clausing on the accuracy and performance of a 
new type of Tsetlin machines and their ability to learn 
complex patterns. 

In this paper, we introduce a novel multi-layer architecture 

of Tsetlin Machines with the aim to reinforce TM 

performance via adoption of a hierarchical feature learning. 

Through this work we provide answers to the following 

research questions: 

Q1: How to organize effective and resource-efficient multi-

layer TM training?  

Q2: How does the number of layers affect TM pattern 

recognition capability, i.e. training and validation 

accuracy? 

Q3: How does the multi-layer TM learn patterns and how to 

interpret logical clauses constructed by each layer? 

II. BASICS OF TSETLIN MACHINE 

The theory on which the Tsetlin Machine is based 
originates from the research on collective behaviour of 
learning automata by Tsetlin [3]. Tsetlin studied how rats 
found their way in mazes (see Fig. 1) to determine how 
biological systems learn. He demonstrated that finite automata 
provided a sufficiently accurate and yet simple mathematical 
model for this behaviour. Such learning automata with linear 
tactics were later allocated to a special class called Tsetlin 
automata (TA) [13].  



 

Fig. 1. Tsetlin Automaton – a mathematical representation of a rat brain:  

states and transitions. 

The TA behaves like a finite state machine where 2N states 
are divided equally into two actions: to ‘remember’ or to 
‘forget’ a given decision. Reward and penalty signals transition 
the TA between these states which allows it to remember the 
right choice deeper or forget the wrong one as shown in Fig. 1.  

Granmo incorporated propositional logic and a game-
theoretic bandit driven approach, namely the Tsetlin Machine, 
to orchestrate the collective behaviour of TAs and formulate 
logic statements [2]. Hundreds of such ‘rat brains’ (i.e., TAs), 
each making one decision, combined through NOT and AND 
operations to form logic propositions and used to solve 
classification tasks are referred to as the Tsetlin Machine.  

Fig. 2 presents a high-level architecture and the core 
building blocks of the Tsetlin Machine. 

 
Fig. 2. High-level TM architecture. 

Input Layer. TM accepts input variables as Boolean 

features (literals X and their negations X). Booleanization 
means reducing the values of input variables to Boolean values 
(e.g. through simple ranking or thresholding methods or using 
more advanced significance-driven Booleanization algorithms 
[14]) so that each of them is either True or False. 

Decision Layer. The learning process for the TM centers 
on building Boolean logic 
expressions – conjunctive 
clauses. The clause relates the 
Boolean literal to its respective 
TA to learn the decision 
regarding inclusion (i.e. 
remembering) or exclusion (i.e. 
forgetting) of that feature 
into/from the conjunctive 
clause corresponding to a 
particular class.  

Each TA outputs ‘1’ if its 
state is ‘include’ and ‘0’ 
otherwise. 

For a classification problem with M classes, there are C 
clauses, which are employed per class. Half of them is 
assigned to be positive, i.e. to learn distinctive class features 
from the class samples; the other half are negative clauses 
trained to recognize data samples that do not belong to the 
class. Each clause contains its own set of TAs (referred to as 
TA teams). The number of clauses used per class C and the 
number of TA states 2N are the two hyper-parameters defining 
the TM architecture and the model size. 

Output Layer. The outputs from each logic clause (which 
could be 0 or 1) are referred to as votes. They are summed 
together and clipped by a threshold for each class. Negative 
clauses are summed with a negative sign. The class with the 
highest sum of votes v is the predicted classification. 

The voting threshold T and the learning sensitivity s are 
other two TM hyper-parameters affecting the learning. During 
TM training, feedback is issued based on the expected class 
and the clause outputs generated. The feedback module 
compares the expected class for the evaluated data instance 
with the clause outputs and generates reward and penalty 
signals to each TA according to rules described in [2]. 

Training and Feedback. During training TM descends 
feedback from the expected class level to the clause level 
where the T hyper-parameter is used, and then to the TA level 
where the s parameter is used.  

At the clause level the T hyper-parameter is bounded 
between 0 and the number of clauses in the class. When the 
clauses voting sum v is less than the user-set target T, they are 
reinforced with the probability (T-v)/2T. This hyper-parameter is 
used to control the probability with which a particular clause will 
be given feedback at the TA level. The s hyper-parameter may 
take any floating-point value above 1. This parameter is used at 
the TA level where its value is used to control the probability 
with which a TA will transition between states as (s-1)/s. 

III. MULTI-LAYER TM ARCHITECTURE AND  

THE HIERARCHICAL TRAINING APROACH 

Fig. 3 shows the proposed multi-layer TM (MTM) 
architecture, implementing the concept of hierarchical feature 
learning. This was inspired by success of deep neural networks 
in achieving state-of-the-art results in a wide range of 
applications, including image and speech recognition, natural 
language processing, etc.  

However, unlike the multi-path multi-level regression used 
in DNNs, we put forward the idea of organizing conjunctive 
clauses into hierarchical patterns rather than single-layer ones, 
followed by summative voting. 

 
Fig. 3.   Multi-layer TM architecture: two-layer example (clause outputs of the first-layer TM are used as input for 
the second-layer TM; after the first-layer TM is trained, its clause states are frozen by replacing TA team with the 
clause state memory; in turn, TA team is considered as a shared resource and is used to train the second-layer TM).  



TABLE I. DATASETS 

Dataset 
Number of  

classes 

Image  

size 

Training 

samples 

Validation 

samples 

 Digits-MNIST 10 28×28 60000 10000 

 Letters-MNIST 26 28×28 62400 10400 

 Fashion-MNIST 10 28×28 60000 10000 

 Kuzushiji-MNIST 10 28×28 60000 10000 

The proposed architecture is composed of multiple layers 
of propositional clause logic. The first-layer TM uses 
Booleanized features (literals) of the original dataset as an 
input. Clause outputs of the first-layer TM are then used as a 
Boolean input to the second layer TM and so on.  

In contrast to ANN, TM does not use back-propagation 
mechanism. During training, feedback is issued based on the 
expected class and the clause outputs generated. As a result, 
MTM can implement a hierarchical training approach where 
TMs of different layers can be trained sequentially starting 
from the first layer. It was previously shown that TM is 
characterised by the high rate of convergence [12]. 
Classification accuracy increases rapidly and quickly reaches 
near-the-maximum (for the given number of clauses and other 
hyperparameters) level. Further training leads to only a very 
incremental accuracy gain. Thus, when the first-layer TM 
reaches this stage, its training can be stopped and the state of 
propositional clauses frozen. After that, the second-layer TM 
can start its training by using the outputs of the first-layer TM 
clauses as input. The same process is repeated hierarchically 
for all subsequent layers.  

When TMs of different layers are trained sequentially, the 
array of Tsetlin Automata can be treated as a shared resource 
and reused at each layer. This can considerably save hardware 
resources and increase efficiency of MTMs as compared to 
DNNs. Our further experiments, presented in Section IV, also 
show that the proposed hierarchical training approach allows 
us to achieve higher MTM performance compared to when 
TMs of all layers are trained in parallel.  

IV. EXPERIMENTAL RESULTS 

In this section, we will validate the effectiveness of the 
MTM approach proposed in Section III depending on the 
number of layers and the number of clauses in the subsequent 
layers. 

A. Datasets 

The paper explores pattern recognition performance of 
multi-layer TM architecture using several MNIST datasets (see 
in Table I). These datasets are one the most popular and widely 
recognized AI benchmarks for image recognition machine 
learning algorithms, the visual nature of which helps us to 
provide insights into MTM clause interpretability through as 
shown in Section V. 

B. Performance of the Multi-layer TM Depending on the 

Number of Layers 

The first set of experiments aims to confirm our hypothesis 
that adding extra layers to the TM architecture improves its 
classification accuracy. 

TM accuracy largely depends on the amount of available 
hardware resources. These resources are mostly determined 
by the number of used Tsetlin Automata. The overall number 
of TAs depends on the number of logic clauses C that the TM 
allocates to each class (half of these clauses are marked as 

positive and are used to vote for the class; the other half are 
negative clauses intendent to vote against the class) multiplied 
by the number of classes and the number of Boolean literals 
(data features) which depend on the dataset. Positive clauses 
of each class form independent teams that learn persistent 
class patterns from data samples belonging to their class, 
without sharing knowledge between teams. Feeding the output 
of first-layer clauses into the Boolean inputs of the second 
layer (and so on) provides access for second-layer clauses to 
the knowledge accumulated by all first-level clauses of all 
classes. This hierarchical knowledge exchange increases 
information awareness from layer to layer, which should 
facilitate accurate decision making despite the limited number 
of clauses at each layer. 

Previous experiments [15] suggest that using one hundred 
of clauses per class allows TM to achieve competitive 
accuracy on various MNIST datasets still leaving room for 
further improvement. The values of other two TM 
hyperparameters (the voting threshold T and the learning 
sensitivity s) were set as recommended in [15]:  

1) the optimal voting threshold T approximates to the 
square root of the half of the number of clauses C; according 
to [16, 17] this ensures maximum voting power for each clause; 

2) the optimal learning sensitivity s has logarithmic 
dependence on the number of clauses C and needs to be 
increased to achieve better selectivity in datasets with high 
inter-class similarity [15].  

Tables II and III report training and validation accuracy of 
the multi-layer TM on different MNIST datasets depending on 
the number of layers. The tables also indicate the values of 
TM hyperparameters, which were set identical across all 
layers.  

TMs of different layers were trained sequentially 
following the hierarchical training approach. Each layer, 
starting with the first one, was trained for 100 epochs until the 
TM accuracy began to saturate. The clause states were then 
frozen and used to generate training data for the next TM 
layer. We also continued individual training of TMs to be able 
to compare their accuracy after an equal number of training 
epoch. The learning dynamic of different layers of a multi-
layer TM is shown in Fig. 4.  

TABLE II. MULTI-LAYER TM TRAINING ACCURACY DEPENDING  
ON THE NUMBER OF LAYERS 

                Training  

                accuracy 

 Dataset 

Layer MTM  
hyperparameters  

(C, T, s) 1 2 3 4 5 

 Digits-MNIST 97.72 99.16 99.67 99.85 99.93 (100, 8, 7.0) 

 Letters-MNIST 89.47 95.37 96.60 96.86 97.25 (100, 8, 7.0) 

 Fashion-MNIST 88.92 90.65 91.40 92.16 92.41 (100, 8, 10.2) 

 Kuzushiji-MNIST 94.37 97.06 98.11 98.69 98.87 (100, 8, 8.6) 

TABLE III. MULTI-LAYER TM VALIDATION ACCURACY DEPENDING  
ON THE NUMBER OF LAYERS 

             Validation      

                accuracy 

 Dataset 

Layer MTM  
hyperparameters  

(C, T, s) 1 2 3 4 5 

 Digits-MNIST 96.58 97.42 97.22 97.10 96.90 (100, 8, 7.0) 

 Letters-MNIST 85.30 88.96 88.85 88.06 87.58 (100, 8, 7.0) 

 Fashion-MNIST 86.56 86.84 86.82 86.76 86.63 (100, 8, 10.2) 

 Kuzushiji-MNIST 82.41 84.71 84.33 83.91 83.13 (100, 8, 8.6) 

 



Experimental results suggest that the multi-layer approach 
can considerably improve TM performance. This is especially 
noticeable for the training accuracy, which reaches almost 
100% on the Digits MNIST dataset with only 100 clauses in 
each of the five layers after only 500 training epochs in total. 
Although one can notice that the accuracy gain decreases from 
epoch to epoch.  

The validation results (see Table III and Fig. 4,b) show that 
multi-layer TM is prone to overfitting issue, just like DNN. 
While the training accuracy continues to increase steadily 
from layer to layer, the validation accuracy from the third 
layer onwards begins to return to single-layer TM accuracy 
after an initial rapid increase. This process, observed in all 
used datasets, suggests that the two layers may be optimal for 
MTM generalization ability. 

The hierarchical training approach allows to consider an 
array of Tsetlin Automata as a shared resource which can be 
reused at each layer as discussed in Section III. The number 
of epochs in each training cycle (i.e. training split) can be 
considered as an additional hyperparameter. Transition to next 
layer training should be performed after accuracy achieved at 
the current layer begins to saturate. Reducing the split size 
down to one epoch (see Fig. 5) reduces the overall efficiency 
of the multi-layer TM architecture. 

C. Performance of the Two-layer TM Depending on the 

Number of Clauses in the Second Layer 

As mentioned earlier, the number of logic clauses C that 
TM allocates to each class determines the amount of hardware 
resources. Minimizing used resources is important for 
applying machine learning at the edge. This section examines 
the two-layer TM architecture and analyses the extent to 
which its performance depends on the number of clauses in 
the second layer.  

Used hyperparameters and experimental results obtained 
for different datasets are summarised in Tables IV-VI. Fig. 6 
also shows the training dynamics of a two-layer TM on the 
Digits-MNIST dataset. It is shown that TM of the second layer 
does not necessarily need to have the same number of clauses 
as the first-layer TM to improve classification performance. 
Depending on the dataset, the accuracy gain can be achieved 
for as little as 20% of the clauses used in the second layer 
compared to the first layer. More complex datasets such as 
Fashion- and Kuzushiji-MNIST, which are characterized by 
high intra-class heterogeneity and/or inter-class similarity, 
require using up to 50-60% of the clauses at the second layer 
to boost TM performance. In general, the more clauses used 
in the second layer, the higher the training and validation 
accuracy. 

  
Fig. 4.   Multi-layer TM accuracy on Digits MNIST dataset depending on the number of layers for the split training (the split size = 100 epochs):  
(a) training accuracy; (b) validation accuracy. 

 

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(a) Training

TM1

TM2

TM3

TM4

TM5

Split 1 Split 2 Split 3 Split 4 Split 5

90

91

92

93

94

95

96

97

98

99

100

0 100 200 300 400 500

Accuracy, %

Training epoch

(b) Validation

TM1

TM2

TM3

TM4

TM5

Split 1 Split 2 Split 3 Split 4 Split 5

  
Fig. 5.   Performance of the multi-layer TM on Digits MNIST dataset depending on the number of layers for the hierarchical micro-split training  
(the split size = 1 epoch): (a) training accuracy; (b) validation accuracy. 
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V. INTERPRETABILITY OF THE MULTI-LAYER TM 

In this section, we discuss how MTM creates hierarchical 
conjunctions of propositional logic and use visualization 
techniques to interpret the logical rules represented by TM 
clauses at different layers. 

A. Impact of the First-Layer TM Clauses 

Each positive TM clause of the first-layer TM can be 
considered as a class pattern (or class template) constructed by 
generalizing the class samples randomly selected from the 
dataset. Visualisation results suggest that the s hyperparameter 
plays a key role in building of such class patterns.  

Fig. 7 depicts positive clauses of Class “0” for different s-
values after training a TM with 20 clauses per class on the 
Digits-MNIST dataset. When the learning sensitivity s is 
large, TM clauses are more specific. When s gets smaller, each 

clause begins to generalize more class samples, resulting in 
“broadening” of clause templates. It is also worth to notice that 
when s is large, TM accuracy remains considerably low as true 
predictions can only be made for a small subset of data 
samples covered by narrowly specialised clauses. Smaller s 
boosts generalization ability of clauses. However, when 
clause templates become too general, they begin to pass 
through data samples belonging to other classes and, hence, 
produce false positive predictions. 

Examples of Class “0” negative clauses used by TM to 
recognise data samples belonging to other classes and hence 
vote against Class “0” are shown in Fig. 8. Green colour ( ) in 
Figs. 7 and 8 means inclusion of the Boolean feature xi (i.e. 
inclusion of a black pixel from the original black-and-white 
image); read colour ( ) means inclusion of the negated Boolean 

feature xi (i.e. inclusion of a white pixel); white colour ( ) 

means exclusion of both xi and xi. 

  
Fig. 6.   Performance of the two-layer TM depending on the number of clauses in the second layer: (a) training accuracy; (b) validation accuracy. 
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TABLE IV. HYPERPARAMETERS USED FOR THE 1ST
 AND 2ND

 LAYER TM 

        Hyperparameters 

                             (T, s)  

 Dataset             

1st Layer 2nd Layer 

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100 

 Digits-MNIST (8, 7.0) (2, 1.5) (3, 2.4) (4, 3.6) (4, 4.4) (5, 5.0) (5, 5.5) (6, 6.0) (6, 6.4) (7, 6.7) (8, 7.0) 

 Letters-MNIST (8, 7.0) (2, 1.5) (3, 2.4) (4, 3.6) (4, 4.4) (5, 5.0) (5, 5.5) (6, 6.0) (6, 6.4) (7, 6.7) (8, 7.0) 

 Fashion-MNIST (8, 10.2) (2, 2.0) (3, 3.1) (4, 4.9) (4, 6.1) (5, 7.1) (5, 7.9) (6, 8.6) (6, 9.2) (7, 9.7) (8, 10.2) 

 Kuzushiji -MNIST (8, 8.6) (2, 1.8) (3, 2.8) (4, 4.3) (4, 5.3) (5, 6.1) (5, 6.7) (6, 7.3) (6, 7.8) (7, 8.2) (8, 8.6) 

TABLE V. TWO-LAYER TM TRAINING ACCURACY DEPENDING ON THE NUMBER OF CLAUSES IN THE 2ND
 LAYER 

                      Training  

                      accuracy  

 Dataset             

1st Layer 2nd Layer 

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100 

 Digits-MNIST 97.72 95.39 97.44 97.84 98.23 98.47 98.73 98.90 98.92 99.06 99.16 

 Letters-MNIST 89.47 86.43 90.44 91.90 92.35 93.60 93.84 94.70 94.91 95.14 95.37 

 Fashion-MNIST 88.92 87.18 87.93 88.62 89.02 89.42 89.75 89.98 90.30 90.32 90.65 

 K-MNIST 94.37 88.34 92.26 93.45 94.09 95.28 95.43 95.90 96.32 96.32 97.06 

TABLE VI. TWO-LAYER TM VALIDATION ACCURACY DEPENDING ON THE NUMBER OF CLAUSES IN THE 2ND
 LAYER 

                    Validation  

                      accuracy  

 Dataset             

1st Layer 2nd Layer 

C1=100 C2=10 C2=20 C2=30 C2=40 C2=50 C2=60 C2=70 C2=80 C2=90 C2=100 

 Digits-MNIST 96.58 94.70 96.36 96.63 96.70 96.89 97.19 97.21 97.24 97.29 97.42 

 Letters-MNIST 85.30 82.24 85.69 86.28 87.29 87.67 88.19 88.55 88.77 88.86 88.96 

 Fashion-MNIST 86.56 85.13 85.81 85.93 86.12 86.50 86.53 86.60 86.71 86.78 86.81 

 Kuzushiji -MNIST 82.41 72.73 77.94 79.82 80.80 82.53 82.61 83.01 83.55 83.55 84.71 

 



Inclusion or exclusion of the certain Boolean literal depends 
on the state of the Tsetlin Automaton linked to this literal: if TA 
is in include state, it outputs True; otherwise – False. In general, 
each TM clause at the first layer can be represented as a 

conjunction of (𝑥𝑖 ∨ ¬𝑇𝐴𝑖
𝐿1)  and (¬𝑥𝑖 ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿1 ) 
disjunctions: 

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0..9,𝑗=0..𝐶−1
𝐿𝑎𝑦𝑒𝑟1

= 

= ⋀(𝑥𝑖 ∨ ¬𝑇𝐴𝑖
𝐿1)

𝑘−1

𝑖=0

∧ (¬𝑥𝑖 ∨ ¬𝑇𝐴2𝑘+𝑖
𝐿1 ), 

where 𝑥𝑖 – is a Boolean feature (e.g. a single pixel of a black-
and-white image from the booleanized MNIST dataset), k – is 
the total number of Boolean features (e.g. pixels).  

B. Impact of the Second-Layer TM Clauses 

The stochastic feedback mechanism ensures that during 
training TM clauses randomly cover data samples with equal 
probability, provided that T hyperparameter is set optimally 
(too large T-value reduces clause diversity [15]). However, the 
first-level TM clauses can be considered as autonomous 
inference units that interact only during the voting process. 
They do not directly exchange or share knowledge (e.g. about 
covered class samples) with clauses of the same class or with 
clauses of other classes.  

Second-layer TM does not see the original training data 
samples. Instead, it observes clause outputs coming from the 
first-layer TM. Thus, each second-layer clause benefits from 
seen the reaction of ALL (positive and negative) first-layer TM 
clauses of ALL classes (not only clauses of the same class) to 
each sample of input data. This extended awareness allows for 
more accurate predictions.  

Examples of the second-layer positive and negative clauses 
are shown in Figs. 9 and 10. Their elements are the first-layer 
positive and negative clauses of all classes, the icons of which 
can be outlined with a green or blue border. The green frame 
around the icon indicates that the corresponding first-layer 
clause is included in the second-level proposition. The blue 
frame means that the second-layer clause includes the negation 
of the first-layer clause. The white box with a dashed border 
indicates the exclusion of both the corresponding first-layer 
clause and its negation.  

Since TM only uses conjunctive clauses of propositional 
logic, positive clauses of the second layer cannot directly 
include positive clauses of the same class from the first layer 
(as it was shown earlier, each positive clause of the first layer 
TM generalises only some subset of class samples, but not all 
of them).  
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Fig. 7.   Visualisation of TM (C=20, T=3, s=1..1000) first-layer positive clauses of Class “0” after training on the Digit MNIST dataset; each positive clause 
represents a certain template of Class ‘0’; the smaller the value of s, the wider the clause pattern. 
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Fig. 8.   Visualisation of TM (C=20, T=3, s=1..1000) first-layer negative clauses of Class “0” after training on the Digit MNIST dataset; each negative clause 
represents a certain template of classes other than Class “0”; the smaller the value of s, the wider the clause pattern. 
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Instead, positive clauses of the second layer define a 
specific class by (see Fig. 9): 

(i) negation of other classes (by ANDing negations of all 
first-layer positive clauses of other classes); 

(ii) negation of first-layer negative clauses of the same class;  

(iii) reusing some first-layer negative clauses from other 
classes that match the current clause class; 

(iv) negation of some first-layer negative clauses of other 
classes that correspond to classes different from the current 
clause class. 

For instance, a second-layer positive clause of Class “0” 
shown in Fig. 9 can be defined as: 

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1
𝐿2+ = 

= ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶−1
𝐿1+ ∧ ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1

𝐿1− ∧ 

⋀(
(𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶

𝐿1− ∨ ¬𝑇𝐴𝑖
𝐿2) ∧

(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶
𝐿1− ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿2 )
)

𝑘−1

𝑖=0

. 

In turn, negative clauses of the second layer specify data 
samples that do not belong to a specific class by (see Fig. 10): 

(i) negation of first-layer positive clauses of the same class; 

(ii) negation of some first-layer positive clauses of other 
classes; 

(iii) negation of some first-layer negative clauses from 
other classes that match the current clause class.  

At the same time, first-layer negative clauses of the same 
class will be excluded from negative clauses of the second 
layer. Following these reasonings, a second-layer negative 
clause for Class “0” shown in Fig. 10 can be specified as: 

𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=0..𝐶−1
𝐿2− = ¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=0,𝑗=1..𝐶−1

𝐿1+ ∧ 

⋀ (
(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶

𝐿1+ ∨ ¬𝑇𝐴2𝑘+𝑖
𝐿2 ) ∧

(¬𝐶𝑙𝑎𝑢𝑠𝑒𝐶𝑙𝑎𝑠𝑠=1..9,𝑗=1..𝐶
𝐿1− ∨ ¬𝑇𝐴2𝑘+𝑖

𝐿2 )
)𝑘−1

𝑖=0 . 

Besides, after the first-layer TM has completed training, 
the state of some of its clauses may be suboptimal (i.e. some 
clauses may still be too specific or too broad, resulting in too 
few true predictions or too many false outputs). This can often 
happen if the value of the hyperparameter T is set too small. 
The second-layer TM has demonstrated the ability to detect 
such ‘weak’ clauses and eliminate them from the second-layer 
logical propositions. 

CONCLUSION 

This paper introduces a multi-layer architecture of Tsetlin 
Machines. It puts forward a hierarchical feature learning 
approach with the aim to further boost TM performance. It 
was shown that multi-layer TM can considerably outperform 
the single-layer architecture due to the accumulation and use 
of more information propagating from layer to layer still 
remaining a highly interpretable logic-based AI. For example, 
the second-layer clauses define the certain class via negation 
of first-layer positive clauses of other classes and reusing 
matching negative clauses.  

The hierarchical training approach introduced in the paper 
also allows to reuse an array of Tsetlin Automata (main TM 
computation units) at different layers, thereby saving 
hardware resources and enabling distributed multi-layer 
learning.  

It was also shown that while increasing the number of 
layers further improves training accuracy, it also causes 
overfitting issue similar to that seen in DNNs. 
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Fig. 9.   Visualisation of a second-layer positive clause of Class “0”. The clause defines its class through: (i) negation of first-layer positive clauses of other 

classes; (ii) negation of first-layer negative clauses of Class “0”; (iii) reusing some negative clauses of other classes matching Class “0” samples;  

(iv) negation of some negative clauses of other classes corresponding to classes other than Class “0”.  

– include a first-layer clause; – include a negated first-layer clause; – exclude a first-layer clause and its negated value. 

 
(i) 

(iii) 

 

(iv) 

(ii) All L1 positive clauses of Class “0” are excluded. 



Further research directions could be focused on 
developing more complex multi-layer TM architectures, 
including convolution layers. Besides, deep TM layers may 
benefit from the use of both conjunctive and disjunctive logic 
in the propositional clauses. 
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Fig. 10.   Visualisation of a second-layer negative clause of Class “0”. The clause defines its class through: (i) negation of first-layer positive clauses of Class “0”;  
(ii) negation of some first-layer positive clauses of other classes; (iii) negation of some first-layer negative clauses of other classes matching Class “0” samples.  

(ii) 

(i) 

(iii) 

All L1 negative clauses of Class “0” are excluded. 

 


