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A B S T R A C T

The fast growth of the world population associated with the ever-increasing need for food and the significant
contribution of agriculture to anthropogenic global warming is driving the changes from conventional farming
approaches to innovative and sustainable agriculture ones. One of these approaches is aquaculture which is
founded on the principle of circular economy combining aquaculture and hydroponics in symbiose with aqua-
culture waste serving as nutrients for plant growth. Conventional Aquaponics has evolved to Aquaponics 4.0 with
a fully automated and remote-controlled system for producing foods at an industrial scale. The implementation
of the Internet of Things (IoT) and Artificial Intelligence (AI) could simplify farmers’ tasks with remote opera-
tions while allowing them to achieve automatic and precise control of inputs and outputs as well as to improve
the overall efficiency of the system. This review focuses on the use of these smart technologies to analyze,
monitor, and maintain good water quality and appropriate replenishment in Aquaponics systems. The identified
research gap and future possible contributions in this area are also discussed.

1. Introduction

Producing food for the growing population with the limited available
resources is one of the key global challenges. Aquaponics is an innova-
tive and sustainable agricultural approach that combines fish and soil-
less plant production in a recirculating ecosystemwhere natural bacteria
convert fish waste into plant nutrients (Delaide et al., 2017). The plants
take up the nutrients from the water to grow whilst purifying the water
which returns to the fish tanks. Fig. 1 shows a coupled aquaponic system
with (1) aquatic organisms, (2) bacteria, and (3) plants that benefit from
each other in a closed recirculated water body (Goddek et al., 2019).
This symbiotic water and nutrients recirculating system contributes to
reducing food production inputs such as water, and fertilizer and elim-
inating the use of pesticides. Based on the World Bank, (2022) estima-
tion of 70 % agricultural expansion by 2050, even more resources and
water will be required since agriculture currently uses an average of 70
% of global freshwater with up to 90 % available water consumption in
some regions, such as North Africa and the Middle East zone (El-Beltagi
et al., 2022). Recirculating aquaculture systems were developed for
intensive fish farming where up to 99 % could be recycled and thus less

than 10 % water replacement per day (Lunda et al., 2019). However, as
highlighted in Fig. 1, the water containing waste products of the fish
serve as nutrients for the plant which in combination with the nitrifying
bacteria constitute a biological water filtration unit where toxic mate-
rials such as ammonia, nitrates, and nitrites are stripped off before the
freshly cleansed water is recirculated back into the fish tank (Diver and
Lee, 2010, Suhl et al., 2016, Goddek et al., 2019). Therefore, water plays
a vital role in maintaining the equilibrium between fish life, plant life,
and living microorganisms in an Aquaponics system (Goddek et al.,
2019). Water quality parameters such as temperature, dissolved oxygen,
carbon dioxide, ammonia, nitrate, nitrite, and pH should be constantly
monitored since any accumulation above their critical values will be
detrimental to fish and vegetable growth. Indeed, although the biofilter
system converts toxic ammonia to nitrite and less toxic nitrate it has
been reported that high concentrations of nitrate can also harm fish
(Freitag et al., 2015). An appropriate design and water replenishment
could allow plants to take up most of the nitrates or reduce their con-
centration to maintain the balance of the system.

Industry 4.0 in Aquaponics has been growing at a rapid pace.
Aquaponic industries use smart technology mainly in aquaponic plant

Abbreviations: APS, Aquaponic System(s); IoT, Internet of Things; DO, Dissolved Oxygen; ML, Machine Learning; DL, Deep Learning; PPM, Parts Per Million; pH,
Potential Hydrogen; TAN, Total Ammonia and Nitrogen.
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and vegetable monitoring, fish monitoring, plant nutrient detection, fish
counting, and disease detection, water pump malfunction detection,
aquaponic environment monitoring, plant growth stage classification,
crop harvest prediction, and so on. Industrial level Aquaponics appli-
cations and data processing that mainly focus on intelligent farming,
remote monitoring, and decision support systems collectively termed
Aquaponics 4.0.

In Aquaponics 1.0, farmers used manual tools and domestic methods
for fish, plants, and water management. From that base point, Aqua-
ponics has grown to the innovative Aquaponics 4.0 era.(Abbasi et al.,
2021) IoT and machine learning have been applied to crop disease di-
agnostics management (Abbasi et al., 2023). Studies have been done on
water nutrition monitoring and real-time monitoring of the environ-
mental parameters using IoT and cloud data management.(Isabella
Wibowo et al., 2019) (Manju et al., 2017). Research studies on fish and
plant health predictions, water management, plant growth stage clas-
sification, disease control, and harvest time predictions have been per-
formed, which are discussed in the later sections.

Conventional Aquaponics systems focus on water conservation and
maintain minimal water replenishment or exchange. Nevertheless, a low
rate of water replenishment may result in a high nutrient loss in the
water (Delaide et al., 2017). The literature reveals that most of the
Aquaponics systems have either no daily water replenishment or water
replenishment values ranging from as low as below 10 % (Graber and
Junge, 2009, Rakocy et al., 2004, Suhl et al., 2016, Blanchard et al.,
2020, Shaw et al., 2022) to complete water exchange, i.e., 100 %
replenishment (Nhan et al., 2019). Most of the studies perform water
replenishment to cope with water loss due to evaporation or evapo-
transpiration. Moreover, a very limited number of scientific studies have
been done on the effects of water replenishment on water quality and the
ecosystem of Aquaponics. Similarly, only a few studies focus on the
application of machine learning to analyze and control water quality
and the impacts of water replenishment on fish and plants. This is sur-
prising given the growing interest in the use of technology for intelligent
monitoring of aquaponic systems to achieve automatic and precise
control of nutrients, healthy growth of fish and vegetables, and
improved resource efficiency. For example, intelligent management IoT-
Cloud-based platforms and smart sensing systems for monitoring and

controlling all operations, diagnostics of fish and crop health, and data
analytics framework or remote assistance of Aquaponics have been
developed (Karimanzira and Rauschenbach, 2019, Alselek et al., 2022,
Gayam et al., 2022, Taha et al., 2022b). These systems include the use of
real-time monitoring wireless sensors-based devices by InnovaSEA
company for continued monitoring of dissolved oxygen (DO), salinity,
chlorophyll, blue-green algae, and turbidity and an inter-digital FR4-
based capacitive sensor with LoRa and WiFi communications for nitrate
concentration monitor (Alahi et al., 2018). Some systems present an IoT
system architecture for Aquaponics monitoring with relatively high
number of metrics including pH, water temperature, DO, Oxidation-
Reduction Potential (ORP), Electrical Conductivity (EC), Total Dis-
solved Solids (TDS, Total Suspended Solids (TSS), nitrite, nitrate and
ammonium) (Alselek et al., 2022, Khaoula et al. 2021). Alselek et al.,
(2022) claimed that their developed low-cost 5G-enabled IoT system for
fully monitoring fish farms performance has wide-area-enabled com-
munications (>1 km2) using NB-IoT, LTE-M, and LoRa/ LoRaWAN) with
up to 11 metrics for real-time monitoring with low-power consumption,
and thus a more sustainable system. Pu’Ad et al., (2020) proposed an
IoT-based water quality monitoring system for Aquaponics using only
pH as an indicator of the water quality which appears as a limit to this
great work aiming at replacing human on-site daily routine works. Yanes
et al. (2020) did a comprehensive literature study on various sensors
used for sensing different water parameters in Aquaponics. This
contribution helps to understand the IoT approaches used on Aqua-
ponics in a commercial scale of production. However, the study mainly
focuses on the sensing parameters and does not cover other smart
technologies such as artificial intelligence applications, machine vision,
or big data. In this paper “smart” and intelligent are used interchange-
ably, which means the use of machine learning, deep learning, IoT, big
data analysis, decision-making systems, computer/machine vision, and
remote control applications using mobile and web applications. The
paper aims to review the literature on smart technologies used to
monitor water quality and performance growth of fish and plants in an
Aquaponics system and highlights research gaps and future directions.
After the introductory part, the methodology used to collect information
is presented followed by Section 3 on different types of Aquaponics.
Factors and parameters affecting water quality are discussed in Section
4. Section 5 gives an overview of smart approaches including IoT, ma-
chine learning, deep learning, and machine vision used in Aquaponics
focusing on water quality. The research gap identified through this re-
view is presented in section 6 followed by the prospects in the area.

2. Research methodology

The review process has been systematically done for this article.
Articles from 2013 to 2023 were selected for initial scrutiny. IEEE, Web
of Science, and Google Scholar were chosen to be the main databases to
be searched for articles. 374 articles were considered before applying
the exclusion criteria and 53 articles were shortlisted. Articles written in
non-English language have been avoided from shortlisting. Keywords to
be used were confirmed to be “Smart Aquaponics” “Aquaponics 4.0” and
“Aquaponics Water Quality”. Then abstracts of the articles identified
were analyzed to shortlist the most suitable articles for this review.

Papers have been segregated into categories such as AI in Aqua-
ponics, Automation and remote sensing in Aquaponics, and Water
Quality Management in Aquaponics. Overall, 56 articles were short-
listed, and data such as Algorithms used, tools and technology applied,
materials and methods, and research findings were extracted. The article
has been concluded with major research findings with a literature gap
identified and future enhancements with suggestions and recommen-
dations. Fig. 2 shows the process flow chart of the research
methodology.

The main motivation of this article is to answer the following ques-
tion. What are the smart approaches used in Aquaponics 4.0 with a focus
on water quality? To address these questions, 56 articles were focused

Fig. 1. Principle of coupled Aquaponics system with fish, bacteria, and plants
in a fully closed water recirculation, adapted from Goddek et al., (2019). Pic-
tures of the plants and fish are from the Aquaponics University of Wolver-
hampton system. (Color image preferred).

P. Chandramenon et al.
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and categorized into the following:

• Factors affecting water quality and the effect of water recirculation
and water replenishment in Aquaponics

• Aquaponics systems with different water replenishment rates with
water quality assessment approaches

• Aquaponics and IoT-monitoring & control system
• Machine Vision in Aquaponics
• Artificial Intelligence in Aquaponics

3. Types of Aquaponics systems

Aquaponics systems can be classified mainly into couple and
decoupled systems based on the engineering design (Table 1). A coupled
Aquaponics system is a conventional Aquaponics where the aquacul-
tural units and hydroponics unit are arranged in a closed loop. The water
is recirculated from the fish tank to the hydronic unit directly and, then
back to the fish tank. Decoupled systems are arranged in separate loops
of fish tanks and hydroponics and water is recirculated to the respective
units (Kloas et al., 2016). The system can also be classified based on the
location and scale of production which includes indoor and outdoor
Aquaponics systems and small-scale home/hobby-based systems inten-
ded for self-sufficient food production for local consumption when

Fig. 2. Review Process Flowchart.

Table 1
Comparison between coupled and decoupled Aquaponics systems.

Type Features Benefits Demerits

Coupled Mainly used as mini/
hobby/domestic/
backyard/
demonstrative/ small
and semi-commercial
level

Easy to
implement,
maintain, and
manage

pH, temperature, and
nutrient
concentration are
compromised

May have short-term
nutrient peaks and
variations

Require less
infrastructure

Less profitable

Production depends on
feed demand, no of
plants and fish

Simple
architecture

Lower commercial
profile

Gravity influenced
water flow
Single loop systems/
scaling from small-
medium-large

Decoupled Mainly used as semi/
full commercial level

More profitable Complex design

Multiloop systems Improved
nutrient stability

Implementation
needs expertise

Detached units Improved pest
management

Hard system
maintenance

P. Chandramenon et al.
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compared to industrial/commercial Aquaponics (Wu et al., 2018). An
indoor system is set up inside a building making sure the necessary
environmental conditions including artificial lighting are available for
the system, which becomes popular in urban life (Tomlinson, 2015).
Outdoor systems use controlled environments like greenhouses to pro-
vide suitable growth conditions for fish and plants. In this case, the
system can be made even more sustainable by using solar energy to
power the entire system (Nagayo et al., 2017, Khaoula et al.,2021).

The closed-loop principle can be applied for domestic purposes or
demonstration. Coupled systems with the closed loop principle give
more importance to the biological–chemical components of the process
water. The uneaten feed particles in the fish waste make the water more
nutrient-rich along with the digestive bacteria. Coupled systems yield
better results than stand-alone Aquaponics systems (Goddek et al.,
2019). However, the fish wastewater index increases with the increase
of fish biomass which results in the accumulation of more ammonia and
nitrate as time progresses, thereby making the coupled system less
adequate for large-scale production. As the need for more commercially
viable Aquaponics is growing with the precision farming concepts, the
application of innovative technologies such as the Internet of Things
(IoT) and artificial intelligence (e.g. machine learning, deep learning,
and machine vision) and big data analytics become inevitable which
converts the conventional Aquaponics into Aquaponics 4.0.

4. Aquaponics water

Water can be seen as the blood of any aquaponic system, and its
quality unquestionably affects the ecological balance and the produc-
tivity of a recirculating Aquaponics system (Ngo Thuy Diem et al., 2017,
Delaide et al., 2017). Potential factors affecting the water quality and
key water quality parameters of an Aquaponics system are discussed in
the following sections.

4.1. Factors affecting Aquaponics water quality

Four main baseline factors related to water that influence Aqua-
ponics water quality are water sources, recirculation rate, replenishment
rate, and water addition (Figs. 3 and 4). The chemical, physical, and
biological composition of water depends on its source (e.g. sea, well, and
municipal tap water) which in turn affects the AP systems since nutrients
needs for fish and plant production should be met and balanced and
water play a big role in maintaining the symbiotic relationship between
them. It has been suggested that rainwater or water treated for chemical
removal is the most preferred source of water for Aquaponics because it
offers the producer a higher degree of flexibility to adjust the nutrient
chemistry of the system as appropriate. Municipal-supplied water re-
sources may contain chemicals such as chlorine and chloramine in
concentrations that could be harmful to the fish, plants, or

microorganisms within the aquaponic system (Goddek et al., 2019).
However, sea water has been considered for growing halophytes in
marine aquaponic systems (Boxman et al., 2017).

Water addition or topping up of water is done to replace the water
lost by evapotranspiration or evaporation. The effect of recirculation
water rate to continuously control the flow of fish water between plant
grow bed and fish tank and that of water replenishment/water exchange
on water quality are discussed in section 4.2.

4.1.1. Water quality and key definitions
The water quality of Aquaponics determines the overall productivity

of fish and vegetables. Key parameters of water quality are water tem-
perature, dissolved oxygen, water pH, water hardness, and total nitro-
gen (Fig. 4). Total nitrogen includes ammonia, nitrite, and nitrate in the
water (Somerville, 2014). The tolerable levels of these parameters
depend on the fish type, water type, type of Aquaponics system, and
environmental conditions. Table 2 shows the acceptable and safe range
of essential water quality parameters (Somerville, 2014, Goddek et al.,

Fig. 3. Factors influencing water quality. (1) Influential factors affecting Aquaponics water quality (2) different water quality parameters as drawn based on the
information from Hu et al., (2015), and Goddek et al., (0.2019).

Fig. 4. Typical mechanism by which water quality parameters may cause a
decline in water quality.

P. Chandramenon et al.
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2019) which must be kept to maintain the optimal growth of both the
fish and plants (Gnanasagar et al., 2020).

Water pH: pH is the level of hydrogen ion concentration present in a
solution. Water pH can influence the availability of plant nutrients in the
water and the development of nitrates and nitrites in water (Tyson et al.,
2011). It’s necessary to keep the water pH levels steady and any varia-
tions beyond the desired range are detrimental to the fish life. A low pH
reading of water shows that it is more acidic and elevated pH makes the
water more alkaline. High levels of pH eventually generate other toxic
chemicals in fish water.

Dissolved Oxygen: Dissolved Oxygen is one of the most essential pa-
rameters for both fish growth and plant nutrients present in water.
Dissolved oxygen plays a vital role in microorganisms’ existence which
turns the fish waste into useful plant nutrients (Sallenave, 2016). Dis-
solved oxygen supports the fish metabolism and low dissolved oxygen
levels upset fish digestion and feeding patterns which eventually leads to
water quality decline (Ren et al., 2018).

Temperature:Water temperature directly affects the growth pace and
efficacy of both fish and vegetables. The tolerance level of water tem-
perature varies with the types of fish such as cold-water fish and warm-
water fish. Fish metabolism considerably drops as water temperature
falls (Sallenave, 2016, Tyson et al., 2011) causing a deterioration in
water quality through unfed food particles and fish extretes.

Ammonia: Ammonia in water is mainly produced through the fish
excretes. Ammonia is present in the water primarily in two forms, NH3
which is highly dangerous to fish life, and NH4. The variation of fish
water ammonia content is closely connected with the water tempera-
ture, dissolved oxygen, and the water pH (Goddek et al., 2019), Tyson
et al., 2011). The level of ammonia needs to be monitored regularly as
low nitrification can accumulate toxic ammonia in water which worsens
the water quality.

Water hardness & Water Salinity: Water hardness indicates positively
charged ions, such as calcium and magnesium. It is expressed as in ppm
calcium carbonate. Hardness value varies from 0–75 ppm for soft water
to as high as above 300 ppm for very hard water (Sallenave, 2016). Good
water hardness values are between 60–140 mg/liter as dissolved cal-
cium in the water contributes to osmoregulation and stress relief in fish.
Both calcium and magnesium aid the fish’s metabolic functioning and
lower hardness may cause fish stress (Bhatnagar and Devi, 2013, Yanes
et al., 2020). Water salinity is the measurement of salt in water. It is an
essential factor for fish health and fish growth (Nagayo et al., 2017,
Yanes et al., 2020). Thomas et al., (2021) showed that optimal water
salinity can contribute to better plant productivity. Variations in salinity
may affect other key water quality parameters which cause water
quality decline (Fig. 4). These water parameters can be monitored and
controlled using different smart approaches and devices reported in
Table 3 which are mainly, IoT, machine learning, machine vision, or a
combination of IoT and any of the AI methods.

4.2. Effect of water recirculation and replenishment

Water recirculation makes the water safer for the fish as toxic
chemicals such as Total Nitrogen will be absorbed by the plants. How-
ever, fish waste and uneaten fish feeds gradually change the water
chemistry, and it can become increasingly acidic with time (Mori et al.,

2021). In the conventional Aquaponics approach, farmers use chemicals
such as calcium carbonate or potassium bicarbonate daily to achieve
water stability (Sallenave, 2016). Different recirculating or water
replenishment rates have been reported in the literature (Table 4). Ngo
Thuy Diem et al., (2017) studied the effect of different water recircu-
lation rates in a system where recirculation rates of 50 %, 200 %, and
400 % were tested. The study found that there was a huge mortality of
fishes at 50 % of the recirculation rate and the survival was excellent
when recirculated 400 % water. Ebeling and Timmons (2012) specified
in their study that a water exchange rate between 5 % and 20 % is
required for a recirculating aquaculture system. Rakocy et al. (2012)
suggested that an early circulating aquaponic system would consume
0.5 % to 5 % of water daily. Delaide et al., 2017) reviewed the perfor-
mance of fish and plant production including the mass balances for
nutrients and water usage in a small-scale Aquaponics system. They
found that 3.6 % of the daily water exchange caused a massive nutrient
loss whereas Gnanasagar et al., (2020) reported that 5 to 10 % replen-
ishment was sufficient for a recirculating Aquaponics system. Maucieri
et al., (2018b) studied the water flow and daily water consumption in an
Aquaponics system and identified that closed RAS has a daily water
consumption of less than 1 %. This could be water loss through evapo-
ration, plant evapotranspiration, splash during feeding, or sludge
removal.

Diatin et al. (2021) analyzed the production performances of catfish
farming with a water exchange system Aquaponics and biofloc tech-
nology and found that water exchange would benefit fish farming by
removing the accumulated waste and toxic chemicals. Also, 30 % to 100
% water exchange was implemented in their aquaculture study. Huang
et al. (2021) evaluated the water quality and growth in farming when an
experimental farming group was compared with controlled farming
which uses intelligent methods. The study shows that water pollution
caused massive fish mortality and manual nitrification led to a sudden
change in Nitrate and fish death. The optimum feeding rate was
dependent on the water exchange rate of the Aquaponics system. Higher
feeding rate and lower water exchange rate caused a rapid increase of
Nitrite and toxic chemicals in the water (Rakocy et al., 2016). In

Table 2
The acceptable and safe ranges of essential water quality parameters

Parameter Acceptable range

pH 6.4–7.4
Dissolved Oxygen > 5
Temperature 22–29 ◦C for warm water fish; <18 ◦C for cold water fish
Total Nitrogen 0.25–1.0 mg/litre
Water Hardness 60–140 mg/litre

adapted from Somerville (2014) and Goddek et al. (2019).

Table 3
Water quality parameters with control actions and smart technologies
approaches.

Main
Parameters

Measurement &
Control

Smart Approaches References

Dissolved
oxygen

Measured using
manual probes and
sensors. Maintained
using aeration and
improved water
movements

Dissolved oxygen
remote monitoring,
measurement, and
analysis using IoT.
DO prediction using
machine learning.

Ren et al., 2018

Temperature Measured using
manual probes.
Water heaters are
used to regulate
temperature.

Automated
temperature
measurement and
control using IoT.
Temperature
prediction using
machine learning

Taufiqurrahman
et al., 2020

Total
Ammonia
Nitrogen

Measured using
ammonium strips,
manual probes, and
IoT sensors. Avoid
overfeeding and
increase the
nitrification process
to control water
ammonia

Remote monitoring
using IoT and
sensors. Machine
vision approach for
uneaten fish food
and dead fish
detection which may
lead to ammonia
spike in water.

Yanes et al., 2020

Water pH Measured using
manual probes and
IoT sensors.
Chemicals and pH
buffers are used to
regulate pH levels

IoT and sensors for
pH monitoring.PH
prediction using
machine learning

Mori et al., 2021

P. Chandramenon et al.
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conventional Aquaponics systems, daily water exchange is not manda-
tory. However, 5 to 10 % of daily water replenishments are done if
required as nitrite levels were reported to increase linearly and quickly
in the water of an Aquaponics system with no water exchange (Hu et al.,
2015). Another study revealed that semi-closed and closed Aquaponics
systems may have different water exchange rates whereas aquaculture
systems have higher water exchange rates than Aquaponics systems. The
water exchange rate may also depend on the fish type (Shete et al.,
2013). Bich et al., (2020) analyzed the data and results produced when
an Aquaponics system was compared with a normal aquaculture system
to understand the economic viability of farming snakehead fish. They
had a daily water exchange of 20 % and found that water quality was
improved with a controllable level of NH3 when compared with the
normal system. Love et al. (2015) replaced 10% of the water daily to top
up the water loss due to evaporation and evapotranspiration when

studying the use of water in a small Aquaponics system in Baltimore,
United States. They used chemical combinations to stabilize the opti-
mum water quality.

5. Smart approaches in Aquaponics 4.0

The productivity and yield of an Aquaponics system can be enhanced
using technologies currently applied to Industry 4.0, such as the Internet
of Things (IoT), robotics, big data analytics, and artificial intelligence
(Abbasi et al., 2021a). As depicted by Fig. 5, different smart technologies
can be used in combination with commercial or home Aquaponics
farming.

IoT and robotics can help Aquaponics farmers with better moni-
toring, remote control, and full automation of the system (Eichhorn
et al., 2019, Menon, 2020). Artificial intelligence explores the wider
possibilities of prediction and classification through machine learning
and deep learning approaches (Dhal et al., 2022, Liu et al., 2022). Cloud
storage is used to store and retrieve commercial and personal Aqua-
ponics data to be processed (Lee and Wang, 2020). Mobile and web
applications are used to monitor and analyse the data and it helps
farmers to operate on the system remotely.

5.1. Aquaponics and IoT-monitoring & control system

Khaoula et al. (2021) proposed an IoT-based monitoring system to
control Aquaponics using sensors and solar power. The Aquaponics
system was monitored for its water quality and other environmental
parameters using sensors powered by solar energy. Zhang et al., (2021)
had a study investigating the possibilities of implementing a sensor-
based monitoring system focusing on water and air temperatures and
dissolved oxygen in a greenhouse environment. The system contains an
information perception layer, an information transmission layer, and a
system architecture. Reyes-Yanes et al. (2020) used pH, electro-
conductivity, air humidity, and water temperature sensors along with
Raspberry Pi to monitor an Aquaponics system whereas Dhal et al.,
(2022) used machine learning and IoT to control the nutrient supply in a
commercial Aquaponics system. Machine learning was then used to
predict the important and optimal concentration of nutrients,

Table 4
Aquaponics systems with different water replenishment rates. The manual
method refers to the standard approach of data collection using manual probes
and chemical strips and data analysis using conventional statistical approaches.

Purpose of the
study

Water
Replenishment

Water
quality
monitoring

Smart
Technology

Reference

Tomato
production
evaluation

6.3 % Manual
method

No Suhl et al.,
2016

Tilapia and
vegetable
production

0.26 to 0.46 % Manual
method

No Rakocy
et al., 2004

Effect of pH on
cucumber
growth

5 % Manual
method

No Blanchard
et al., 2020

Productivity
enhancement
of Snakehead

20 % Manual
method

No Bich et al.,
2020

Catfish
production
performance

20 % Manual
method

No Diatin et al.,
2021

Water
circulation
optimization

5–10 % Manual
method

No Shete et al.,
2013

Plant species
effect
calculation

20 % Manual
method

No Hu et al.,
2015

Effect of
stocking
densities on
growth
performance

100 % Manual
method

No Nhan et al.,
2019

Nutrient
recycling from
fish water

9 % Manual
method

No Graber and
Junge, 2009

Protein sources
evaluation in
fish feed

5 % Manual
method

No Shaw et al.,
2022

Aquaponics
water
management
and nutrient
removal

1 % Manual
method

No Maucieri
et al., 2018

Control Action
in Aquaponics
System

5 % to 10 % Manual
method

No Gnanasagar
et al., 2020

Water quality
and plant
performance
in snakehead-
mint
Aquaponics

0 % Manual
method

No T Nguyen
et al., 2023

Aquaponics
water quality
comparison
with separate
RAS

0 % Manual
methods

No Atique et al.,
2022

Fig. 5. Smart approaches to Aquaponics 4.0.(1) Internet of Things (2) Com-
puter vision (3) Artificial intelligence (4) Software Applications (5) Big data (6)
Robotics (7) Aquaponics system. (Color image preferred).
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principally, ammonium and calcium where the concentration must be
maintained to a certain level in the aquaponic solution to sustain the
healthy growth of tilapia fish and lettuce plants in a coupled system. In
that study, Actuators were used to supply the optimum nutrients.
Sathyan et al. (2022) used an AVR microcontroller to analyze the water
quality parameters and automated the Aquaponics using IoT. Menon
(2020) compared the performance of an IoT-enabled Aquaponics system
coupled with mobile applications with a normal Aquaponics system to
see the enhancement in the productivity of fish and plants. The study
was done in a controlled environment and the farmer was able to
monitor and control the entire operations remotely. Karimanzira and
Rauschenbach, (2019) investigated how IoT-enabled predictive ana-
lytics can be used for efficient utilization of information in Aquaponics
management. They mainly focused on remote monitoring, predictive
remote maintenance, and economical optimization of plant productiv-
ity. Lee and Wang (2020) developed a cloud-enabled IoT monitoring
system to analyze the fish metabolism. They used regression analysis to
track the fish activity and studied the fish’s locomotion and resting state
using a camera.

Khaoula et al., (2021) developed a solar-powered IoT enabled
Aquaponics to control and monitor water quality and environmental
parameters using actuators and artificial intelligence to improve its
sustainability and productivity. Many sensors including water level,
water temperature, electrical conductivity, CO2, and total ammonia -
nitrogen were used. They also suggested that a combination of IoT-based
technologies and artificial intelligence (AI) algorithms is requir-
ed to boost the productivity of Aquaponics. Ezzahoui et al. (2021)
reviewed IoT-enabled operations in Aquaponics systems categorizing
their architecture, protocols, technologies applied, advantages, and
limitations. The study also compares hydroponic systems with an
Aquaponics system. They proposed a solution based on IoT to control
and monitor the water quality using sensors. Abbasi et al., (2021b)
developed an ontology model to address the challenges in heterogenic
data of Aquaponics using IoT and artificial intelligence. This ontology
model provides a sharing platform through which Aquaponics 4.0′s
knowledge base could be used to resolve inter-operation issues. Aqua-
ponics operations are automated using Industrial IoT devices to monitor
and control the water quality parameters (Odema et al., 2018). They
used Modbus TCP communication protocol for the system. Riansyah
et al. (2020) used sensors and actuators to automate fish feeding in an
Aquaponics system. The study also focused on monitoring the pH value
in real-time. Tolentino et al., (2017) developed an Android mobile
application that helps to monitor and control urban Aquaponics
remotely. The app analyses the water quality parameters and environ-
mental parameters, and actuators were used to feed the fish. Cloud space
was used to store data. Wongkiew et al., (2021) considered the nitrogen

recovery via Aquaponics systems that used IoT for smart control oper-
ations. Dynamic nitrogen modeling was developed to predict and reduce
dangerous nitrous oxide emissions. Connected Aquaponics can be
established using open standard wireless sensor network protocols like
6LowWPAN to collect sensor information from nodes in a high band-
width and low latency rate (Hari Kumar et al., 2016). Fig. 6 summarizes
the different reasons for using the Internet of Things in Aquaponics
which are remote operation and operation control, information acqui-
sition, cloud data management, and parameters monitoring.

5.2. Artificial intelligence in Aquaponics

Artificial intelligence (AI) and machine learning have been used
widely in agricultural applications for various purposes (Table 5). AI can
allow farmers to predict the values of the parameters and classify crops
or plants. AI can be used in selecting suitable fish or vegetables to be
farmed in the Aquaponics system in specified conditions. It is also
applied in water quality prediction of various critical parameters of
Aquaponics like dissolved oxygen, pH, salinity, water hardness, dis-
solved solids, and total ammonia and nitrogen (TAN). Machine learning
and deep learning techniques have also been applied to detect fish and
plant diseases and optimization of fish feed delivery and fish feed to fish
biomass conversion (Debroy and Seban, 2022).

Ghandar et al., (2021) used a digital twin system and IoT to predict
the production of Aquaponics with a decision support system (DSS). The
decision support system applied machine learning algorithms for pre-
dictive data analytics of the sensor data. Lauguico et al.(2020) applied
machine learning algorithms for the classification of lettuce life stages
grown in an Aquaponics system. Stochastic gradient descent and other
approaches in machine learning have been used. The plant texture was
analyzed using the machine vision technique. Machine learning algo-
rithms have been applied in predicting fish biomass (Debroy and Seban,
2022). Various approaches like artificial neural networks and hybrid
fuzzy logic may be applied to identify the biomass of a fish, which helps
the farmers avoid any market supply imbalances. Taha et al., (2022a)
diagnosed the nutrient deficiencies of plants grown in an Aquaponics
system using images and deep convolutional neural network.

Fertigation can be made adaptive using hybrid vision and machine
learning (Concepcion et al., 2021) and a controlled supply of nutrients
can be obtained using IoT and fuzzy logic techniques. Decision tree
regression may be used for predicting the water temperature in an
Aquaponics system (Taufiqurrahman et al., 2020). Machine learning
algorithms are applied to forecast and Aquaponics ecosystems. A com-
bination of image segmentation, deep learning, and regression analysis
has been used to estimate the size of the crops as they grow. This was
followed by modeling the relationship between crop size and fresh

Fig. 6. IoT approaches in Aquaponics, based on the information from (Dhal et al., 2022, Karimanzira et al., 2019, Reyes-Yanes et al., 2021, Ruan et al., 2019) (Color
image preferred).
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weight (Reyes-Yanes et al., 2020) since these are key performance
metrics. The authors were able to monitor the growth rate and estimate
the fresh weight and crop size of a little gem romaine lettuce with an
overall accuracy of 81 % and 92 % respectively.

Machine learning algorithms have been applied to predict the real-
time nitrogen concentration in aquaponic water, which is crucial for
fish and plant health. Moving-horizon algorithm-based adaptive
filtering was used to predict the nitrogen concentration in a study by Li
et al. (2021). Machine learning and optimization algorithms have been
used to estimate the biophysical signature of an aquaponic lettuce by
Concepcion et al. (2022). They used an artificial bee colony optimization
algorithm for the estimation. Water physical sensors, regression-based
machine learning algorithms, and genetic algorithms were used for
predicting the nutrients in an Aquaponics system in the study by Con-
cepcion et al. (2021b). Deep convolutional neural networks and ma-
chine vision can be applied to diagnose plant nutrient deficiency in
lettuce grown in an Aquaponics system. Image classification using ma-
chine learning algorithms is used to detect the nutrient status in this
approach (Farag Taha et al., 2022). Concepcion et al. (2020) measured
the canopy area of an aquaponic-grown lettuce using a statistical su-
pervised learning technique and texture analysis. The study used ma-
chine learning models for the area measurement. Bracino et al., (2021)
studied how to determine the optimal biofilter size for an aquaponic
pond using optimization algorithms. The study also focused on ammonia
prediction using machine learning algorithms. Concepcion et al. (2020c)
proposed an approach for estimating the biophysical signature of lettuce
grown in an Aquaponics system using deep learning algorithms. The
study also focused on the variations of lightness of the environment.
Using ontology models, it was possible to design Aquaponics systems
that automatically determine the characteristics based on the crops
selected (Abbasi et al., 2021a). This approach uses machine learning

models for decision support systems and knowledge modeling. SLau-
guico et al. (2020) proposed an approach to predict the attributes and
features of lettuce grown in an Aquaponics system using machine vision
and deep learning algorithms. In summary machine learning and deep
learning approaches found many applications in Aquaponics ranging
from classification, growth prediction, decision support, and estimation
of data to disease early detection (Table 5).

5.3. Machine vision in Aquaponics

Machine vision is a system that retrieves useful data about a visual
from its two-dimensional projections. Machine vision uses machine
learning and deep learning algorithms to process the acquired data and
produce output information and the core principle is based on image
capture and analysis. Machine vision techniques can be used for fish and
plant growth surveillance which would help farmers with timely alerts,
suggestions, and decision-making processes. Fig. 7 explains various
applications of machine vision in Aquaponics and aquaculture.

In Aquaponics and aquaculture, machine vision is used in plant
growth stage classification, fish and plant disease detection, fish biomass
prediction, fish counting, fish behavioral monitoring, and fish length
estimations (Li & Du, 2021). Aquaponic pond water macronutrient
prediction can be done using machine vision (Concepcion et al., 2021a).
Water quality analysis is always pivotal in precision Aquaponics because
it is directly correlated to the quality of fish and plant growth. Barosa et
al (2019) investigated how plant leaves can be monitored for their
health using machine vision. They used IoT and mobile applications to
communicate with the farmer if any disease was identified on the leaf.
Liu et al. (2022) used machine vision to demonstrate that fish locomo-
tion is higher in Aquaponics compared to other aquaculture systems. Ii
et al. (2021) implemented adaptive fertigation and nutrient control for
Aquaponics lettuce using machine vision. The fish population was
counted automatically by Zhang et al., (2020) using machine vision and
a hybrid neural network. Lee et al. (2013) proposed a vision-based
automated vaccine injection method for flatfish. A machine vision-
based fish length estimation and species identification are possible
(White et al., 2006).

6. Discussion

6.1. Overview

After the articles have been closely analyzed, it is found that sensors,
IoT enabled solutions are used mainly for remote monitoring and control
of the Aquaponics systems whereas AI plays a vital role in Aquaponics
4.0 by providing solutions to the complex problems, enhancing the
productivity of the system. Table 6 gives an idea about the common
approaches and the nature of the proposed solutions. Indeed, web ap-
plications and mobile applications have been developed and used to
monitor water quality, control, and automate the AP system. AP data
have been stored and processed using cloud storage and wireless sensor
networks have been created among different sensors used in IoT appli-
cations for data transfer. Most of the articles reviewed focused on these
IoT-based solutions.

More complex Aquaponics problems have been proposed to be dealt
with by machine learning, deep learning along machine vision. Most of
the studies focussed on parameters prediction using machine learning
and the most studied parameter was the prediction of pH. This is
probably because water pH determines plant nutrient availability and
the nitrification rate (Yanes et al 2020), thus the growth rate and health
of both fish and plants. Moreover, Aquaponics systems are very sensitive
to changes in the water pH, and variation in pH as low as 0.3 in about 21
h can significantly affect the health of the fish (Somerville, 2014.). Water
pH is easily measured and data availability to validate different models
could play a role. Solutions to perplexing problems such as fish and plant
classification, disease detection, fish locomotion detection, biomass

Table 5
Machine learning and deep learning approaches in Aquaponics are used for
classification, prediction, decision support, and estimation of data.

Algorithm/Approach Purpose Parameter(s)
focused

Paper & year

Classical machine
learning (ML)

Prediction water pH Mori et al., 2021

Machine learning Classification Leaf Disease
Detection

Yang et al., 2021

Fuzzy logic, Genetic
Algorithm

Prediction Dissolved
oxygen

Ren et al., 2018

Classical machine
learning-Support
vector machines,
regression

Prediction Seed quality Mendigoria
et al., 2021

Classical machine
learning

Classification Lettuce growth Sabino et al.,
2020

Deep learning Estimation Leaf water stress Concepcion
et al., 2020b

Recurrent neural
network (RNN)

Prediction Sensor drift fault Shaif et al., 2021

Machine learning,
digital twin

Decision
support

Nutrient
exchange

Ghandar et al.,
2021

Machine learning,
Genetic algorithm

Prediction Water nitrate Alajas et al.,
2021

Artificial neural
network, Fuzzy logic

Prediction Fish biomass Debroy and
Seban, 2022

Genetic Algorithm Prediction Organic carbon
and Hydrogen

Concepcion
et al., 2020a

Fuzzy logic Prediction Lettuce growth Tobias et al.,
2020

Classical machine
learning

Prediction Fish health and
activity

Lee and Wang,
2020

Classical machine
learning, Regression

Prediction Tilapia and
Lettuce
production

Estrada-Perez
et al., 2018

Recurrent neural
network model, ML
algorithms

Prediction Aquaponics
system behavior

Cardenas-
Cartagena et al.,
2022
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calculation, length estimation, and leaf health monitoring have been
made easy with the help of machine learning, deep learning, and ma-
chine vision.

Out of the total short-listed articles,26 % of the articles focused on
remote monitoring and control using IoT in Aquaponics whereas 23 % of
the articles discussed parameter or feature prediction. 21 % of the ar-
ticles studied feature detection and classification while 19 % of the ar-
ticles researched on water quality monitoring using smart technologies.
6 % of the total papers looked at smart approaches in water recirculation
and 3 % discussed water replenishment in Aquaponics. Remote opera-
tions have been widely discussed followed by the classification and
prediction problems while smart innovations. Machine learning-enabled
solutions for Aquaponic water management issues have been less
explored. The trend is shown in Fig. 8.

6.2. Current limitation and future work

It is evident that whilst in-depth research has happened to specific
Aquaponics water parameters like pH, there are still possibilities for
better exploration of more parameters that could be pivotal in Aqua-
ponics water chemistry. Research studies that applied IoT, cloud man-
agement, and wireless sensor networks mainly focused on general
Aquaponics system automation and control while more sensor-based
applications involving machine learning would provide an advanced
research prospect. Studies based on the combination of blockchain
technologies with IoT, and cyber-physical systems were not found which
opens a wider chance of research especially on commercial Aquaponics.

Most importantly, research studies concerning the Aquaponics water
quality have not been explored much to its potential depth. There are
studies on water recirculation and water quality monitoring using IoT,
but the prospects of water replenishment and its aftereffects have not
been greatly identified. Conventional Aquaponics conserve water
without much replenishment. However enhanced study on possible
benefits of water replenishment and calculated water addition to the
system and impacts of water chemistry when freshwater addition is not
investigated thoroughly.

7. Conclusion

Research studies on Aquaponics are attracting research scholars and

Fig. 7. A schematic diagram showing various applications using machine vision in Aquaponics 4.0. The outer layer of the diagram shows the general purposes of the
vision-based approach. (Color image preferred).

Table 6
Smart approaches in Aquaponics 4.0 with their main purposes.

Approach Main Purpose

Machine learning and deep learning,
Machine vision

Water parameter Prediction, Fish and Plant
Feature Detection, Fish and Plant
classification

IoT, cloud management, Wireless
sensor network, web applications

APs system Remote monitoring and control
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Computers and Electronics in Agriculture 225 (2024) 109256

10

industrial practitioners worldwide. The use of smart technologies and
their impacts in Aquaponics with a focus on water quality aspects has
been reviewed and discussed. The paper gives the idea of the current
research on Aquaponics 4.0. The main highlights of this study include
the following:

• Highlights of various studies regarding Aquaponics water quality
and how the quality parameters relate to water recirculation and
water replenishment where water replenishment was given a special
focus. Effective research towards smart approaches that implement
controlled water replenishment would unquestionably improve fish
and plant productivity.

• Evidence of the impact of water quality parameters on aquaponic fish
and plants’ health and these parameters could be monitored and
controlled using smart approaches.

• This review emphasizes various Aquaponics challenges that are
addressed with different artificial intelligence and IoT-based solu-
tions. This information gives insight into which technology could be
best suited to a specific Aquaponics problem, though trends towards
a combination of technologies were apparent.

Smart applications are widely researched in fields such as parameter
prediction, water quality monitoring, remote monitoring and control,
and feature detection and classification in Aquaponics. Important as-
pects identified as the literature gap, which could be given more
attention in the future are outlined as follows. (1) Less focus is given to
water replenishment and water recirculation using innovation (2)Very
few studies discuss the possibilities of AI and Machine Learning in
Aquaponics water management (3) Machine Vision, Machine Learning,
and Deep Learning are mostly used in parameter prediction while IoT,
Wireless sensor applications, cloud data storage are used mostly in
remote monitoring and control applications(4) Lack of research in the
use of AI in plant and fish productivity and water quality optimization.
These research gaps identified will be useful for aquaponic researchers
and experts to work towards better research and implementation of
smart technology in Aquaponics water and other areas.
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