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ABSTRACT In the rapidly developing field of Human-Robot Interaction (HRI), simulating human emotional
states poses significant challenges due to the inherent complexity and unpredictability of human emotions.
Addressing the limitations in artificial emotion simulation, such as fuzzy theory, memory mechanism, and
etc., we explore the genetic canvas that portrays emotions as an interplay of myriad complex expressions.
By simulating emotional states using Genetic Hybridization Technology (GHT) in the Emotional State Tran-
sition (EST) model, this study investigates the role of genetics in artificial emotion simulation, outlines the
creation of EST morphological genes, and validates their consistency. The results indicate that the Fréchet
distance for EST curves ranges between 0.072 and 0.239, suggesting a high level of consistency between
the experimentally generated EST curves and the newly generated EST morphological genes. This finding
demonstrates the effectiveness of our proposed method and supports its future use in experimental design
under various conditions. Additionally, we identified instances of gene mutations that occurred during the
gene hybridization process, as highlighted in the results for EST curve (h). Despite this variation, the Fréchet
distance remains within a reasonable range, further validating the reliability of our methodology. This study
establishes a precedent for the methodology of emotional simulation, providing new research pathways for
enriching HRI, through substantive exploration of the relationship between Artificial emotional intelligence
(AEI) and GHT.

INDEX TERMS Emotional state transition model, genetic hybridization technology, human-robot interac-
tion, artificial emotional intelligence.

I. INTRODUCTION
In the rapidly advancing field of robotics, the emula-

but also to exhibit and interpret emotional responses has
seen significant interest [2]. This paper presents an innova-

tion of human-like emotions appears as one of the most
intriguing and challenging frontiers [1]. The pursuit to
endow robots with the capability to not only perform tasks

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Tucci.

tive approach to the emotion simulation in robots through
the Emotional State Transition (EST) model driven by
Genetic Hybridization technology (GHT). This interdisci-
plinary nexus aims to bridge the gap between complex
biological mechanisms and artificial emotional processing.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Artificial emotional intelligence (AEI) is focused on sim-
ulating and extending natural emotion (especially human
emotion) to provide robots with the capability to rec-
ognize and express emotions in human-robot interaction
(HRI) [3]. In the field of HRI, particularly in the context of
AEI, the prevailing approach towards artificial EST-related
research currently involves methodologies such as fuzzy
theory [4], [5], memory mechanism [6], [7], and person-
alized emotion analysis [8], [9]. These approaches frame
the modeling of emotional dynamics in terms of proba-
bilistic and subjective inference, offering valuable insights
into the stochastic nature of affective phenomena, and have
showcased emotions as complex, and multi-dimensional con-
structs. Fuzzy theory [10], in particular, has been instrumental
in providing a mathematical structure to capture the impreci-
sion inherent in human emotions, while memory mechanism
aids in handling incomplete information systems indica-
tive of emotional states [11]. Personalized emotion analysis
involves tailoring emotional models to individual idiosyn-
crasies, thereby, enhancing the pertinence and predictability
of interactional outcomes.

Despite the advancements made in these areas, it is
obvious that studies delving into the genetic underpin-
nings of emotions—a crucial biological aspect of affective
states—remain relatively emergent. The genetic composition
of emotions which entails a mapped gene expression and
emotional responses could yield a richer understanding of
emotional variants [12]. While genetic factors contributing
to emotional traits in humans have been subject to rigorous
investigation, their extension to artificial platforms has yet
to be extensively explored [13]. This identified gap presents
a compelling argument for integrating genetic insights into
emotion-related artificial modeling, positing that affective
genetics exploration could unravel novel mechanisms for
emergence as well as transition of emotions within an arti-
ficial entity. Limited existing research for affective genes
necessitates a broader, more integrative approach to biologi-
cal and computational aspects of emotions.

The concept of EST within humans has been extensively
studied and is pivotal to understanding the intricacies of
human interactions [14], [15]. Based on this, robots can better
understand and respond to human emotional needs, thereby,
more accurately simulating and expressing human emotions,
and ultimately, improving the quality and effectiveness of
HRI. To achieve this, hybridization techniques in genetics
have unlocked the potential for creating diverse biological
attributes. By adopting genetic hybridization approaches,
we can develop a nuanced emotional landscape within a
robotic framework that better mirrors human emotionality.
Further, the application of GHT within EST also introduces
an element of mutations, evolution, and adaptation, enabling
robots simulate as well as ‘learn’ emotion dynamics in
real-time interactions. GHT thus provides a robust method-
ological foundation for the development of an EST model in
robots.
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This paper is structured as follows: we begin with a review
of related work in the field of robot emotion simulation
and gene hybridization. Next, we delve into the theoreti-
cal underpinnings of emotion and its implementations in
biological systems, drawing parallels wherever applicable
to robotics. Following this, we introduce the EST model,
demonstrating GHT integration to enhance its functionality.
Finally, we discuss the implementation of the EST model
in a robotic context and explore the implications of such
systems in the broader scope of HRI. Through this work,
we seek to contribute to the ongoing dialogue in HRI by
providing a novel perspective on how genetic principles can
inform and advance the simulation of emotions in robots.
This integration evidence how AEI could transcend beyond
current boundaries, catalyzing the genesis of life-like robots
that not only simulate human-like emotions but also exhibit
an evolved emotional repertoire shaped by both environ-
mental interactions and ‘inherited’ emotional predilections.
In conclusion, bridging the gap between the current focus on
AEI and the vital emerging field of affective genetics could
chart a transformative course for the future of robot emotion
simulation.

II. LITERATURE REVIEW

The field of emotion simulation of HRI is an intersection
of distinct but interrelated lines of inquiry, each contribut-
ing various perspectives and techniques aimed at enriching
interactions between humans and machines. The literature
review that follows encompasses the development of emo-
tion simulation and genetic hybridization, emphasizing new
distinctive research directions. Initially, the concept of emo-
tional intelligence in machines was theorized for an inanimate
audience, however, it has progressively evolved into an active
area of robotics research [16], [17]. Early contributions by
Velasquez [18] provided one of the pioneering models for
generating and expressing emotions in robots, forming a
precursor to more complex systems. From there, the idea
of simulating emotions advanced through diverse method-
ologies, as embodied by the Affective Computing group led
by Picard [19] at the Massachusetts Institute of Technol-
ogy. Arbib and Fellous [20] further explored the interplay
between emotions and cognition in the context of robot
design.

Emotional models established by Marsella and Gratch [21]
were pivotal in integrating psychological theories of emotion
into computational frameworks for robots. The synthesis of
psychological principles and artificial intelligent (AI) has sig-
nificantly influenced the current landscape of robot emotion
simulation. The efforts to comprehend and replicate the subtle
shifts in emotional states has led Cafiamero [22] to investi-
gate the role of homeostatic mechanisms and their potential
utility in robotic systems, contributing to a layer of physi-
ological grounding to emotional expressions. Early work in
evolutionary robotics by Nolfi and Floreano [23] threw light
on how genetic algorithms could be leveraged to evolve
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TABLE 1. Summary and analysis of previous studies.

Authors Results/Findings

Limitations

Bentley [24]

Nolfi and Floreano [23]
behaviors
Fernando, et al. [31]
and adaptation in artificial systems
Jiang, et al. [5]
simulation based on fuzzy theory
Xiao, et al. [28]
based on the proposed emotion transfer model
Chuah and Yu [27]
utilizing Instagram data through the
multidisciplinary theories
Sijin, et al. [7]
express uncertain emotions
Abdollahi, et al. [29]
effectiveness in engaging with older adults
Liu, et al. [8]

Merge genetic principles with emotion simulation in robotics

Genetic algorithms could be leveraged to simulate robotic
Principles of natural evolution can be used to enhance learning
Draw an emotional state transition tube for Artificial emotion
Establish a customized system for machine emotion expression

Effective simulation of emotions in robots can be enhanced by
integration  of

Apply emotional memory mechanism to understand and
Integrating AEI into a social robot and explores the robot's

Introduce a mnovel emotion-based personalized music
recommendation (hereinafter EPMR) framework

Focused more on genetic optimization of robotic traits rather
than simulation of emotion methods

Lacking in specific emotional simulation methods

Proposed principles of natural evolution, but lacking in further
explorations of emotional simulation methods

Required extensive computational processing, increasing
implementation difficulty and processor performance demands

Lacked generalization

Findings could be biased due to the specific user demographic
on Instagram

May not have accurately replicated all memory characteristics
in simulating human memory processes

Real-time detection and interpretation of complex human
emotions remained challenging

While addressing personalization, it might not have fully
accounted for the wide spectrum and nuances of emotions

robotic behaviors. While not directly addressing emotional
states, these works set the stage for considering genetic
approaches in robot design. It was from here that the idea to
merge genetic principles with emotion simulation in robotics
began to take hold, although initial explorations such as those
by Bentley [24] focused more on the genetic optimization of
robotic traits rather than the direct simulation of emotions.
The study of bio signal processing techniques for emotion
recognition in machines, as demonstrated by Schuller [25],
underscores the growing sophistication of emotion detec-
tion and the potential for these methods to inform genetic
algorithms. The use of deep learning for emotional state
classification in robotics, as illustrated by Rao et al. [26],
further pushes the boundaries of how machines can interpret
human affective signals.

In recent years, AEI has made significant progress in the
HRI field. Incorporating relevant psychology theories and
data science within the framework of HRI, Chuah and Yu [27]
used Instagram data to explore the impact of emotional
robots on the affective responses of potential consumers.
A probability and integrated learning method is proposed
by Jiang et al. [5] for constructing artificial emotion models
by simulating human thinking. Xiao et al. [28] introduced
a machine emotion transfer model to establish a customized
system for machine emotion expression. It also strives to cre-
ate a dynamic emotional interaction model between humans
and machines within an intelligent interactive environment.
Abdollahi et al. [29] presented research on integrating AEI
into a social robot and explored the robot’s effectiveness
in engaging with older adults. The robot identifies users’
emotional states using various input modalities for emo-
tion in real-time, such as facial expression and speech
sentiment. It then employs a dialogue manager to gener-
ate emotional responses. Ojha et al. [30] suggests that an
emotional model should identify the relationship between
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mood and emotions dynamically, using emotion related data
collected from human subjects to enable Al to generate emo-
tions of their own.

To sum up, Current research related to the application
of GHT to robotics is limited. However, the integration
of hybridizing genetic principles into cognitive architec-
tures, holds extensive and promising potential. For example,
a concept derived from biologically inspired computing,
Fernando et al. [31] explores how principles of natural evo-
lIution could be used to enhance learning and adaptation
in artificial systems. This study aims to undertake this
under-explored research direction, in order to address the
inherent complexity and unpredictability of human emotions.
In the following sections, we will build upon existing litera-
ture, introducing the EST model, detailing its integration with
GHT, and illustrating the transformative potential that this
synergy holds for robotics and AEI In doing so, we aim to
contribute a novel perspective to the ongoing development of
this field. Table 1 lists the current studies on AEI.

Ill. MORPHOLOGY FUNCTION OF EST MODEL

A. EXPERIMENT

1) EXPERIMENTAL PREPARATION

Participant Recruitment: Recruiting 30 undergraduate stu-
dents at a university in China to ensure equal gender
representation for 15 males and 15 females.

Selection Criteria: The students are selected based on pre-
defined criteria, such as age range and absence of known
affective disorders that could influence their emotional
responses.

Exclusion criteria: Participants are excluded from the
experiment if they meet any of the following condi-
tions. known neurological or psychiatric disorders affect-
ing responses to emotional stimuli; use of medications or
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substances interfering with neural or affective responses; lack
of language ability, which could affect understanding and
interaction; uncorrected vision or hearing problems, as the
experiment may involve visual or auditory stimuli; partici-
pation in similar experiments in the past six months to avoid
bias; and inability or unwillingness to give informed consent
or adhere to the experimental process. These exclusion cri-
teria are established to ensure the reliability of the collected
data and minimize the impact of confounding factors on the
results.

2) EQUIPMENT AND ENVIRONMENT SETUP

Laboratory Environment: The experiment is conducted in a
quiet, closed laboratory free from external disturbances to
maintain a controlled environment and ensure accuracy in
data collection.

Equipment: High-resolution desktop computer for video
presentation, EEG system with 32 electrodes, ECG monitor,
Galvanic Skin Response (GSR) sensors, and a high-definition
camera focused on the participant’s face for facial emotion
recognition.

Video Stimuli: More than 200 video clips ranging from
comedic to sad content, sourced from popular Chinese video
websites, pre-screened to elicit clear emotional responses.
Use video editing software to clip these clips into a 1-minute
experimental sample. These samples should include both
positive and negative emotion clips.

3) EXPERIMENTAL PROCEDURE

Initial Briefing and Consent: Before the experiment, partic-
ipants are briefed about the procedure and provided with
informed consent forms detailing the study’s purpose and
outlining their right to withdraw at any time.

Baseline Data Collection: Participants are first allowed
to familiarize themselves to the lab environment. Baseline
physiological data are collected while the participant is at rest
to establish a control measure for emotional states prior to any
stimuli exposure.

Stimuli Exposure: A preselected 1 min video clips
are played to each participant in a predetermined order,
while data collection equipment records their physiological
responses in real-time.

Continuous Monitoring: Throughout the experiment, par-
ticipants are monitored to ensure comfort and data fidelity.

4) DATA COLLECTION (EXAMPLE)

Participant 1: Male, 21, indicated visible laughter during

comedic clips, shown in amplified facial movements. GSR

levels elevated, and EEG data suggested high engagement.
Participant 2: Female, 19, revealed a pronounced emo-

tional response to a sad clip, with a significant ECG rate

increase and dampened movement.

5) DATA PROCESSING AND ANALYSIS
Signal Processing: After the experiment, the collected phys-
iological data is processed using signal processing methods

106002

to remove noise and artefacts. For example, the raw EEG
data, which is often noisy and contains artefacts, is first
subjected to band-pass filtering. This filtering is done to
constrain the signal into the frequency band of interest that is
relevant for emotion recognition tasks, usually ranging from
0.5Hz to 50Hz. Following the initial band-pass filtering stage,
the data undergoes artifact removal. Artifacts in EEG data
can originate from various sources, such as muscle activ-
ity, eye blinks, and other physiological or external electrical
noises. We employ Independent Component Analysis (ICA),
a widely used technique for artefact removal in EEG data.
ICA works by separating the multivariate signal into additive
subcomponents that are maximally independent.

Feature Selection: Emotional features are extracted from
the physiological data, which include heart rate variability,
GSR changes, and EEG patterns associated with emotional
responses.

Emotion Indexing: Using emotion recognition algo-
rithms [32], the data is synthesized to assign an emotional
index score to each participant’s response to the video stimuli.
with positive scores for joy and negative scores for sadness
(typically from 1 to —1).

6) EST CURVE GENERATION

Data Alignment: Align these values with the corresponding
timestamps of the video stimuli to create a coherent time
series of emotional data.

Curve Plotting: Plot the emotional indices on the y-axis
against the time (in seconds) during which the video stimulus
was watched on the x-axis, thereby plotting the EST curve.

Curve Analysis: Evaluate the resulting EST curve for pat-
terns of emotional transition throughout the stimuli exposure
and identify any variations between the genders or individual
participants.

7) VALIDATION

Result Interpretation: Interpret the results of the EST curve
in the context of the emotional stimuli presented, considering
the gender distribution and individual differences.

Result Validation and Reporting: Correlate the physiolog-
ical data with any self-reported measures of emotion for
validation. The part of experimental results is shown in
Figure 1.

Where the dashed line in the figure represents the confi-
dence interval of EST curve [5].

B. GENE CODE TECHNOLOGY ON EST MORPHOLOGY

1) INTRODUCTION

During the development of an EST model constructed by
GHT, encoding the EST curve genes is particularly crucial.
To enhance the efficiency of EST curve gene encoding,
we process the EST curves obtained during the experiment
using a computer and then encode the extracted lines. The
curve encoding method based on binary trees can be used to
construct an intuitive tree structure [33], as shown in Table 2.

VOLUME 12, 2024
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FIGURE 1. EST curve of partial experimental results.

TABLE 2. Complete binary tree and full binary tree.

Complete binary tree  Full binary tree

Total node k  2"1 « k « 2""1-1 Kk =2"1-1
Tree height  h=log,k+1 h=log, (k+1)
h

These parameters pertain to the total number of nodes (k) and
tree height (h) in both complete binary trees and full binary
trees. Importantly, the nodes and heights are significantly
linked to the magnitude and complexity of the genetic data
encoded. The encoding process takes advantage of a binary
tree method to conveniently and effectively manage the com-
plexity and volume of genetic information in the EST curve.
A binary tree enables us to structure the encoded information
in a hierarchical and intuitive manner. This organizational
structure makes it easier for us to handle and manage the
encoded EST curve genes in the subsequent stages of our
analysis and facilitates the selection of key points for curve
fitting in MATLAB.

2) ENCODING PROCESS
The encoding of morphological genes for the EST model is
an essential process in our study. The justification encoding

VOLUME 12, 2024

EST curve

-1
Negative Emotion

®)

FIGURE 2. EST curve coding.

the EST curve genes is to streamline the process of analyzing
and deciphering the genetic data collected during our exper-
iment. The encoding process begins with the computerized
processing of the EST curves obtained from the experiment.
The significant lines within these curves are then subject to
encoding. Taking the EST curve obtained in the experiment
as an example, extract the contour line from Figure 1 (1),
as shown in Figure 2. At the end of the EST curve, point C
is perpendicular to point a on the time axis. Connect the first
and last points, labelled as o and a. Next, find the midpoint
ap on the time axis, and draw a vertical line perpendicular
to the time axis through ag that intersects the EST curve at

106003



IEEE Access

J. Liu et al.: Emotional State Transition Model Empowered by Genetic Hybridization Technology

TABLE 3. Comparison of EST morphology and biological gene composition.

EST morphology genes Description Biological gene Description
Nucleosides combine with
Points in  geometry only phosphate to form nucleotides,
represent positions, while in EST L and the phosphate group is
( J Point they represent a  certain o Base attached to the 5th carbon atom
emotional state at a certain point . of a pentose sugar. Bases are

in time

Dotting forms a line, which is a
continuation of a point. Different

Line types of curves in EST represent
changes in emotional states over
a period of time

Linear motion forms a surface.
The surface in EST is the
complete EST surface formed by
a person receiving different
emotional stimuli during
multiple identical time periods.

Surface (3D)

components of nucleic acids,
nucleosides, and nucleotides.

Genes are DNA fragments with

Gene segment specific genetic effects.

Genes have a certain position
on chromosomes and exhibit
linear arrangement.

Chromosome

the point Cy. Following this, locate the midpoint a; between
points ag and o on the time axis. Next, draw a vertical line
through the midpoint a; that is perpendicular to the time
axis and intersects the EST curve at point C;. Repeat the
above operation to obtain perpendicular lines &y, h3, and h4.
Establish a unit coordinate system with point o as the origin,
place the EST curve within the range of [0,60] on x-axis and
[—1,1] on y-axis. Obtain the coordinates of points C, Cy, Cq,
Cy, C3, Cy4, Cs, Cg, C7, and Cg, Cg on the curve.

3) EXTRACTION PROCESS

The extraction process works in tandem with the encod-
ing process. After encoding the EST curve gene data, the
process involves extracting significant contour lines from
the curves using MATLAB. By obtaining the coordinates
of points o (0,0), C (60, y.), Co (xcy» Yco)» C1 (xcy» Yy
Co (X6, Y0y)s C3 (x¢55 Yi3)s Ca (xcys Yeu)» Cs (xcss Y©s)s
Ce (xcg» ¥co)» C7 (xC75 Y©7)5 Cs (xcy5 Yog)» and Co (xcy, Yeo)
on the curve, function code the encoded curve in MATLAB
software, as shown in Figure 3. MATLAB, as a powerful
tool for engineering computing, plays a crucial role in fit-
ting functions to gene images in this study. It facilitates the
analysis of gene graphical characteristics by fitting the EST
curve and deciphering the gene’s functional representation.
This capability enhances the study of gene graphics and offers
amore efficient means to manipulate genes represented by the
EST curve from a graphical standpoint.

IV. GENE THEORY ON MORPHOLOGY FUNCTION OF

EST MODEL

A. CONCEPT OF MORPHOLOGY GENE OF EST MODEL
According to modern biology, a gene is a nucleotide sequence
that contains specific genetic information [34]. It serves as the
basis for the transmission of genetic information and traits
development. When genes pass on genetic information to the
next generation, they not only replicate but also express that
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FIGURE 3. Function code of morphology genes of EST curve.

information during transmission. Gene engineering involves
introducing foreign genes into recipient cells through in vitro
recombination, allowing these foreign genes to replicate,
transcribe, and translate within the recipient cells. Therefore,
biotechnological gene engineering can selectively modify
biological traits, endowing organisms with desirable charac-
teristics. In this study of EST morphology genes, we approach
the concept from the perspective of the currently popular
Multimodal Sentiment Analysis (MSA). By integrating theo-
ries related to genetic control of traits in biology and drawing
inspiration from biological gene manipulation experiences,
we conduct a detailed comparison between the structural
elements of EST and those of biological genes. Refer to
Table 3 for an illustration.

It is not difficult to find EST morphological genes and
biological genes having many similar characteristics in com-
position. Table 4 depicts selection criteria for operating
objects in biological genetic engineering, as well as analy-
sis, comparison, and selection of the operating objects for
EST genetic engineering. ‘Point’ is a visual unit with spatial
positional features. When expressing EST morphological fea-
tures, due to the insufficient information contained in a single
element, its operation will greatly increase the workload, and
the number of operating objects. On the contrary, the element
‘surface’ contains too much information, and its operation
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TABLE 4. EST morphology composition operation object analysis.

Amount of Number of  Ease of
Morphology information Workload operands operation
Point Less More More Harder
Line Mid Mid Mid Mid
Surface
(3D) More More More Easy

process will be interfered by a large amount of irrelevant
information, thereby, reducing the accuracy of trait control
and is not the best choice for morphological gene operation
objects.

Therefore, ‘line’ is the most suitable operating object due
to its moderate amount of information and relatively com-
plete structure in the process of EST morphological gene
hybridization. The rationale for this selection method can
be supported by a large number of cases in the engineering
drawing field. From a practical application perspective, the
widespread use of the three views evidence that “lines”
have sufficient ability to express and control EST morpho-
logical features with relatively better operability. Therefore,
by combining biological GHT, comparing, and analyzing
other studies as well as related concepts of EST genes,
it is concluded that EST morphological genes are param-
eterized morphological representation line segments that
contain heritable information of EST morphology that can
control EST evolution. By extracting and encoding EST mor-
phological genes, performing cross iteration and mutation
operations, EST can undergo morphological changes and
construct evolved emotional repertoire.

B. MORPHOLOGICAL GENE HYBRIDIZATION PROCESS
OF EST MODEL

Biological gene hybridization is the pairing of two single
stranded DNA or RNA bases, which is a method for obtaining
individuals which have recombined certain parental genes
through mating between individuals of different genotypes.
GHT uses gene fragments as operating objects to recombine
the genes of parents, forming various types and providing
rich materials for selection. In addition, it is noteworthy that
gene mutations may occur during the gene recombination
process [35]. The application of GHT on EST morpholog-
ical uses the EST function curve as the operating object
to combine the morphological genes of EST, multiple new
genes, and prepare for the ultimate provision of an evolution-
ary emotion pool shared by environmental interactions and
future “‘genetic” emotion prediction. It includes operational
techniques such as morphological gene extraction, coding,
recombination, cross iteration, and gene mutation. This is
a crucial step in the EST morphology gene hybridization
process. The technical route and key steps are depicted in
Figure 4.

C. GENE ITERATIVE RECOMBINATION
When combining morphological genes, nodes are key ele-
ments that interrupt and recombine morphological genes.
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FIGURE 4. 4 Diagram of EST morphology gene hybridization process.

Cury(x) @ Cur,(x)
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FIGURE 5. Diagram of gene cross recombination.

Selecting equidistant nodes or special equidistant nodes with
extreme values of zero for crossover and recombination can
generate a new piecewise function with continuous curvature.
The function image is the new EST morphological gene,
and the newly generated morphological gene can well inherit
the morphological characteristics of the previous generation
gene. It is noteworthy that gene mutations occur when posi-
tive (negative) emotional curve segments are combined with
negative (positive) emotional curve segments.

In order to express the functional transformation of EST
morphological genes more clearly, two curves, Cur;(x) and
Cur(x), are set up, where x € [0, 60]. There are two points
Ci and Cj, C;, C; € [0,60], making Cur}(C;) = Cur)(C)).
Taking C; and C; as nodes, the two curves are broken and
regrouped into two new piecewise functions NCur;(x) and
NCur,(x) as shown in Figure 5.

NCur|(x) = Cur; (x), x€][0,C] )
Curx(x), xel[C;, Ci+60—Cl

NCurs(x) = Cury (x), x€[0,C] @)
Curx(x), xel[C;, Ci+60—Ci]

Gene mutation occurs if there have two points C,, that

satisfy Cur; (x) > 0 (x

e [0,Gi]) and Curp (x) < O
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FIGURE 6. Diagram of iterative recombination of EST morphological gene.

(x € [Cj, Cy]);or Curg (x) <0 (x € [0,C]) and Curz (x) >0
(x € [Cj, Ci]) and C,, that satisfy Cur (x) > 0 (x € [0,C;])
and Cur; (x) <0 (x € [C}, Cy]); or Cury (x) <0 (x € [0,C;])
and Cur; (x) > 0 (x € [Cj, Cy]). Please refer another two
equations:

[ Cur; (x), x€l0,C]
NCuri(x) = | —Cur (x), x € [C}, Cul
| Cura(x), x € [Cy, Ck + 60 — Cj]
3
[ Cur, (), x €0, Gl
NCury(x) = § —Cur (x), x €[C;, Cyl
| Cur;(x), x e [Cy, C,+ 60— C]
4

D. FUNCTIONAL OPERATION OF ITERATIVE
RECOMBINATION

In the above transformation, only one iso-derivative node
in each curve is considered, but in the actual recombina-
tion process, each morphological gene often has multiple
iso-derivative nodes cross combination, so the above recom-
bination function is named RF, the iterative function is named
F, the initial parent gene is {E }, {E;} represents the i gener-
ation morpho-child gene, then:

E; =RF{E}, {E2} = RF{RF{E}}, ... {Ej}
=FFi_1, ... . {F{RF{E}}} &)
As shown in Figure 6, the newly generated progeny genes
of each generation go through iterative function operation

again, so that the cross combination of multiple isogenic
nodes can be achieved. In this way, a large number of
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comprehensive morphogenetic genes can be obtained, and
the set {EE;} of its original parent genes is the complete
candidate gene pool generated.

E. DESCRIPTION EXAMPLE OF OPERATION PROCESS

This section uses two EST curves obtained from experiments
of participant 1 (Figure 7) to obtain new genotypes as an
example to illustrate the actual operation process of this
technology This technology primarily starts from the key
techniques of extracting, encoding, and cross iteration of
morphological genes of EST model. It selects morphological
genes and recombines them to form new EST morphological
genotypes, providing interactive system with a more diverse
emotional repertoire.

It is important to note the iterative nature of our gene
hybridization process. Although this section only shows
the process starting from two parent morphological genes,
in practical operation, the number of parent morphological
genes is not limited to these few. Additionally, in each itera-
tion, we introduce more genetic variability not only by recom-
bining the original genes but also by recombining the newly
formed offspring. This significantly diversifies the gene pool.
Our hybridization method involves cross-combination at mul-
tiple iso-derivative nodes, which increases genetic variations
in every iteration. So, even though we start with few parent
genes, the subsequent multiple recombination generates a
multitude of unique and diverse morphological genes.

1) MORPHOLOGY GENE CODING

Before recombining and iterating the parental morphological
genes of the extracted EST curve, it is necessary to encode
the obtained curve using binary tree method and fit it with
MATLAB to obtain the function expression of the curve.
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FIGURE 8. Parent EST curve function code.

Encode the curve genes using a binary tree method, establish
a coordinate system, place the encoded morphological genes
in the unit coordinate system, control the length of the x-axis
of the two curve segments to be 60, and use MATLAB
software to fit the extracted parental morphological genes of
the EST curve, as shown in Figure 8.

The function formula of each curve is obtained by
MATLAB fitting, respectively:

F) =155%107"2 %x% =431 % 10710 5 x3
+5.02%1078 =317 %1070 % x> 4+ 107% x x°
—2%x10 3 % x* +3 %1072 x x> — 0.26 % x*
+0.944 % x — 0.99

fl)=—241 %1072 % x” +6.73 % 10710 5 x®
—7.94%107% +514% 1070 % x> — 1.98 % 107*
xx° +4.64 %1073 % x* —6.39% 1072 % x> +0.47
* x> — 1.66 % x + 1.79 (7

©)

Polynomial fitting enables us to capture the complexity of
the curve trends without excessively complicating the model
or introducing potential errors. In particular, we compared
polynomials of various orders and found that a 9th order
polynomial provided a fitting match with the experimental
data, accurately mapping out the EST curve while minimizing
the risk of overfitting. The 9th order polynomial was thus an
optimal choice as it struck a balance between accuracy and
simplicity.

2) MORPHOLOGICAL GENE CROSS-ITERATIVE
RECOMBINATION

The process of finding points lists equations f/(x) = g'(x),
and solve the function in pairs. Due to the complexity
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of the equation and the possibility of multiple solutions,
Newton iterative method is used to solve the equation
principle [36], [37]: Given the equation f(z) = 0 for the
complex number ¢, taking the derivative of f(¢) and we get

f/(¢) = 0; First guess a complex value 1y, by £ = fg - % can
get t1; Similarly, by r, = 11 - % can get »; Such repeated
iterations are iterative: f,41 = f, - % For the selected

starting point, most iterations converge to some root of the
equation f'(t) =0. The qualified real number solution within
the interval [0, 60] is obtained by the function derivation
formula. By taking the iso-derivative nodes of two curves
or the special iso-derivative nodes with the extreme value
of 0 for cross-combination transformation, a new piecewise
function with continuous derivative and curvature can be gen-
erated, and the new piecewise function is cross-recombined
to generate a new morphological gene. The newly generated
morphologic genes of EST model can better inherit the mor-
phological characteristics of the previous generation genes,
as shown in Figure 9.

V. METHOD VALIDATION

A. RESULTS

In order to validate the newly generated EST morphological
genes (as shown in Figure 9), we designed a series of detailed
experimental steps to ensure the high reliability and accuracy
of our research results through intuitive video analysis and
accurate data comparison.

Firstly, the preliminary preparation for this validation
experiment involves retrieving the combination nodes of all
newly generated EST morphological genes. These nodes,
such as C;, and C; represent specific developmental or mor-
phological time points. In order to capture these critical
moments, our team search for the specific locations of the
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FIGURE 9. The newly generated progeny morphological gene.

corresponding time points in the experimental video sam-
ples. After successful retrieval, we used professional video
editing software to edit the original samples and gener-
ate new experimental video clips. These fragments were
named and stored for subsequent steps to call and ana-
lyze. This process ensures that we can accurately observe
and record the biological events corresponding to each EST
morphological gene.

According to the aforementioned experimental methods,
we conducted experimental operations on participant No.1
using newly edited experimental samples. During the exper-
iment, the experimental process was closely monitored, and
necessary data and results were recorded for subsequent anal-
ysis. To evaluate the similarity between the newly generated
EST morphological genes and the experimentally generated
EST curves, we introduced the average Fréchet distance as a
measure. By mathematically comparing two curves, the aver-
age Fréchet distance can quantify their differences in shape.
It is an important index to measure the spatial similarity
between two curves of different lengths, defined as the lower
bound of the maximum distance between two curves [38].
Thus, the consistency between the EST morphological genes
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obtained through GHT and the experimental results was
verified.

Suppose (tx )Z:(l) is a monotonic succession of distinct num-
bers on the unit interval [0,1], The definition of (A(tk))z;rg)
and (B(tk))Z:(l) are the points of the series (tk)z;’(l) on the
curve A and B, respectively, given by the large black dots in
Figure 10, and the line between the large black dots indicates
the distance between them, defined as d (A(#x), B(#)). Intro-
ducing the reparametrized functions « and B of the curve,
acting on curves A and B, the corresponding reparametrized
curve is A’ and B/, then the distance between A’ (#;) and
B/(t;) can be defined as d (A’(#;), B'(t)),That is d (A(c())),
B(B(#))), given by the small black dot and dotted line in
Figure 10. Then the Fréchet distance F (A, B) of curves A
and B is defined as:

F(A, B) = inf max {d(A(a(1)), B(B (1))} ®)
a,B tel0,1]
The average Fréchet distance is defined as:
- 1 M
F=o  FR X ©)
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FIGURE 10. Diagram of Fréchet distance calculation.
TABLE 5. Accuracy comparison of the two types of EST curve.
Type (a) (b) (c) (d) (e) ® (g) (h)
Dis. 0.093 0.072 0.126 0.153 0.161 0.156 0.179 0.239

where R mean reconstructing curves, while {Xm}%:1 repre-
sents the presentation curve sets.

The average Fréchet distance of EST curve obtained
through experiments and newly generated EST morpholog-
ical genes was calculated and the results in Table 5 were
obtained.

From the results, the Fréchet distance of EST cur-
ves (a) - (g) is generally small, while the distance of EST
curves (h) is due to gene mutations that occurred during the
gene hybridization process, but it is also within a reason-
able range. This final validation experiment results provide
key information on the actual expression and function of
newly generated EST morphological genes. The high con-
sistency between the obtained curve and the theoretical
prediction further supports the effectiveness of our gene
combination technology and provide a basis for future exper-
imental design in more samples or under different conditions.
Through these comprehensive experimental measures and
detailed data analysis, we can ensure the accuracy of the
validation experiment, thereby providing valuable reference
for researchers in this field.

B. DISCUSSIONS

The Fréchet distance measure shows impressive versatility
in various applications. Not only has it been successfully
employed for determining graph similarity in algorithmic
frameworks, but its unique application within a phylogeo-
graphic tree context has also been highlighted [39], [40].
Expanding on these uses, in a recent innovative approach
to deal with challenges in unsupervised learning, the bril-
liant incorporation of the Fréchet distance concept into a
novel Uncertainty Fréchet (UF) Clustering Internal Validity
Indices (CIVI) proves crucial [41]. This measure, specifically
designed to assess the certainty of well-defined partitions,
effectively navigates through issues such as ambiguity,
non-convex distributions, outliers, and overlapping data.
Therefore, these collective applications truly demonstrate
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the broad potential and adaptability of the Fréchet distance
measure.

When juxtaposing these diverse studies with ours, it is
essential to understand that while their usage of the Fréchet
distance pertains to varied instances, our application is specif-
ically engineered towards the comparison of gene curves.
In our findings, we note a strong correlation in the Fréchet
distance of most EST curves, which indicates similar spatial
congruities and sequence consistencies. The validation of
our technique, however, gleans profound reinforcement from
both the practical applications and quantification method-
ologies manifested in these prior studies. In particular, the
minimal Fréchet distance computation in our study mirrors
the intimate correspondence amidst objects in the afore-
mentioned investigations. Furthermore, our research also
identifies certain divergences on EST curve predominantly
attributable to genetic mutations. In coherence with their
discoveries, our outcomes offer further testimony to the
expansive adaptability and reliability of the Fréchet dis-
tance across diverse research domains and experimental
paradigms.

To further explain, the Fréchet distance quantifies the
greatest of all point-to-point distances between two curves,
measured from the start to the end of each. In other words,
it quantifies the greatest separation between the experi-
mentally obtained EST curves and the theoretical estimates
obtained from our gene hybridization method. A low Fréchet
distance indicates a strong correlation between the experi-
mental and theoretically predicted EST curves, thereby vali-
dating the accuracy and reliability of our GHT. Conversely,
higher values signal potential discrepancies, potentially
attributable to genetic mutations during the hybridization
process. In the context of our results, the Fréchet distances
were generally small (as presented in Table 4), suggesting
robust alignment between our theoretical EST morphological
genes and the experimental EST curves. This provides strong
evidence that our gene hybridization technique can expec-
tantly generate EST morphological genes that are congruent
with real, empirical outcomes.

The interpretation and implications of these results are
multifold. First, it clearly demonstrates the reliability and
efficacy of our GHT in predicting the EST morphological
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gene structures, which are in close agreement with the
empirical EST curves. Second, the high consistency between
the obtained and predicted curves reassures the accuracy of
our experimental setup and the reproducibility of our results.
Lastly, such convergence bodes well for the future application
of our technology in broader or differing conditions, making
it a versatile tool in the study and application of EST morpho-
logical genes.

VI. LIMITATION AND DISCUSSION

This study presents several noteworthy limitations associated
with our research scope and implications. Firstly, the repre-
sentation of the population is limited as the subjects of our
experiments hail only from a single country, which may not
adequately represent a broader global population. Secondly,
the utilization of GHT, although innovative, adds a layer of
complexity and potential unpredictability in gene-emotion
correlations. This is evident from discrepancies such as the
one noted in curve (h). Lastly, the study does not extensively
probe the causal link between specific genes and emotional
outcomes, thus calling for deeper exploration in this vein.

In light of these limitations, this study initiates important
discussions for the field. It highlights potential progression in
HRI that could unfold from enabling robots to mirror human
emotional states with enhanced accuracy. It also points to
opportunities for future exploration to address these limita-
tions, including widening the representativeness of samples,
refining gene hybridization methods, and enhancing ana-
lytical algorithms for improved precision. Significantly, the
intersection of genetics and AEI facilitated by the study
opens avenues for promising cross-disciplinary collabora-
tions to further knowledge in this innovative field. The study
also raises ethical considerations, especially in light of the
potential implications of applying genetic insights in creating
emotionally responsive robots, underscoring the need for
safeguarding emotional integrity and preventing manipula-
tive applications.

VIi. CONCLUSION AND FURTHER RESEARCH

The integration of GHT with EST model presents a trans-
formative approach to robot emotion simulation. This study
addresses the current research gap related to the application
of affective genetics to artificial platforms, advocating for a
broader, more integrative approach that synthesizes biologi-
cal theories with AEI computational models. By harnessing
techniques from genetic hybridization, the EST model can be
enhanced to facilitate a more nuanced emotional simulation
within robots. This would enrich the emotional repertoire
of robots and enable more natural and human-like interac-
tions. Our study successfully implemented the EST model
integrated with GHT. The encoding of EST curves using
a binary tree method allowed for precise segmentation and
representation, facilitating accurate analysis and simulation.
The model exhibited high fidelity in validating EST observed
in experimental data.
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The results of our method validation exhibit a strong corre-
lation between the encoded curves and the actual emotional
transitions. The EST model, in conjunction with GHT, dis-
played a high degree of accuracy in predicting emotional
states, consistently matching theoretical predictions. Robots
can adjust their emotional responses based on encoded EST
genetic data, which leads to nuanced and contextually appro-
priate behavior. This approach deepens our understanding
of the genetic basis of emotions and their application in
robotic emotional simulations. The findings of our study
bear practical implications for the development of emotion-
ally intelligent robots capable of engaging in more natural
and effective HRI. It represents a novel contribution in the
field of AEIL Furthermore, our research sets the stage for
future studies exploring the application of genetic principles
in artificial systems, which could potentially lead to further
advancements in HRI.

However, this study acknowledges the inherent complexi-
ties and limitations, including limited sample representative-
ness and the intricate nature of gene technology, which may
impact the generalizability and consistency of findings. These
considerations, along with the need for ethical vigilance,
provide a roadmap for future research. To further advance
this field, there is a need for exploration into the direct rela-
tionships between genetics and emotional expression, as well
as improvements in experimental methodologies and tech-
nologies. A more profound and broad understanding of these
relationships will ultimately contribute to the development of
robots that can interact with humans in a more sophisticated
and emotionally intelligent manner.
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