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Abstract: Over the past decades, drones have become more attainable by the public due to their
widespread availability at affordable prices. Nevertheless, this situation sparks serious concerns in
both the cyber and physical security domains, as drones can be employed for malicious activities
with public safety threats. However, detecting drones instantly and efficiently is a very difficult
task due to their tiny size and swift flights. This paper presents a novel drone detection method
using deep convolutional learning and deep transfer learning. The proposed algorithm employs a
new feature extraction network, which is added to the modified YOU ONLY LOOK ONCE version2
(YOLOv2) network. The feature extraction model uses bypass connections to learn features from
the training sets and solves the “vanishing gradient” problem caused by the increasing depth of the
network. The structure of YOLOv2 is modified by replacing the rectified linear unit (relu) with a
leaky-relu activation function and adding an extra convolutional layer with a stride of 2 to improve
the small object detection accuracy. Using leaky-relu solves the “dying relu” problem. The additional
convolution layer with a stride of 2 reduces the spatial dimensions of the feature maps and helps the
network to focus on larger contextual information while still preserving the ability to detect small
objects. The model is trained with a custom dataset that contains various types of drones, airplanes,
birds, and helicopters under various weather conditions. The proposed model demonstrates a
notable performance, achieving an accuracy of 77% on the test images with only 5 million learnable
parameters in contrast to the Darknet53 + YOLOv3 model, which exhibits a 54% accuracy on the
same test set despite employing 62 million learnable parameters.

Keywords: drone classifications; deep convolutional neural network; hyperparameters; drone audio
signal; drone datasets

1. Introduction

The utilization of unmanned arial vehicles (UAVs), or drones, has grown significantly
due to the escalating adoption of drones for both commercial and recreational purposes.
As a result, the imperative of effective drone detection has become increasingly paramount.
Drones can be used for a variety of purposes, including delivery of goods [1], photogra-
phy [2], and even surveillance [3]. Drones play a multifaceted role in modern agriculture [4],
industrial applications [5], building smart cities [6], monitoring weather conditions for safe
driving [7], and many more applications.

Although drones are used for a multitude of applications, they can pose significant
threats to public safety and security when they are used inappropriately or with malicious
intent. A crucial apprehension related to drones is their potential use in terrorist attacks or
other forms of violent activities. Drones can be equipped with a variety of payloads [8],
including explosives or chemical weapons, and can be flown into sensitive areas or crowded
locations to cause harm [9]. In addition to security concerns, if a drone were to collide
with an aircraft during flight, the results could be catastrophic. Drones are used to send
illegal drugs, communication devices, such as mobile handsets, and other illegal goods into
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prisons [10]. Spy drones are used to collect sensitive information [9]. It is necessary to detect
drones in restricted areas as early as possible to prevent any fatal or devastating outcomes.

To ensure the preservation of public safety and privacy, as well as the prevention of
potential terrorist activities, the timely detection of drones within restricted regions is vital.
There are some systems that are used to detect drones in restricted areas, such as RADAR-
based systems [11], radio-frequency analyzers [12], acoustic characteristic tracers [13], and
visualization-based detection [14]. This paper discusses the merits and demerits of these
existing systems and proposes a new algorithm for drone detection. The rest of the paper is
organized as follows: in Section 2, existing state-of-the-art techniques for drone detection
are presented; the datasets used for the training and testing are discussed in Section 3;
Section 4 presents the proposed algorithm for drone detection; comparative simulation
results are shown in Section 5; Section 6 evaluates the overall performance of the proposed
algorithm, a general discussion of the novelties of the research is presented in Section 7;
and, finally, Section 8 concludes the paper.

2. Literature Review

For decades, RADAR technology has served as a primary means of aerial vehicle
detection. Nevertheless, conventional RADAR technology suffers from several limitations
in detecting small UAVs or drones. Firstly, the flight speeds of drones are too fast to
compare with the RADAR velocity and the size of the drones are too tiny to reflect any
meaningful electromagnetic waves [11,12]. Another limitation is that RADAR cannot
distinguish among other small flying objects, such as birds and drones [12].

Another popular technique is radio-frequency (RF)-based drone detection. This ap-
proach captures communications between drones and ground-controlled devices. However,
in many cases, drones are automatically driven using on-board software rather than ground-
controlled devices [11].

Using the acoustic characteristics of drones for their detection is a promising approach
compared to other state-of-the-art methods, as drones have very unique acoustic charac-
teristics than other small flying objects [13]. However, this method is not feasible in very
noisy environments such as airports.

Recently, vision-based object detection methods have received significant attention by
researchers due to advances in smart vision technology. There are two types of visualization-
based object detection systems, as follows: one is traditional computer vision-based detec-
tion systems, and the other is deep learning-based detection systems.

Traditional computer-vision-based detection methods, such as histogram of oriented
gradients (HOG) [13] and scale-invariant feature transform (SIFT) [14], depend on hand-
crafted features, which may not be robust enough to accurately detect the object of interest
in all cases [13]. Further, traditional methods may exhibit sensitivity to alternations in
the visual characteristics of the target object, such as variations in lighting conditions or
perspective shifts, which can consequently result in false positive detection [15].

In contrast, deep learning-based object detection techniques exhibit superior speed
and efficiency while concurrently addressing the limitations associated with traditional
computer-vision-based detection methodologies. Neural networks are core components of
deep learning [16]. There are various types of neural networks used for different purposes,
such as feedforward neural networks (FNNs) for regression and binary classification [16],
recurrent neural networks (RNNs) for language modeling and speech recognition [16],
and convolutional neural networks (CNNs) for feature extraction, image recognition, and
computer vision tasks [17]. Most modern deep learning models for object detection are
mainly based on convolutional neural networks (CNNs) [17]. Here, convolutional layers
are cascaded, one after another, to extract features from raw inputs. Each convolutional
filter is a small matrix of weights that is used to detect a specific pattern or feature in the
input data. For example, a convolutional filter might be designed to detect horizontal
edges in an image. As the filter is sliding over the input data, it looks for correlations
between the values in the filter and the values in the input data. When it finds a strong
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correlation, it produces a high value in the corresponding position in the output feature
map. This process is repeated for every position in the input data, producing a feature map
that encodes the presence of the pattern or feature that the filter is designed to detect [18].
Multiple filters can be applied to the input data, each designed to detect a different pattern
or feature. For example, a CNN might have one set of filters for detecting edges, another
set for detecting corners, and another set for detecting textures. These filters are learned
from data during the training process, allowing the CNN to acquire knowledge about the
crucial patterns that hold significance for the given task [18].

An object detection network mainly consists of two subnetworks. The first one is
called the feature extraction subnetwork, or backbone network, and the remaining one is
known as the detection subnetwork. There are many state-of-the-art backbone or feature ex-
traction networks, like Alexnet [19], VGG16 [20], VGG19 [21], Googlenet [22], Resnet18 [23],
Resnet50 [23], and Darknet53 [24]. Among feature extraction CNN models, Resnet50 is
distinguished by its superior accuracy. Resnet50 comprises 50 convolutional layers, which,
while contributing to its high performance, can also be susceptible to the “dying relu”
problem, which arises when the input to the relu activation function is negative, resulting
in zero output. If this happens repeatedly for a neuron, it can effectively “die”, ceasing
to contribute to the learning process. This phenomenon can hinder the network’s abil-
ity to learn complex features, particularly in deep networks like Resnet50. If a feature
extraction CNN model were developed with fewer convolutional layers and without expe-
riencing the “dying relu” problem, it could potentially outperform Resnet50 when used as
a backbone network.

State-of-the-art detection networks include region-based convolutional neural net-
works (RCNNs) [25], Fast RCNN [26], Faster RCNN [27], You Only Look Once (YOLO) [28],
YOLOv2 [29], YOLOv3 [24], and Single-Shot Detector (SSD) [30]. An RCNN and its variants
involve multiple stages of object detection. First, they generate region proposals, then
classify each proposal and refine the bounding boxes. This multistep process makes RCNN
models relatively slow and unsuitable for real-time applications. The training process for
RCNN models can be more cumbersome. The original RCNN requires training multiple
models separately (feature extraction, SVM classifier, and bounding box regression). Fast
RCNN and Faster RCNN simplify this to some extent, but the overall training pipeline
remains more complex than YOLO or SSD. In contrast, YOLO and SSD are known as
single-stage object detectors. SSD utilizes multiple feature maps at different scales to han-
dle objects of different sizes. This approach adds complexity to the network. Although,
SSD uses multiple feature maps to detect objects of various sizes, it can still struggle with
very small objects, as the lower resolution of some feature maps might not capture fine
details effectively. The newer versions of YOLO (i.e., YOLOv3 and YOLOv4) have im-
proved small object (such as drones) detection by incorporating multiscale predictions and
feature pyramids [31]. These versions introduce more complex architectures, including
additional layers and advanced feature pyramids with improved bounding box predic-
tion. If YOLOv2 can be modified to better detect small objects, such as drones, and this
modified version demonstrates comparable performance to YOLOv3 and YOLOv4 while
retraining much lower complexity, then this modified YOLOv2 would be preferable over
the more complex YOLOv3 and YOLOv4 models. This would also make the model more
suitable for deployment in resource-constrained environments, such as mobile devices or
embedded systems.

3. Dataset Preparation

The accessibility of publicly available drone datasets is presently limited in practice
because of some privacy concerns, financial constraints, and safety considerations. The
utilization of drones is predominantly concentrated within specific industry domains,
mostly the military, search-and-rescue operations, and delivery services, which makes the
data collection more specific and limited.
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A novel drone dataset has been created at Leeds Beckett University (LBU), focusing
on three prominent drone models, namely, DJI Phantom (DJI, Nanshan, China), Yuneec
(Yuneec, Kunshan, China), and DJI Mavic Mini, as shown in Figure 1a. The acquisition of
video footage was executed using the following two distinct camera systems: the Canon
LEGRIA HF R806 (Tokyo, Japan), boasting an impressive 32× optical zoom and a focal
length ranging from 2.8 mm to 89.6 mm, and the Panasonic Ultra HD (Panasonic, Kadoma,
Japan), equipped with a 20× optical zoom and a focal length spanning from 4.08 mm to
81.6 mm. These two cameras are placed in such a way that they always make a triangle
with the object of interest. Having two cameras covering different angles helps to mitigate
occlusion issues, ensuring continuous tracking even when the object is partially observed
from one camera’s perspective. Moreover, combining the views of two cameras can result in
a wider field of view, capturing more details and contextual information around the object.
This newly created drone dataset is a diverse collection, containing three distinct drones
with various loads. After recording the videos, the files were segmented by specifying the
time intervals. The new dataset contains 30 video clips of 25 s in length.

The Multi-sensor Drone dataset stands as a monumental repository within the re-
search landscape, representing the most expansive compilation of aerial entities, inclusive
of drones and analogous objects, such as airplanes, birds, and helicopters. Offering un-
fettered access to researchers, this dataset serves as an invaluable resource for the explo-
ration and analysis of various aerial phenomena; samples of datasets frames are shown
in Figure 1b [32]. Within the Multi-sensor Drone dataset, a comprehensive collection of
aerial entities is encompassed, featuring the three distinct drone models, a small variant
represented by the Hubsan H107D+ (Hubsan, Walnut, CA, USA), a midsized counter-
part exemplified by the DJI Flame Wheel configured in a quadcopter arrangement, and
a high-performance model epitomized by the DJI Phantom 4 Pro [32]. Moreover, this
dataset encompasses various flying objects that may be mistakenly identified as drones,
like birds, airplanes, and helicopters. The Multisensor Drone dataset comprises a total of
650 video recordings, differentiated into 365 infrared (IR) and 285 visible (RGB) segments,
each lasting 10 s [32]. This collective repository yields a corpus of 203,328 meticulously
annotated frames, facilitating comprehensive analysis and evaluation of drone classification
algorithms [32].

The USC Drone Dataset comprises 30 video recordings captured within the confines
of the University of Southern California campus, all filmed utilizing a single drone model;
samples of dataset frame are shown in Figure 1c. These recordings were meticulously
curated to encompass a diverse array of background scenes, varying camera angles, dis-
tinct drone configurations, and diverse weather conditions [33]. Intentionally crafted to
encapsulate real-world scenarios, the videos aim to portray the nuances of drone behavior
amidst dynamic environmental factors, including rapid motion, challenging lighting condi-
tions, and occlusion phenomena [33]. Each video clip spans an approximately one minute
duration, with a frame resolution of 1920 × 1080 and a frame rate set at 15 per second [33].

For training of the CNN models, the new dataset along with the Multi-sensor Drone
dataset [32] and USC Drone dataset [33] were used. The inclusion of multiple object
classes in the training dataset served to enhance the model’s capacity to discriminate
between drones and other similar objects, such as birds and small aircraft. This increases
the robustness of the proposed algorithm, making it better able to handle real-world
scenarios. When using more classes, the model can learn more features that are useful
for classifying different types of objects. The custom dataset consisted of 3000 images of
drones, 2000 images of airplanes, 2000 images of helicopters, and 1000 images of birds.
This substantial quantity of images proves to be advantageous for training various deep
learning models [34].
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4. Proposed Algorithm

The proposed algorithm, as depicted in the flowchart in Figure 2, is structured into
five distinct sections, namely, input block, convolutional block 2, convolutional block 3,
convolutional block 4, and detection block. Initially, an RGB image is fed into the input
block. This block is designed to accept the input dimension of 224 × 224 × 3. Here, the
first two dimensions (224 × 224) represent the width and height of the input image, while
the last dimension (3) signifies the number of color channels of the image (red, green,
and blue). The choice of input size 224 × 224 × 3 was deliberate, as it strikes a balance
between being small enough to fit into memory, which is crucial for training large models,
and containing sufficient information for tasks such as image classification and object
recognition. The dimension is also standard across many well-known datasets, such as
the “Imagenet Dataset”. By adhering to this standard input size, researcher can facilitate
comparisons between their model and others trained on the same dimensions, fostering a
more robust evaluation framework.
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The input block consists of one convolutional layer (Conv), one batch normalization
layer (batch norm, or BN), one leaky-relu (LR) activation layer, and one max pooling layer.
The Conv layer has 64 filters with dimensions of 7 × 7. State-of-the-art feature extraction
models usually use the first Conv layer with filter sizes of 3 × 3, 5 × 5, 7 × 7, and 11 × 11.
The proposed model works better using 7 × 7 filters at the very initial stage of the network.
Using 3 × 3 or 5 × 5 filter at the very first layer causes some contextual information loss. On
the other-hand, 11 × 11 filter sources have some extra contextual information, which may
not be that useful and destroy the harmony of the feature map reduction. The output of the
first 7 × 7-sized Conv with stride of 2 and padding of 3 is 112 × 112 × 64. Thus, the feature
map is downsampled to half from its original input dimensions. Batch normalization
normalizes the output, calculating the mean and standard deviation of the activations for
each channel across the mini-batch. The leaky-relu activation function makes the training
smooth. The max pooling layer with a window size of 3 × 3 and stride of 2 is used to
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further downsample the feature maps and helps to extract information from the more
intense pixels. The output of the max pool layer is 56 × 56 × 64.

The convolutional block 2, after the input block, contains three subblocks, namely,
1. proposed convolutional subblock 2a (Pro2a); 2. proposed convolutional subblock 2b
(Pro2b); and 3. proposed convolutional subblock 2c (Pro2c). Pro2a has three Conv layers,
which are denoted as Pro2a_21, Pro2a_22, and Pro2a_23. After each Conv layer, there is
one batch norm layer and one leaky-relu activation layer. Pro2a_21 uses 64 filters with
dimensions of 1 × 1 with stride of 1 and padding of 0. Pro2a_22 utilizes 64 filters with sizes
of 3 × 3, and Pro2a_23 has 256 filters with sizes of 1 × 1 with the same stride and padding.
The first 1 × 1 Conv layers allow the network to learn a more compact representation of the
input data, which can be used for the subsequent layers in the network. After that, 64 filters
sized 3 × 3 are used, because this is a small enough size to capture the fine-grained details
in the image while also being large enough to capture the overall structure of the image.
Using a 3 × 3 filter allows the network to learn more complex features than it would with
larger or smaller filter dimensions. Additionally, using filters with dimensions of 3 × 3
helps to reduce the number of parameters in the model, making it more efficient and easier
to train. Again, 256 filters sized 1 × 1 are used to increase the channel dimensions from
64 to 256 and to trace more details for the feature maps. The output of the input block is
directly connected to the output of the pro2a_23 block using “bypass connection”. This
bypass connection allows the model to learn more complex and diverse features, improves
its ability to relate new features on test data to the most likely features that it learned from
the training dataset, and reduces the risk of overfitting. As the dimensions of the feature
maps are not the same, 256 filters sized 1 × 1 are used along with the bypass connection.
This makes the dimensions of the feature maps and the number of channels equal. This
can help the model to learn spatial hierarchies, which can enable it to better understand
the relationships between different parts of the feature maps. The pro2b_21, pro2b_22,
pro2b_23, pro2c_21, pro2c_22, and pro2c_23 have the same configuration as the pro2a series,
apart from having bypass connections without a 1 × 1 Conv layer. For the pro2b series,
the 1 × 1 convolutional layers in this configuration are used to reduce the dimensionality
of the input, allowing the network to process it more efficiently. The 3 × 3 convolutional
layers are used to learn the residual function, and the final 1 × 1 convolutional layer is
used to restore the dimensionality of the output. The same is applicable for the pro2c series.
By doing so, the model can learn efficiently. Convolutional block 3 and convolutional
block 4 have similar connections and configurations. The number of filters is increased or
decreased following the power of 2 to maintain harmony. This makes the network more
scalable, since it is easy to double the number of filters if more capacity is needed without
having to change the overall architecture of the network. The leaky-relu function is used
as the activation function throughout the whole network. The leaky-relu is a variant of
the relu activation function that allows for a small, nonzero gradient when the input is
negative. This helps to prevent the dying relu problem, where many neurons in the network
end up outputting a constant zero value and, therefore, stop learning. This improves the
model’s performance. The final output of the feature extraction model, which is taken
from the output of the “LR28”, is connected to the modified YOLO V2 (YOU ONLY LOOK
ONCE VERSION2) detector network. The modified YOLOv2 (mYOLOv2) comprises four
subblocks. To incorporate the features from the proposed backbone network into YOLOv2,
the first Conv layer in mYOLOv2 serves as a bridge between the two models. The first and
second Conv blocks predict the “object-ness” score. The third Conv layer has a stride of 2;
hence, it performs the dimensional reduction of the feature maps along with object-ness
score perdition. This third sub-block helps to increase the accuracy and robustness by
increasing the receptive field, spatial hierarchy, and translation invariance to learn more
discriminative features. The YOLO class Conv layer is responsible for predicting the
class probabilities for each detected bounding box. The YOLO transform layer helps in
transforming the intermediate feature maps into an appropriate form for object detection.
The YOLO output layer generates the final predictions by predicting the bounding box
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coordinates and class probabilities. The default YOLO v2 detector uses the relu function
as its activation layers. Here, all default relu activation layers are replaced by leaky-relu
activation layers. This brands the detection network more robust to the issue of dying relu
units and achieves a better performance in detecting drones.

5. Experimental Results

In this paper, a novel CNN-based feature extraction network along with modified
YOLO v2 is proposed for detecting drones and similar objects. The performance of the
proposed model is compared with state-of-the-art object detection models. The datasets
described in Section 3 are used in this experiment.

5.1. Proposed Feature Extraction Network with Different Optimizers

The proposed feature extraction network is trained with different optimizers maintain-
ing other hyperparameter constants, like a learning rate of 0.01, max epoch of 10, mini-batch
size of 20, and frequency of 50. Table 1 shows that after completing the maximum number
of epochs, the mini-batch accuracy was 100%, validation accuracy was 85.14%, mini-batch
loss was 0.0069, and validation loss was 1.6661 for the ADAM Optimizer. It can be observed
from Table 2 that the mini-batch accuracy was 100%, validation accuracy was 94.86%,
mini-batch loss was 0.0001, and validation loss was 0.1034 for the SGDM Optimizer after
completing the maximum number of epochs. Hence, the SGDM performed better than
the ADAM optimizer with the custom dataset. This is because ADAM maintains adaptive
learning rates for each parameter individually, which can introduce noise. The custom
dataset used for the training contains many small object images. This means they will have
many zero entries. In handling such types of datasets, the SGDM performs better. Moreover,
the SGDM can help the update process and prevent overfitting by using momentum [35].

Table 1. Training and validation based on ADAM.

Epoch Iteration Elapsed Time
(hh:mm:ss)

Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

Base Learning
Rate

1 1 00:00:15 5.00% 25.97% 2.7688 4.2363 0.0100
1 50 00:01:20 75.00% 61.53% 0.5686 1.3813 0.0100
2 100 00:02:26 95.00% 76.53% 0.1081 1.3301 0.0100
2 150 00:03:33 95.00% 73.47% 0.3317 1.1884 0.0100
3 200 00:04:42 100.00% 74.17% 0.04370 1.4640 0.0100
3 250 00:05:50 100.00% 86.53% 0.05330 1.2644 0.0100
4 300 00:06:58 95.00% 67.92% 0.1578 2.3191 0.0100
5 350 00:08:05 100.00% 80.28% 0.0177 1.1865 0.0100
5 400 00:09:12 100.00% 81.94% 0.0088 1.2314 0.0100
6 450 00:10:20 100.00% 86.39% 0.0029 1.1369 0.0100
6 500 00:11:27 100.00% 86.39% 0.0029 1.1369 0.0100
7 550 00:12:36 75.00% 79.31% 0.7070 1.5656 0.0100
8 600 00:13:43 100.00% 85.14% 0.0539 1.3672 0.0100
8 650 00:14:49 90.00% 85.56% 0.3977 1.0454 0.0100
9 700 00:15:24 100.00% 87.64% 0.0427 1.0036 0.0100
9 750 00:15:53 95.00% 90.83% 0.0540 0.9987 0.0100
10 800 00:16:21 100.00% 85.14% 0.0176 2.0756 0.0100
10 840 00:16:45 100.00% 85.14% 0.0069 1.6661 0.0100

Furthermore, the custom dataset that was used here is full of various objects, like
airplanes, birds, drones, and helicopters, of different sizes and aspect ratios. Sometimes
ADAM’s adaptive learning rates might not adapt optimally across all dimensions. This
could result in suboptimal convergence. The SGDM, on the other hand, tends to work better
in such scenarios due to the momentum term, which helps steer the optimization process
along the dominant directions and overcome issues related to high dimensionality [35].
Sometimes, ADAM’s adaptive learning rate might struggle to adapt efficiently if the
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gradients computed during the training process have high variance. SGDM, with its
momentum term, can help mitigate this issue and provide more stable convergence [35].

Table 2. Training and validation based on SGDM.

Epoch Iteration Elapsed Time
(hh:mm:ss)

Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

Base Learning
Rate

1 1 00:00:09 0.00% 23.97% 2.7197 2.4006 0.0100
1 50 00:00:46 100.00% 93.19% 0.0028 0.1610 0.0100
2 100 00:01:23 100.00% 94.72% 0.0017 0.1380 0.0100
2 150 00:02:02 100.00% 93.19% 0.0096 0.2071 0.0100
3 200 00:02:39 100.00% 95.97% 0.0054 0.0916 0.0100
3 250 00:03:17 100.00% 95.97% 0.0011 0.0932 0.0100
4 300 00:04:07 100.00% 96.11% 0.0004 0.0998 0.0100
5 350 00:05:08 100.00% 95.28% 0.0016 0.0908 0.0100
5 400 00:06:09 100.00% 96.11% 0.0002 0.1004 0.0100
6 450 00:07:11 100.00% 95.28% 0.0004 0.1023 0.0100
6 500 00:08:14 100.00% 95.69% 0.0003 0.1136 0.0100
7 550 00:09:17 100.00% 95.42% 0.0014 0.1045 0.0100
8 600 00:10:19 100.00% 96.11% 0.0001 0.1116 0.0100
8 650 00:11:24 90.00% 94.72% 0.0006 0.1101 0.0100
9 700 00:12:27 100.00% 94.86% 0.0001 0.1153 0.0100
9 750 00:13:30 100.00% 95.42% 0.0015 0.1083 0.0100

10 800 00:14:32 100.00% 95.69% 0.0002 0.1211 0.0100
10 840 00:15:25 100.00% 94.86% 0.0001 0.1034 0.0100

5.2. State-of-the-Art Feature Extraction Models vs. Proposed Model

Resnet18, Resnet50, and Darknet53 are considered among the best performing feature
extraction networks due to their innovative architectures, which address critical challenges
in deep learning. Resnet18, with 18 layers, balances depth and computational efficiency,
while Resnet50, with 50 layers, captures more complex features, leading to higher ac-
curacy on challenging datasets. Darknet53 combines a residual network with densely
connected layers to optimize both feature extraction and computational efficiency, making
it particularly effective for real-time applications.

Figure 3 shows that Resnet18 achieved a 90% validation accuracy with a max epoch of
10, mini-batch size of 20, learning rate of 0.01, and the frequency of 50 on the custom dataset.
The elapsed time was 3 min and 20 s. The total learnable properties were 11.1 million.

Figure 4 illustrates that Resnet50 resulted in a 93.75% validation accuracy on the
custom dataset with a max epoch of 10, mini-batch size of 20, learning rate of 0.01, and
frequency of 50. The elapsed time was 13 min and 53 s. Here, the learnable properties were
23.5 million.

Figure 5 depicts the training outcomes of the pretrained network Darknet53 with
a max epoch of 10, mini-batch size of 20, frequency of 50, and learning rate of 0.01 on
the custom dataset. The validation accuracy was below 80% up to an epoch number of
5, becoming stable after epoch number 6, and achieving a 92.22% accuracy at the end
with an elapsed time of 26 min 31 s, with almost 40 million learnable properties, and high
validation loss.

Figure 6 portrays that the proposed backbone network for feature extraction yielded a
94.58% validation accuracy on the custom dataset with a max epoch of 10, mini-batch size
of 20, learning rate of 0.01, and frequency of 50. The elapsed time needed was 6 min and
39 s. The total learnable properties were 4 million.

The proposed feature extraction method achieved 5% more validation accuracy with
almost three times less learnable properties compared to Resnet18. In comparison with
Resnet50, the proposed model achieved a 0.85% better accuracy spending half the elapsed
time and with almost six times fewer learnable properties. Darknet53 is four times slower
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than the proposed network. In terms of accuracy and loss, the proposed backbone network
attained better results than the Darknet53 with 10 times fewer learnable properties.
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In the conducted experimentation shown in Figure 7, three distinct learning rates
were used, namely, 0.01, 0.001, and 0.0001. Each learning rate was associated with a
set validation accuracy, corresponding to the following four different CNN architectures:
Resnet18, Resnet50, Darknet53, and the proposed method. Specifically, for a learning rate
of 0.01, the validation accuracies for the architectures were found to be 90.83%, 93.75%,
92.22%, and 94.58%, respectively. Subsequently, for a learning rate of 0.001, the validation
accuracies were recorded as 87.72%, 88.64%, 80.45%, and 88.50% for Resnet18, Resnet50,
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Darknet53, and the proposed method, respectively. Finally, employing a learning rate
of 0.0001 resulted in validation accuracies of 88.53%, 89.60%, 86.70%, and 88.90% for the
respective CNN architectures.
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Figure 7. Relationship between validation accuracy and learning rates for various CNN models.

As the duration of the learning rate increased, the validation accuracy decreased across
all of the specified CNN models. For a learning rate of 0.01, the proposed method achieved
a validation accuracy of 94.58%, outperforming the other architectures. The elapsed time
variation associated with the specific learning rates were consistently similar across the
mentioned experiments, thereby rendering a separate discussion unnecessary.

Figure 8a,b correlate the relationship among the validation accuracy, elapsed time,
and number of epochs across different neural network architectures, namely, Resnet18,
Resnet50, Darknet53, and the proposed method. For 10 epochs, the validation accuracies
achieved were 90.83% for Resnet18, 93.75% for Resnet50, 92.22% for Darknet53, and 94.58%
for the proposed method. The corresponding elapsed time for these models were 3 min 20 s,
18 min 40 s, 26 min 31 s, and 6 min 39 s. Remarkably, the proposed method consistently
exhibited the highest validation accuracy of 94.58% with an elapsed time of 6 min 39 s,
beating Resnet18, Resnet50, and Darknet53 when the number of epochs was set to 10.
Similarly, at 20 epochs, the validation inaccuracies were 82.50%, 85.89%, 78.13%, and 88%,
while the corresponding elapsed times were 18 min 50 s, 25 min 15 s, 40 min 10 s, and
23 min 50 s for Resnet18, Resnet50, Darknet53, and the proposed method, respectively.
Once again, the proposed method demonstrated a superior performance, achieving the
highest validation accuracy of 88%.

Figure 9a,b provide an integrated exploration of the dynamics among validation
accuracy, elapsed time, and mini-batch size across distinct neural network architectures,
namely, Resnet18, Resnet50, Darknet53, and the proposed method. Resnet18, Resnet50,
Darknet53, and the proposed method achieved validation accuracies of 90.83%, 93.73%,
92.22%, and 94.58%, respectively, with their associated elapsed times of 3 min 20 s, 18 min
40 s, 26 min 31 s, and 6 min 39 s. Similarly, with a mini-batch size of 40, the validation
accuracies of Resnet18, Resnet50, Darknet53, and the proposed method were recorded
as 86.72%, 88.64%, 82.45%, and 89.50%, respectively. The corresponding elapsed times
for these models were 23 min, 30 min 50 s, 53 min, and 18 min, respectively. Finally,
for a mini-batch size of 80, the validation accuracies were 83.53%, 86.60%, 78.70%, and
88.50%, while the associated elapsed times were 30 min, 35 min 50 s, 83 min 60 s, and
23 min 50 s for Resnet18, Resnnet50, Darknet53, and the proposed method, respectively.
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Consistently, the proposed method outperformed the other architectures, emphasizing its
superior performance across varying mini-batch sizes.
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Figure 8. (a) Relationship between validation accuracy and number of epochs for various CNN
models; (b) relationship between elapsed time and number of epochs for various CNN models.

Figure 10a,b present comparative analyses of the validation accuracies and associated
elapsed times for Resnet18, Resnet50, Darknet53, and the proposed method at validation
frequencies of 50 and 100. With a validation frequency of 50, the validation accuracies of
Resnet18, Resnet50, Darknet53, and the proposed method were 90.83%, 93.75%, 92.22%, and
94.58%, respectively. The associated elapsed times were 3 min 20 s, 18 min 40 s, 26 min 31 s,
and 6 min 39 s, respectively. The proposed method achieved the highest validation accuracy
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of 94.58% with an elapsed time of 6 min 39 s. When the validation frequency was increased
to 100, the validation accuracies were 82.64% for Resnet18, 73.89% for Resnet50, 78.32%
for Darknet53, and 84.85% for the proposed method. The corresponding elapsed times
for these models were 22 min 50 s, 28 min 15 s, 35 min 10 s, and 18 min 50 s, respectively.
Similarly, with a frequency of 100, the proposed method yielded the highest validation
accuracy of 84.85% with the smallest elapsed time of 18 min 50 s, outperforming Resnet18,
Resnet50, and Darknet53.
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Figure 9. (a) Relationship between validation accuracy and mini-batch size for various CNN models;
(b) relationship between elapsed time and mini-batch size for various CNN models.
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5.3. Anchor Boxes Estimation

Accurately estimating the number of anchor boxes is a key factor in designing a detec-
tor that can achieve superior performance. The Intersection over Union (IoU) calculation
helps to determine the similarities between the predicted boxes and the ground-truth boxes,
thus enabling the network to learn how to localize object’s precisely. The IoU is given by
(1), as follows [36]:

IoU =
Overlap area between bounding box o f predicted and ground truth
Combine area between bounding box o f predicted and ground truth

(1)



Sensors 2024, 24, 4550 16 of 25

A threshold is set to determine whether a predicted box is a good match to the ground
truth. If the IoU between the predicted box and ground-truth box exceeds the threshold, it
is considered a positive match. Figure 11 describes the relationship between mean IoU and
number of anchor boxes for the custom dataset. It is observed that the highest mean IoU
(Mean IoU = 0.839996) was obtained when the number of anchor boxes was 12. This means
the best number of anchors to increase the detector performance is 12.
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5.4. Modified YOLOv2 Network with Different Optimizers

The training losses with respect to the number of iterations for the different optimizers
are displayed in Figure 12. Figure 12I provides a zoomed-in view of iterations 0 to 200,
while Figure 12II focuses on iterations 200 to 600. It can be observed that the initial losses
for the SGDM and ADAM were 15.0906 and 18.5401, respectively. The SGDM’s training
losses were better than ADAM’s when the number of iterations were from 0 to 50. When
the number of iterations crossed 50, ADAM had relatively better results than the SGDM,
and this continued up to 500. After, the SGDM and ADAM exhibited almost the same
performances. Hence, for a detection network, either the SGDM or ADAM can be used, as
both had similar performances with the custom dataset.

5.5. State-of-the-Art Feature Extraction Models with YOLOv2 vs. Proposed Feature Extraction
Model with Modified YOLOv2

In this section, state-of-the-art feature extraction networks, namely, Resnet50, Resnet18,
and Darknet53, were added to the You Only Look Once version2 (YOLOv2) detector and
trained with the custom dataset. After the training, they were tested with the test dataset.
At the same time, the proposed feature extraction network was combined with the modified
YOLOv2 detector and trained on the custom dataset. The proposed new model for feature
extraction with the modified YOLOv2 detector was applied to the test dataset to verify
its performance.
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5.5.1. Resnet18 + YOLOv2

The Resnet18 feature extraction model was integrated with the YOLOv2 (You Only
Look Once version2) object detection framework which was shown in Figure 13. The time
needed to train the detector was 89 min and 12 s with a max epoch of 20, max iterations of
1900, iterations per epoch of 95, and learning rate of 0.001. The total learnable properties
were 15.9 million. Upon completion of the training phase, the model was evaluated using
test images. The evaluation results indicate that the model effectively detected drones,
achieving a confidence score of 52%.
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5.5.2. Resnet50 + YOLOv2

Figure 14 illustrates the model’s confidence in detecting objects in the test images when
the Resnet50 feature extraction network was combined with the YOLOv2 object detection
framework. The training process for the detector encompassed a duration of 82 min and
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48 s employing the following specific parameters: max epoch of 20, max iterations of 1900,
iterations per epoch of 95, and learning rate of 0.001. The model comprised 27.5 million
learnable parameters. Following the training phase, the model was evaluated using test
images. The evaluation shows that the model detected drones with a confidence score of 53%.
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5.5.3. Darknet53 + YOLOv2

Figure 15 depicts the confidence levels of the model in identifying objects in test images,
utilizing the Darknet53 feature extraction network in conjunction with YOLOv2 object
detection framework. The training process for the detector spanned 91 min 30 s, utilizing
the following parameters: a maximum of 20 epochs, 1900 total iterations, 95 iterations per
epoch, and a learning rate of 0.001. The total learnable parameters were 41.60 million. After
training, the performance of the model was tested on the test images. The model was able
to detect drones with a confidence score of 53%.
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5.5.4. Darknet53 + YOLOv3

Figure 16 shows the confidence scores for object detection in test images, achieved by
integrating the Darknet53 feature extraction network with the YOLOv3 object detection
framework. The training time required for the YOLOv3 detector was 130 min with a max
epoch of 20, max iterations of 1900, iterations per epoch of 95, and learning rate of 0.001.
In the parallel pooling, eight workers worked simultaneously. This model had a total of
62 million learnable parameters. The model detected drones with a confidence score of 53%.
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5.5.5. Proposed + Modified YOLOv2

Figure 17 displays the accuracy levels of the proposed model (proposed backbone
network + modified YOLOv2) at identifying objects in test images. The time needed to
train the new model was about 80 min and 19 s, with a max epoch of 20, max iterations of
1900, iterations per epoch of 95, and learning rate of 0.001. The total quantity of learnable
parameters amounted to 5 million. The model demonstrated an ability to detect drones
and similar objects with a confidence score of 77%.
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Table 3 presents various models along with their respective quantities of learnable
parameters and corresponding test accuracy rates. The relationships between model
complexity, quantified as the number of learnable parameters, and performance is a focal
point of discussion. Typically, increased complexity, as indicated by a higher number of
learnable parameters, heightens the risk of overfitting. Overfitting occurs when a model
excessively tailors itself to the training data, impairing its ability to generalize effectively to
unseen data.

Table 3. Learnable properties vs. test accuracy of the different models.

Model Learnable Properties
(In Millions) Test Accuracy

Resnet18 + YOLOv2 15.90 52%
Resnet50 + YOLOv2 27.50 53%

Darknet53 + YOLOv2 41.60 53%
Darknet53 + YOLOv3 62.00 54%

Proposed 5.00 77%

In contrast, an optimal model often strikes a balance between complexity and per-
formance. This balance is reflected in the model being characterized by fewer learnable
parameters yet achieving a higher test accuracy. For instance, the proposed model, with a
modest 5 million learnable parameters exhibited a notably high accuracy in test detection
of 77%. This suggests that despite its relatively lower complexity compared to the other
models, the proposed model effectively captures the underlying patterns in the data and
generalizes well to new instances.

Conversely, models with higher complexities, such as Darknet53 + YOLOv3, with
62 million learnable parameters, may encounter greater challenges in generalization de-
spite their extensive capacity to represent complex patterns. The observed performance
variations across models underscores the intricate interplay between model complexity
and predictive capability, emphasizing the importance of striking an optimal balance in
designing effective deep learning architectures.

6. Performance Evaluations

Precision–recall curves (PR curves), area under the precision–recall curves (AUC-PR),
and F1 score threshold curves were considered in evaluating the performance of the state-
of-the-art models. Precision is the number of true positive detections divided by the total
number of positive detections [37]. On the other hand, recall is the number of true positive
detections divided by the total number of actual detections [37]. The F1 score is the trade-off
between Precision and Recall.

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Positive + False Negative
(3)

F1Score =
2 × Precision × Recall
(Precision + Recall)

(4)

If a model has high precision and low recall, this means the model is very selective
about what it considers to be positive detections. So, it will only output a positive detection
if it is very confident about the positive class detection. The problem is that due to its high
selectiveness it might not detect all object classes in an image. On the other hand, a model
with high recall and low precision is less selective in detecting positive classes. So, it will
output many objects as a positive class object with a low confidence score. It might detect
all objects that are in the image but will result in many false object class detections. The
performance of any model is better if it can maintain a high precision value when the recall
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is increasing from lower to higher values [38]. The area under the precision–recall curve
(AUC-PR) is another important measurement of how well a model works. The higher the
area under the PR curve, the better the model [38].

Figure 18 shows the precision–recall (PR) curves of various state-of-the-art models
alongside the proposed model. An analysis of these curves reveals that the precision curve
of the proposed model consistently maintains higher values compared to the other models
as the recall increases from 0 to 1. Notably, the precision curve for the Resnet50 + YOLOv2
is slightly lower than the proposed model for recall values ranging from 0 to 0.24. For
recall values between 0.24 and 0.5, the precision curves of both the proposed model and
Resnet50 + YOLOv2 overlap. Beyond a recall value of 0.5, the proposed model consistently
outperformed Resnet50 + YOLOv2, demonstrating superior precision. In comparison, the
precision curves for Resnet18 + YOLOv2 and Darknet53 + YOLOv2 were significantly
lower than that of the proposed model.
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Further, the Darknet53 + YOLOv3 model exhibited the lowest area under the precision–
recall curve. This performance discrepancy is attributed to the more complex architecture of
YOLOv3, which may result in higher rates of false positives and false negatives, particularly
with custom datasets. While YOLOv3 excels in multiscale object detection, it may encounter
challenges in precise location under certain conditions, thereby affecting the PR curve.
Overall, the proposed model demonstrated the largest area under the PR curve compared
to the state-of-the-art models evaluated. This indicates that the proposed model offers
superior performance in terms of the AUC-PR metric.

Another evaluation criterion is the F1 score. The F1 score is a measurement of a
model’s accuracy that combines precision and recall. It is defined as the harmonic mean of
the precision and recall. The F1 score evaluates the performance of a model by considering
both the ability of the model to correctly detect objects (i.e., recall) and its ability to avoid
false detection (i.e., precision) [39]. Figure 19 portrays the F1 score curves for different
state-of-the-art models and the proposed model with respect to threshold values. The F1
score curves of the proposed model (proposed + modified YOLOv2) and the Resnet50 +
YOLOv2 overlapped from 0 to 0.85. Beyond the threshold value of 0.85, the proposed
model remains on top, ahead of Resnet50 + YOLOv2. The F1 curves of Resnet18 + YOLOv2
and Darknet53 + YOLOv2 stay well below the proposed model. The lowest area under
the F1 curve is covered by the Darknet53 + YOLOv3 model. The F1 score curve spans a
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larger area if a model’s hyperparameters have the right alignment with the dataset. In this
respect, the modifications made to the original YOLOv2 with the new feature extraction
network has this alignment with the custom dataset. The F1 score curve of the proposed
model had the largest area under the curve compared to the state-of-the-art models.
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7. Discussion

As presented in Section 2, a novel dataset featuring drones equipped with various
payloads was curated to facilitate the detection of drones operating within constrained
environments, such as airport and prisons, with a particular focus on identifying drones
transporting illicit substances and explosive materials. The newly assembled drone dataset
was combined with two publicly accessible datasets, namely, “Multi-sensor Drone Dataset”
and “USC Drone Dataset”. The custom dataset comprised 8000 images of drones alongside
analogous objects such as airplanes, helicopters, and birds. The dataset’s size proves
notably advantageous for convolutional neural networks (CNN)-based models, striking
a balance between adequacy for robust model training and testing without being overly
small or excessively large.

The proposed model comprises a modest architecture consisting of 31 convolutional
layers, strategically integrated with “bypass connections” to address the prevalent vanish-
ing gradient encountered in deep neural networks. By facilitating alternative pathways
for gradient flow during backpropagation, these bypass connections enable earlier layers
to directly access activations from deeper layers. Consequently, this architectural design
promotes the efficient reuse of features learned at varying depths of the network, enhancing
the model’s capacity to learn diverse and robust representations of input data. Additionally,
the incorporation of the leaky-relu activation function throughout the network effectively
mitigates the “dying relu” problem, ensuring the consistent propagation of information
across layers. Moreover, an augmentation of the architecture included the incorporation of
a new convolutional layer, featuring a stride of 2, in the detection block. This augmentation
was coupled with the sequential addition of a batch normalization layer and a leaky-relu
activation layer. This comprehensive modification enhanced the detector’s capabilities to
detect small objects from images and video frames.
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The proposed model, configured with specific hyperparameters and optimizer settings,
demonstrates utility when applied to a dataset characterized by noisy information and
objects with diverse aspect ratios. However, for lower levels of noise, adjustments to the
configuration may be necessary for optimal performance.

The efficacy of the proposed model is further accentuated by its careful management of
learnable parameters, which are pivotal in shaping the model’s efficiency, complexity, and
susceptibility to overfitting. Through a deliberate balance between efficiency and complex-
ity, the proposed model showcases a remarkable effectiveness while mitigating the risk of
overfitting. Notably, despite its modest composition of 31 convolutional layers and 5 million
learnable parameters, the proposed model achieved a noteworthy 77% on the test images,
highlighting its proficiency in capturing intricate patterns and exhibiting robust generaliza-
tion capabilities across unseen instances. Hence, the proposed model is more suitable for
resource-constrained environments, such as mobile devices or embedded systems.

8. Conclusions

In this paper, dominant state-of-the-art algorithms for object detection were applied to
a custom dataset. The experiment’s results show that the new proposed feature extraction
network with the modified YOLOv2 detector achieved better accuracy with less elapsed
time and fewer learnable properties compared to existing state-of-the-art models. The
proposed model resulted in a 77% confidence score in detecting drones from the test dataset,
whereas the Darknet53 + YOLOv3 model achieved 54%. The proposed model is very robust
as it was trained on multiple classes of objects, like drones, airplanes, helicopters, and
birds, under various weather conditions. Consequently, with highly dense backgrounds
containing numerous similar objects, as shown in Figure 20, the proposed model detects a
“drone with Load3” with a confidence score of 69%. This result exemplifies a high level of
performance. The constant high precision value when recall increased from 0 to 1, as well
as the area under the precision–recall curve and the F1 score–threshold curve, ensures that
the performance of the proposed model outperforms state-of-the-art models. In summary,
the proposed model demonstrates a paradigm shift in convolutional neural network design,
demonstrating that efficacy and efficiency need not sacrificed in favor of complexity and
learnable properties.
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