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Implementing heuristic‑based 
multiscale depth‑wise separable 
adaptive temporal convolutional 
network for ambient air quality 
prediction using real time data
Raj Anand Sundaramoorthy 1, Antony Dennis Ananth 1, Koteeswaran Seerangan 2, 
Malarvizhi Nandagopal 3, Balamurugan Balusamy 4 & Shitharth Selvarajan 5,6*

In many emerging nations, rapid industrialization and urbanization have led to heightened levels of 
air pollution. This sudden rise in air pollution, which affects global sustainability and human health, 
has become a significant concern for citizens and governments. While most current methods for 
predicting air quality rely on shallow models and often yield unsatisfactory results, our study explores 
a deep architectural model for forecasting air quality. We employ a sophisticated deep learning 
structure to develop an advanced system for ambient air quality prediction. We utilize three publicly 
available databases and real‑world data to obtain accurate air quality measurements. These four 
datasets undergo a data cleaning to yield a consolidated, cleaned dataset. Subsequently, the Fused 
Eurasian Oystercatcher‑Pathfinder Algorithm (FEO‑PFA)—a dual optimization method combining the 
Eurasian Oystercatcher Optimizer (EOO) and Pathfinder Algorithm (PFA)—is applied. This method 
aids in selecting weighted features, optimizing weights, and choosing the most relevant attributes 
for optimal results. These optimal features are then incorporated into the Multiscale Depth‑wise 
Separable Adaptive Temporal Convolutional Network (MDS‑ATCN) for the ambient Air Quality 
Prediction (AQP) process. The variables within MDS‑ATCN are further refined using the proposed FEO‑
PFA to enhance predictive accuracy. An empirical analysis is performed to compare the efficacy of our 
proposed model with traditional methods, underscoring the superior effectiveness of our approach. 
The average cost function is reduced to 5.5%, the MAE to 28%, and the RMSE to 14% by the suggested 
method, according to the performance research conducted with regard to all datasets.

Keywords Contamination of air, Air Quality Index, Ambient air quality prediction, Fused Eurasian 
Oystercatcher-Pathfinder Algorithm, Multiscale depth-wise separable adaptive temporal convolutional 
network

Environmental issues have been brought about by the ongoing expansion of globalized industrialization and 
urbanization. The deterioration of air quality brought on by the growth of industrialization and urbanization 
constitutes one of the major environmental  issues1. Power stations, manufacturing industries, and automotive 
exhaust emissions caused by transportation-related requirements have eventually contributed to the worsening 
of the worldwide quality of  air2. Air pollution poses a severe threat to people’s health and well-being because 
it can result in cancer and other respiratory  disorders3. Recurrent air pollution occurrences not only have an 
adverse effect on people’s health but also result in significant financial losses and other societal  issues4. According 
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to the features of air pollutants, rapid scientific study, precise forecasting of the quality of the air, and efficient 
prevention and purification can aid in the early implementation of preventative measures. People’s everyday lives 
are significantly impacted by the quality of air surrounding  them5. Reliable air quality forecasting has become 
increasingly vital as a tool for reducing pollutants and enhancing the quality of the  air6. Effective performance 
appraisal systems and forecasting of fluctuations in air quality are beneficial in the prevention and control of air 
pollution, which in turn enable the public’s health and the environment to be kept  safe7. This is made possible by 
a deeper understanding of the factors involved and the evolutions of air pollutants. Regulations for preventing 
and controlling air pollution can also be developed in accordance with particular  circumstances8.

Information on air quality has caused great worry throughout the world. In order to predict air quality, vari-
ous statistical techniques, like Auto-Regressive Integrated Moving Average (ARIMA), are extensively utilized. 
If the pattern is irregular or non-linear, these linear models might not produce an accurate  result9. Support 
Vector Regression (SVR)10 has been used in nonlinear regression forecasting in past years. Nevertheless, due 
to the large and complicated amount of data used by air quality predictors, which could lead to  overfitting11, 
SVR with underlying kernel translation, such as RBF kernel, could fail to provide an AQP model with satisfac-
tory performance. Unfortunately, the complicated drift in air quality, such as PM2.5 concentrations, cannot be 
accurately captured by the AQP systems now in  use12. Deep learning-based classifiers can extract features from 
the information regarding air quality and can increase forecast  reliability13. Several techniques simultaneously 
mimic the spatial and time interdependence of air quality data. Yet, commonly used machine learning techniques 
frequently exhibit considerable performance variability under various  conditions14.

Neural networks are better suited for predicting air quality than the methods mentioned above because they 
have high non-linearity, huge parallelization, and strong learning  capacity15. Many variables, including climate, 
wind speed, and geographical arrangement, have an impact on the quality of  air16. Because of this consequence, 
it is challenging to produce definite and precise prediction results using the popular single-model prediction 
system. One kind of approach is to combine many predictive models for air quality. In comparison to current 
methods, the integrated approach can greatly increase prediction  accuracy17. However, there is still much to 
learn about how to combine the benefits of several models depending on the features of the data collection. The 
data-driven technique for modeling air quality has been taken into consideration for designing various AQP 
systems because of the utilization of artificial intelligence and big data. Artificial Neural Networks (ANN) has 
emerged as the trending technique for air pollution modeling among data-driven techniques. The neural-network 
approaches have been shown to be useful in a variety of fields. Complicated meteorological phenomena can be 
effectively modeled using the deep-learning strategy. Nevertheless, the majority of the present deep learning-
based approaches fell short of modeling both the PM2.5 time series and the meteorological data at the same 
time in a unified predictive framework.

The following is a description of the paper’s main accomplishments in the forecasting model.

• To create an enhanced AQP model employing an adaptive-based deep learning framework and a meta-
heuristic algorithm to mitigate the harmful impacts brought on by ambient polluted air.

• To put forth the FEO-PFA, by which the parameters like kernel size, filter size, epochs, and random state in 
the TCN as well as features and weights, are optimized in order to obtain the best-weighted feature selection 
and better prediction rate.

• To accurately forecast the quality of the air employing the MDS-ATCN framework, where TCN is incorpo-
rated to provide a better prediction result.

• The National Air Quality Index, Open Government Data (OGD) Platform India, and Air Quality Index (AQI) 
across stations and cities in India from 2015 to 2020 are some of the open source datasets used in this work 
for system validation and assessment. Given that they are the largest, most current, and emerging datasets, 
they are also the most well-liked. As a result, the proposed work uses these datasets to assess how well the 
methodology could be used to forecast the air quality based on various attribute information types.

• Using various performance metrics, the proposed MDS-ATCN’s performance results have been verified and 
compared against the results of other existing AQ prediction techniques.

By applying the MSD-ATCN approach, the proposed system can effectively predict various contaminants. 
With appropriate data handling processes, it estimates the air quality based on the provided datasets. Compared 
to conventional statistical models, the framework can estimate air pollution levels more accurately by utilizing 
the proposed methods. Because of the increased precision, early warning systems and more informed decision-
making are made possible, empowering stakeholders to take preventative action to lessen the negative effects 
of air pollution. Since air pollution levels can be predicted throughout time and temporal dependencies could 
be effectively modelled using the MDS-ATCN. Through the utilization of these functionalities, the framework 
can pinpoint areas of high pollution, monitor patterns in pollution, and make more accurate projections about 
future pollution levels. Furthermore, it is highly proficient at automatically collecting pertinent features and 
acquiring informative representations from the provided data. This is especially helpful for predicting air qual-
ity because the relationship between the input variables (like meteorological data and pollutant concentrations) 
and the output (like the AQI) can be rather complex and nonlinear. It also has the ability to learn hierarchical 
representations of air quality data, which allows it to find hidden patterns that conventional feature engineering 
techniques would miss.

The further topics that are discussed in this paper are as follows. In section “Materials and methods”, the 
existing works related to AQP are surveyed. In section “Development of multiscale depthwise separable adap-
tive deep learning network for ambient air quality prediction using real time data”, the development of an MDS 
deep learning network for ambient AQP using real-time data is discussed. In section “Modified heuristic-based 
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weighted feature selection model for real time data-aided ambient air quality prediction”, a modified heuristic-
based weighted feature selection model for real-time data-aided ambient AQP is discussed. In section “Multi-
scale depthwise separable adaptive temporal convolutional network for real time data-aided ambient air quality 
prediction”, MDS-ATCN for real-time data-aided ambient AQP is provided and discussed in detail. In section 
“Result and discussion”, the simulation carried out, and the comparison done for evaluation of the developed 
AQP model are provided. In section “Conclusion”, the summary of the developed AQP model is given.

Materials and methods
Attention, Autoencoder, GRNN, LSTM, and seq2seq model show better performance in predicting the air quality. 
This method provides accurate results, and also this model is quick to train. This model also provides warnings 
prior to sudden pollution strikes. Yet, this method provides accurate prediction results only in temporal atten-
tion, and hence the efficiency in spatial attention is still under consideration. There is lagging in the functioning 
of this model because of its loss function. LSTM, GRU, and SHAP are efficient in identifying only the essential 
features for predicting air quality and the effects of these features on the quality of the air. Yet, the computational 
complexity is more, the memory requirement is more, and the overall efficiency of the computation is not as 
expected in this method. Attention LSTM, Seq2Seq, and XGBoosting tree has higher accuracy in predicting the 
quality of air. But, this model faces some issues while dealing with outlier values. PSO and BP Unlike the con-
ventional methods, this method attains good searching ability and does not allow the system to fall into a local 
minimum, but it has lower convergence speed. CNN, LSTM, and ST-DNN prediction performance is higher 
in the initial hours. However, this method does not consider the delay in a long time which results in reduced 
system performance. IoT,  NARX6 method is highly suitable for real-time prediction of the quality of air because 
of the utilization of various sensors by this method. Yet, this model is highly complex, requires more memory, 
requires more power, and has issues regarding the security of data. SVM memory requirement is low. However, 
this model is highly affected by noised data. Autoencoder and LSTM are efficient in forecasting the PM2.5 
time series in a wider area. But, deterministic factors like gas emission and economy are not considered by this 
method while predicting the quality of air. This results in the development of an advanced deep learning-based 
air quality prediction model.

Related works
Liu et al.18 have proposed the Attention-based Air Quality Predictor (AAQP), a Sequence-to-Sequence (Seq2Seq) 
model aimed at protecting people from air pollution. It used past air quality data as well as weather information to 
forecast the next AQI. To increase the training speed of Seq2Seq, the original Recurrent Neural Network (RNN) 
in the encoder was replaced with a fully connected encoder. Position embedding was also implemented to help 
the fully linked encoder determine the sequential links between the source sequences. The n-step recurrent 
prediction was used to solve the error accumulation problem. As compared to the original Seq2Seq attention 
model, the training time was much shortened, yet the error accumulation was still decreased. The n-step recur-
rent prediction in the AAQP outperformed other approaches, as the experimental results confirmed. Yang et al.19 
have combined data from air pollution, temperature, moisture content, and atmospheric pressure databases to 
create the Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) ambient air forecast models 
in four different scenarios. After this, the interpretability of the AQP was evaluated using the SHapley Additive 
exPlanation (SHAP) technique. Merely considering meteorological conditions did not improve prediction accu-
racy. When atmospheric parameters and numerous other air pollutants were also taken into consideration, the 
model’s precision increased. In addition, the pressure gradient had the greatest influence on air quality forecasts, 
with temperature and humidity following closely behind. The different forecast accuracy rates could have their 
origins in the interplay between different air pollutants and climatic circumstances. The investigational results 
reported in this study may help create an AQP that is more trustworthy and accurate.

Chen et al.20 have proposed a forecasting approach that makes use of a dual LSTM mixed model. Using the 
Seq2Seq method, a single forecasting model was first constructed. The expected quantity of every element in the 
air quality data was independently ascertained using this procedure. Every facet of air quality was handled as a 
temporal data series in the prediction process. The attention LSTM model carried out the multi-factor forecast-
ing. The model considered the factors that influence air quality, including data from neighboring stations and 
meteorological conditions. In the end, the XGBoosting (eXtreme Gradient Boosting) tree was used to combine 
two models. The total predicted outcomes were attained by summing the estimated values of the best sub-tree 
nodes. When five assessment methodologies were implemented to evaluate and analyse the suggested strategy, 
it fared better in terms of variance and design expressive power. When compared to other models, the model’s 
forecast data accuracy had much enhanced.

Huang et al.21 have put forward an enhanced method for optimizing Back Propagation (BP) neural networks 
for AQI prediction, based on the Particle Swarm Optimization (PSO) algorithm. The improved PSO algorithm 
improved the learning component and the weighting factor variant method, enabling fast convergence to the 
best path and guaranteeing early global searching capabilities. An adaptive mutation approach was developed 
to keep the elements from settling into the local minimum during the search phase. A BP neural network was 
optimized using the improved PSO method, and the results were compared and examined to generate an AQI 
forecast that was more accurate. Soh et al.22 have determined spatial relations to forecast air quality for up to 48 h 
using a hybrid LSTM, artificial neural network, and CNN. The proposed forecasting algorithm used a range of 
meteorological data from the previous few hours along with topographical region data to assess how geography 
impacts air quality. The framework comprised trends from many locations that were inferred via time-domain 
correlations between neighboring locations and locations with similar attributes. Tests conducted on data sets 
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from Beijing and Taiwan showed that the proposed model performed amazingly well, outperforming the most 
recent state-of-the-art methods.

Sridhar et al.23 have developed an Internet of Things (IoT) node equipped with sensors to measure tempera-
ture, humidity, and pollution. IoT nodes were placed throughout the research facility in order to gather data on air 
quality from interior sections for study and to validate the suggested concept. Using GSM/Wi-Fi equipment, the 
suggested system transmitted the observations of the air quality in real-time to a webpage and software applica-
tions. It also produced audible alerts if it detected deviations in the air quality. The technology was appropriate for 
Big Data analysis applications like traffic and weather forecasting since it captured sensor signals at a rate of one 
sample per second. The standardized air pollutant sensor values and sensor data had an optimal correlation. The 
goal of the endeavor was to advance the creation of inexpensive, decentralized sensor devices for environment 
intelligence applications. Chun et al.24 have forecasted the air quality at an unclear location and time using the 
Support Vector Machine (SVM) approach. Features such as population, land use, pollution sources, topographi-
cal factors, and economy were retrieved from the Geographic Information System (GIS) and then combined 
into a time-series data based on geography. Temporal estimation was first performed in the base stations in 
order to spatially estimate the upcoming AQI of unknown locations. It was confirmed that short-term temporal 
forecasting has high precision. It has been discovered that a variety of climatic and meteorological elements 
influence seasonal variations. During the geographical assessment phase, the spatial variables that appeared to 
have an impact on the quality of the air were urban sprawl and city type. The AQI computation has been linked 
to characteristics such as transportation usage, forest utilization, agricultural utilization, economic factors, and 
terrain utilization. An SVM-based forecasting framework for northern Taipei was created by this study. Other 
locations could develop their own designs utilizing their local data to enhance decision-making.

Xu and  Yoneda25 have proposed forecasting PM2.5 time series across multiple metropolitan areas using 
the LSTM auto-encoder. The underlying relevance of the contaminants at different places was automatically 
and implicitly revealed by the framework. Furthermore, all of the meteorological data from the observation 
station was used, which improved the performance of the suggested framework. In instance, multilayer LSTM 
networks have been able to replicate the spatiotemporal characteristics of contaminant nanoparticles in urban 
areas. Furthermore, a stacked auto-encoder was used to encode the primary transformation pattern of urban 
meteorological networks, providing essential auxiliary data for PM2.5 time-series forecasting. Furthermore, 
multitask learning solved the problem of the traditional data-driven modelling technique’s insufficient use of 
multisite data by automatically recognizing the dynamic connection between various key pollutant time series. 
The simulation results of Beijing’s PM2.5 forecasts showed how effective the recommended technique was.

Problem statement
Many intelligence-based computational techniques are developed for air quality prediction and classification 
in the early literature publications. Recent reviews have revealed a number of obstacles and issues, which are 
shown below:

• Complex nonlinear correlations found in air quality data may be difficult for linear prediction algorithms to 
identify. In the event that the relationships are not linear, they may under fit the data, resulting in less than 
ideal performance.

• Even though decision trees and their ensemble variations are effective and easy to comprehend, they have 
a tendency to overfit the training set, particularly when the dataset contains a large number of features or 
intricate feature interactions. Inadequate adaptation to new data might result from overfitting.

• Given the class label, the Bayesian model assumes that characteristics are conditionally independent, which 
may not be the case for all datasets on air quality. A breach of this supposition may result in less than ideal 
performance.

• Even though deep learning models are capable of capturing intricate correlations in data, they frequently 
need a great amount of data to train, and they may overfit, particularly when working with small datasets. 
They also need careful hyperparameter adjustment and can be computationally expensive to train.

• Certain classifiers are challenging to interpret, especially the more sophisticated ones like neural networks 
and ensemble techniques. This makes it challenging to comprehend how the model makes its predictions. 
Interpretability is critical, particularly in fields where decision-making requires a comprehension of the ele-
ments impacting predictions, such as air quality prediction.

• The selection of features and the quality of the input data have a significant impact on classifier performance. 
A noisy, incomplete, or outlier-filled set of data might have a detrimental effect on classifier performance. 
Similar to this, feature engineering is essential for drawing out pertinent information from the data; yet, poor 
feature extraction or selection might produce less-than-ideal outcomes.

The purpose of the proposed work is to present a novel intelligent model of prediction for air quality, which 
shall overcome all the pitfalls involved in its predecessors. Most of the current models in the prediction of the 
quality of the air rely on shallow learning algorithms that lack the possibility of capturing complex patterns in 
the data and thereby lead to suboptimal performance. Our method represents a deep, sophisticated learning 
structure of multi scale depth-wise separable adaptive temporal convolutional networks in order to model air 
quality time–space data dynamics. We combine the Fused Eurasian Oystercatcher-Pathfinder Algorithm with 
dual optimization power derived from the Eurasian Oystercatcher Optimizer and Pathfinder Algorithm to 
enhance predictive accuracy. This is, therefore, an important optimization technique in the choice of weighted 
features, optimizing weights, and selecting relevant attributes for the consolidated and cleaned data set that is 
derived from the integration of four publicly available air quality databases. FEO-PFA integration will ensure 
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that the model comes out not only accurate but also efficient in handling big datasets having high dimensionality. 
To this end, by addressing these challenges, our proposed model significantly reduces the mean cost function, 
MAE, and RMSE and thus further exhibits superior performance outcomes compared to traditional methods 
on air quality prediction.

Development of multiscale depthwise separable adaptive deep learning network 
for ambient air quality prediction using real time data
Implemented ambient air quality prediction model
Modern human activities inevitably involve energy usage and its effects. The burning of coal, kerosene, and straw 
are only a few examples of anthropogenic sources of air pollution, along with emissions from cars, aerosol cans, 
and factories. Every day, a wide range of harmful pollutants, including  NO2,  CO2, CO, Particulate Matter (PM), 
 O3,  SO2, Pb, and  NH3, are discharged into our environment. The health of animals, people, and even plants is 
impacted by the chemicals and particles that make up air pollution. Humans are susceptible to a wide range of 
dangerous illnesses brought on by air pollution, including lung cancer, bronchitis, pneumonia, and heart dis-
ease. Aerosol production, global warming, smog, acid rain, impaired vision, early mortality, and other current 
environmental problems are all caused by poor air quality. A measurement metric known as the AQI has a direct 
connection to public health. A higher AQI value denotes a riskier degree of exposure for the general public. 
Consequently, the desire to accurately anticipate the AQI drove scientists to track and model air quality. With 
an increase in industrial and motorized activity, monitoring and forecasting AQI, particularly in metropolitan 
areas, has become an essential and difficult undertaking. A variety of models, including statistical, determin-
istic, physical, and machine learning models, has been used to predict AQI. The conventional methods based 
on statistics and probability are exceedingly intricate and ineffective. It has been demonstrated that machine 
learning-based AQI prediction models are more dependable and consistent. Data collecting was made simple 
and accurate by modern technologies and sensors. Only machine learning algorithms are capable of handling 
the rigorous analysis needed to make accurate and trustworthy predictions from such vast environmental data. 
So an enhanced AQP model is developed by utilizing the deep learning technique. The pictorial illustration of 
the developed model for AQP is shown in Fig. 1. The health of animals, people, and even plants is impacted by 

Figure 1.  Architecture of the generated deep learning-based AQP framework.
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the chemicals and particles that make up air pollution. Humans are susceptible to a wide range of dangerous 
illnesses brought on by air pollution, including lung cancer, bronchitis, pneumonia, and heart disease. Aerosol 
production, global warming, smog, acid rain, impaired vision, early mortality, and other current environmental 
problems are all caused by poor air quality. But the statistical and traditional method of AQP is inaccurate and 
ineffective. So, deep learning technique is adopted in forecasting the quality of the air. The pros and cons of the 
conventional air quality prediction model based on deep learning technique are depicted in Table 1.

The primary goal of the proposed work is to apply the following approaches to produce an accurate and 
efficient air quality prediction utilizing real-time and public datasets:

1. A standard data preprocessing with outlier removal and normalization operations is performed for avoiding 
error predictions.

2. A hybrid FEO-PFA methodology is applied to optimize the parameters like kernel size, filter size, epochs, 
and random state of classifier.

3. A hybrid and unique MDS-ATCN model is developed for the prediction of air quality with good performance 
outcomes.

The novel FEO-PFA algorithm for classifier parameter optimization is developed in the proposed study by 
combining two different and cutting-edge optimization techniques. By using this method, the suggested model’s 
air quality prediction performance is significantly improved while system complexity is reduced. Additionally, 
a novel classification strategy for air quality prediction is developed by integrating the Temporal Convolutional 
Network (TCN) with the Multi-scale Depthwise Separable Adaptive Network (MDS). By using these two distinct 
and innovative hybrid approaches significantly enhances the suggested work’s prediction performance.

The real-time dataset of ambient air is gathered in the first stage from numerous databases that are readily 
available. To remove redundant and irrelevant data from the real-time data acquired, the collected dataset is 
cleaned. The features are then selected optimally from the cleaned data by the recommended FEO-PSA. Finally, 
using the suggested FEO-PFA, the crucial features associated with the environmental data are chosen. The weights 
for each optimally selected feature must be optimized by the newly created FEO-PFA in order to determine the 
weighted feature selection in the best possible way. The MDS-ATCN model classifies the outdoor data once the 
best-weighted features have been gathered, which helps to forecast the air quality. The proposed FEO-PFA is used 
to tune the hyperparameters of the TCN classifier. Finally, the high predicted accuracy of the proposed MDS-
ATCN methodology to lessen the effects of air pollution was confirmed by analyzing it with existing classifiers. 
The optimally selected features and the predicted AQI level from the developed FEO-PFA-MDS-ATCN model 
is uploaded into the IOT platform called “think speak” for future use.

Experimental air quality dataset
This research uses four different datasets to validate the results of the proposed air quality prediction system, 
three of which are publically available and one of which is a real-time dataset. The distinct training and valida-
tion procedures are used for prediction during classification. Table 2 contains a summary of every dataset that 
was used in this investigation.

Table 1.  Features and challenges of existing AQP model based on deep learning approaches.

Author [citation] Methodology Features Challenges

Liu et al.1 Attention, Autoencoder, GRNN, LSTM, and 
seq2seq model

It shows better performance in predicting air 
quality
This method provides accurate results, and also this 
model is quick to train
This model also provides warnings prior to sudden 
pollution strikes

This method provides accurate prediction results 
only in temporal attention, and hence the efficiency 
in spatial attention is still under consideration
There is lagging in the functioning of this model 
because of its loss function

Yang et al.2 LSTM, GRU, and SHAP
It is efficient in identifying only the essential 
features for predicting air quality and the effects of 
these features on the quality of the air

The computational complexity is more, the memory 
requirement is more, and the overall efficiency of 
the computation is not as much expected in this 
method

Chen et al.3 Attention LSTM, Seq2Seq, and XGBoosting tree The accuracy of predicting the quality of air by this 
method is higher

This model faces some issues while dealing with 
outlier values

Huang et al.4 PSO, and BP
Unlike the conventional methods, this method 
attains good searching ability and does not allow 
the system to fall into a local minimum

Lower convergence rate

Soh et al.5 CNN, LSTM, and ST-DNN The prediction performance of this method is 
higher in the initial hours

This method does not consider the delay of a long 
time which results in reduced system performance

Sridhar et al.6 IoT, NARX
This method is highly suitable for real-time predic-
tion of the quality of air because of the utilization of 
various sensors by this method

This model is highly complex, requires more mem-
ory, requires more power, and has issues regarding 
the security of data

Chun et al.7 SVM The memory requirement of this model is low This model is highly affected by noised data

Xu and  Yoneda8 Autoencoder, and LSTM It is efficient in forecasting the PM2.5 time series in 
a wider area

The deterministic factors like gas emission and 
economy are not considered by this method while 
predicting the quality of air
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Modified heuristic‑based weighted feature selection model for real time data‑aided 
ambient air quality prediction
Data cleaning
When preparing data for analysis or predictive models, cleaning and preprocessing are essential stages. As part of 
preprocessing, a procedure termed normalization is used to scale numerical attributes to a standard range, usually 
between 0 and 1 or − 1 and 1, so as to make it possible for accurate comparisons and prevent some features from 
overriding the evaluation. The data cleaning method is employed to find and eliminate mistakes and irregularities 
from the collected air quality dataset AQgath

da  . There are certain types of distorted data, anomalies, undesirable 
qualities, and irrelevant information among the input data. When working with these kinds of inappropriate, 
corrupted, or anomalies in the data, it results in the generation of inaccurate outcomes and the evaluation is 
also in inconsistent form, and the computing time is considerably high. Here, the multivariate outlier removal 
is performed based on the estimation of Mahalanobis distance, which is the separation of a data point from the 
computed centroid of all other instances where the starting point is determined by a function of the average of 
each variable under consideration. Every point is identified as an A and B tandem, and multivariate outliers are 
separated from the other cases by a specific distance. When interpreting the distances, a p-value of less than 
0.001 and the accompanying B2 value are used, where the corresponding degrees of independence indicate the 
total number of variables. Additional methods for identifying multivariate outliers include leverage, disparity, 
and significance. Although leverage is assessed on a separate scale and is therefore not subject to the B2 distribu-
tion, it is connected to Mahalanobis distance. Large scores indicate that the situation may still be on the same 
line even if it is farther away. The degree to which the case is consistent with the other instances is evaluated by 
discrepancy. Leverage and discrepancy are used to calculate power, which evaluates how the coefficients change 
when instances are excluded. Data cleansing is performed to eliminate the duplicate features from the input 
collected data in order to fix these errors, which increases performance precision while lowering computation 
time. The resulting information after data cleaning is thus provided as CDclean

kc .

Heuristic weighted feature selection model
It is prompted to calculate the weighted feature selection in order to increase the prediction accuracy. The 
suggested FEO-PFA uses the cleaned air quality data CDclean

kc  as input to find the best possible solution for the 
surrounding air attributes. The benefit of feature selection is that it reduces the difficulty in training and evalu-
ating the predictor while still delivering the most accurate results for the necessary framework. Despite some 
significant advantages, it is unable to produce the model’s expected outcomes. Even though the redundancy 
level is removed, it may still result in overfitting problems and reduced accuracy. Weights are optimized by the 
created FEO-PFA and used with the optimum features selected to increase performance. By assigning weights 
to its related optimally selected features, the weighted feature selection is computed. The relative influence of 

Table 2.  Description of the experimental air quality dataset. The gathered real-time air quality data is 
represented as AQgath

da .

Sl. no. Name of the air quality dataset Air quality dataset link Brief description of the dataset

1 Air Quality Index (AQI) across stations and cities in 
India from 2015 to 2020

“https:// github. com/ adity arc19/ aqi- india access date: 
2023-03-03”

The Kaggle website provided the dataset. It includes 
information on air quality and AQI from numerous 
stations located throughout various Indian cities from 
2015 to 2020, both at hourly and daily levels. It consists 
of various bar graphs, pie charts, and various other 
analyses to represent the most polluted cities in India

2 Open Government Data (OGD) Platform India “https:// data. gov. in/ resou rces/ real- time- air- quali ty- 
index- vario us- locat ions access date: 2023-03-03”

The real-time AQI from various locations in India 
is provided in this link. The website shows the most 
recent National AQI readings obtained from numer-
ous observation locations spread out over India. The 
analysis includes particulate matter (PM2.5 and PM10), 
carbon monoxide (CO), ozone (O3), nitrogen dioxide 
(NO2), sulphur dioxide (SO2), and other contaminants. 
Because it provides information hourly, the website 
updates its data hourly. These data are used in this 
website to analyze the effectiveness of various machine 
learning classifiers using a variety of performance 
indicators

3 Comparison-of-ML-models-for-predicting-AQI
“https:// github. com/ Anind ya- Das02/ Compa rison- of- 
ML- models- for- predi cting- AQI access date: 2023-03-
03”

The Open Government Data (OGD) Portal India 
provided the data set. The website displays current 
National AQI values from several observation sites 
located throughout India. Nitrogen Dioxide (NO2), 
Sulfur Dioxide (SO2), Ozone (O3), Carbon Monoxide 
(CO), Particulate Matter (PM2.5 and PM10), and other 
pollutants are analyzed. The website updates its data 
hourly because it offers information on an hourly basis. 
The performance of various machine learning classifiers 
is evaluated with various performance metrics by using 
these data on this website

4 National Air Quality Index “https:// airqu ality. cpcb. gov. in/ AQI_ India/ access date: 
2023-03-03”

This website provides real-time data about the level of 
contaminants in the air like PM2.5, PM10, NO2, NH3, 
CO, and ozone in various states of India. The severity of 
air contamination is also provided by a color indicator

https://github.com/adityarc19/aqi-india
https://data.gov.in/resources/real-time-air-quality-index-various-locations
https://data.gov.in/resources/real-time-air-quality-index-various-locations
https://github.com/Anindya-Das02/Comparison-of-ML-models-for-predicting-AQI
https://github.com/Anindya-Das02/Comparison-of-ML-models-for-predicting-AQI
https://airquality.cpcb.gov.in/AQI_India/
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each feature can be calculated by the weighted features. The suggested framework is unable to examine the qual-
ity of air with certain distorted or inaccurate information due to the relevance of the feature. So, the suggested 
framework has a clear goal of improving forecasting ability with the weighted features selection process. The 
weighted feature selection is given by Eq. (1).

In Eq. (1), the term WeF
opt
fv  denotes the optimized weighted feature. This WeF

opt
fv  is obtained by multiplying 

each optimally selected feature SFoptjs  with the optimized weights whoptig  . The weighted feature selection is done 
to enhance the variance of the system. Equation (2) represents the fitness function FF1 of the weighted feature 
selection.

In Eq. (2), the term vrn indicates the variance, SFoptjs  represents the optimally selected features, and whoptig  
represents the optimized weights by the FEO-PFA. The features are optimally selected in the range [1, 25]. For 
each optimally selected feature, 25 weights are optimized, respectively. The weights are within the limit (0.01, 
0.99). The objective of feature selection is to pick a particular group of attributes from a larger collection that, 
while reducing noise and redundancy, accurately represents the underlying structure of the data. Variance is a 
popular criterion for selecting features, frequently used in conjunction with filtering techniques. The spread or 
dispersion of values within a feature is represented by variance. There are two reasons to use variance minimiza-
tion as a feature selection criterion:

Relevance: Low variance features exhibit little fluctuation across distinct dataset instances, making them less 
informative. Stated differently, a feature is less likely to yield meaningful information for differentiating between 
classes or patterns in the data if its values don’t fluctuate substantially. As a result, choosing traits that are more 
likely to be pertinent for modelling is made easier by minimizing variation.

Redundancy: Reducing variance also aids in lowering feature redundancy. Two or more characteristics may 
provide duplicate information if they are highly linked, indicating that they show similar patterns of variation. 
The effectiveness of the feature subset is increased by choosing features with low variance since they are less 
probable to be identical with other features.

In Eq. (2), 
(

1
vrn

)

 element symbolizes the reciprocal of the feature variance. Since smaller variance values 
provide bigger reciprocal values, minimizing the variance essentially entails maximizing this term. Combining 
everything together, it appears that the equation defines FF1 as the best set of chosen features SFoptjs  and their 
weights whoptig  that reduces the reciprocal of the features’ variability. The rationale behind this formulation could 
be that features with low variance are less informative, and maximizing their reciprocal helps in selecting features 
that exhibit more variability across instances in the dataset, thus potentially providing more discriminative power 
for the given task. The variance is computed as in Eq. (3).

where, fv represents the feature vector, and WeF
opt
fv  indicates the average of optimal weighted features, and the 

term mn
(

WeF
opt
fv

)

 denotes the mean value of optimal features. The process of optimal weighted feature selection 
by means of the suggested EFO-PFA is provided in Fig. 2.

Optimization model: FEO‑PFA
The final prediction result of the developed AQP model can be enhanced by optimizing the elements in the TCN, 
such as kernel size, filter size, epochs, and the random state, as well as the features and weights for weighted 
feature selection. This parameter optimization is achieved by the recommended FEO-PFA. The  EOO26 algorithm 
is utilized in this work because of its balanced exploitation and exploration and the ability to eliminate local 
optimum. But, this algorithm is not able to solve complex real-time problems. So, we utilize the advantages of 
 PFA27 to overcome the above-mentioned drawback. Therefore, the EOO algorithm is fused together with the 
PFA so that the FEO-PFA is developed. In the implemented FEO-PFA, the final prediction output is obtained by 
implementing the adaptive averaging concept in which the final location is amended by averaging the optimal 
position obtained from the EOO algorithm and PFA, respectively.

EOO: The eating habits of Eurasian Oystercatchers (EO) while looking for mussels served as the inspiration 
for EOO. EOO is developed by observing how the Oystercatchers behave and how they eat. Finding the right 
solution depends on finding the right equilibrium between calories ingested, time lost, and energy generated. 
The search method and the relevant mussel chosen by EO are shown as follows. To equalize the calories and the 
energy from the mussels is the primary goal of EO. The size of the mussel, the energy spent to open the mussel, 
and the calories obtained from eating the mussel are tightly correlated. The number of calories consumed and the 
amount of time needed to open mussels both increase with the increase in the mussels’ size. Hence, EO wastes 
significant energy in the process of opening the mussel from its shell. The behaviors of EO during the exploration 
phase are represented by Eq. (4) and Eq. (5). The energy of the EO is computed as in Eq. (4).

(1)WeF
opt
fv = wh

opt
ig ∗ SF

opt
js

(2)FF1 = arg min
{

SF
opt
js ,wh

opt
ig

}

(

1

vrn

)

(3)vrn =

∑

(

WeF
opt
fv −mn

(

WeF
opt
fv

))2

fv
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The term A in Eq. (4) is the energy of EO that is still available at last, which is inversely proportional to the 
iteration count,G corresponds to the size of the mussel, and is a random number between [3, 5], which indicates 
the limit of the ideal size of mussel and B is the amount of time needed to break the present mussel (solution), 
and its value depends on G, D represents the energy required at the present time, and a denotes a random number 
that is selected in order to increase unpredictability and uncover additional locations in the search region, which 
is in the range between [0, 1]. The location of the optimum mussel is given in Eq. (5).

In Eq. (5), the term Mh denotes the location of the potential mussel, and the term I denotes the caloric value 
that the EO gain based on the size of the mussel G. The time period B is determined in accordance with Eq. (6).

The sizes of the ideal mussel G has been employed in Eq. (6) in order to obtain the time required to break the 
mussel. The value of the current energy available in the EO is determined using Eq. (7).

The caloric amount I is found by Eq. (5), which relies on the size of the mussel G.

From Eq. (8), it is obtained that the value of I is the range between [0.6, 0.8] the results from Eq. (6), which 
produces the result in the range [5, −5]. These parameters were chosen after extensive testing. It is crucial to 
note that if the time is negative, then the amount of time needed to open the mussels exceeds the bird’s capacity, 
which is taken as a limitation. In Eq. (7), the value of D is acquired and linearly reduced from [0.5, −0.5], where 
h is the iteration value, which starts with H and ends at 1. The value of D is constant in the final two iterations. 
Hence, the terms D and B, which represent the energy and time necessary to break the potential mussel, thus, 
have negative values. Both the B value in Eq. (4) and the I value in Eq. (5) are dependent on a randomized number 
G that fluctuates constantly. This criterion makes it possible for EO to explore any location in the solution space 
and avoid an optimal local issue, encouraging exploration each time. The key aspects of EOO that aid in solving 
optimization problems are theoretically explained by the following points:

(4)A = B+ D + G ∗ a ∗
(

Mb −Mh−1

)

(5)Mh = Mh−1 ∗ I

(6)B =

((

G − 3

5− 3

)

∗ 10

)

− 5

(7)D =

(

h− 1

c−

)

− 0.5; h > 1

(8)I =

((

G − 3

5− 3

)

∗ 2

)

+ 0.6

Cleaned data
clean
kcCD

Feature

selection

Optimally

selected features
opt
jsSF

Optimized
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igwh
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Developed
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Figure 2.  Pictorial illustration of the heuristic weighted feature selection model.
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(1) The accuracy of choosing the mussel by using the duration required to break a mussel, which is computed 
using the bird’s energy and the mussel’s size as factors to estimate the anticipated location of the desired 
food.

(2) During each cycle, the random numbers entered during optimization aid in the exploration of new loca-
tions. As a result, avoid a local minimum issue.

(3) The random numbers utilized at every phase of optimization ensure investigation and utilization.

PFA: Inspired by the swarm algorithm, a unique meta-heuristic algorithm called PFA is built with a different 
mathematical model. It mimics the haphazard behavior and movement of the animal in swarms that follow their 
head to an adjacent site in search of prey or sustenance. Changes in a leader are possible if the search’s objective 
is not attained. The motion of the competitor of the animal, which is gathered in groups in a community form, 
is what drives the algorithm process. The head of the swarm and its competitors works together to determine the 
best path to the destination. Based on the forces and direction in the multidimensional area, the path’s direction 
is enhanced. At any point throughout the search, the contestant in the optimal location is regarded as the head 
of the swarm. This candidate is denoted as the pathfinder. In the current iteration, pathfinder and its position are 
seen as the optimal solution, and the other competitors adopt it. A vector indicating the competitors’ movement 
location in many dimensions is used to organize the suggested solutions. To control how the rival behaves in 
the exploration area, four parameters have been modified. Each cycle simultaneously generates the competitors’ 
vibration ν and oscillating frequency τ . The attraction factor α adjusts the random space of separation necessary 
to ensure the availability of the head of the swarm, and the communication factor ς maintains the movement 
with regard to the surrounding competitors. The major motive is to estimate the optimal position of the rival. 
Equation (9) is utilized to figure out the prey and to follow the pathfinder.

In Eq. (9), the term C represents the vector for the position, KJ represents the force that is dependent on the 
pathfinder’s position, d denotes the identity vector, Ef  denotes the communication that takes place among two 
rivals Cf  and Ck , and i denotes the period. The position of the pathfinder is updated using Eq. (10)

The term �C in Eq. (10) denotes the value that is estimated by considering the space between the two distinct 
positions of the pathfinder and CJ denotes the position vector of the pathfinder. The above two equations, Eqs. (9), 
and (10) are upgraded for solving the problem as follows.

In Eq. (11), the terms 
→

Q1 and 
→

Q2 denotes two trajectory vectors in random. The value of 
→

Q1 = α · q1 , and the 

value of 
→

Q2 = ς · q2 , where q1 and q2 denotes the random movement generated homogeneously. The value of q1 
and q2 is in the range [−1, 1]. The terms 

→ o
C
k

 and 
→ o
C
f

 are the position vectors of the two rivals k and f at the current 

iteration o . The value of ν can is determined using Eq. (12).

The term O denotes the recommended maximum iteration count, o denotes the current iteration, and Nos 
represents the distance of separation between the two rivals. To regulate the mechanism of the algorithm, the 
attraction factor α , and communication factor ς values are changed. Each rival stops moving and loses track 
of the head of the swarm when α and ς equal to ∞ . Each rival move independently and randomly throughout 
the area when α and ς equal to 0. When α and ς are either less than 1 or greater than 2, then the affiliate rival is 
unable to produce an optimal solution. Hence, it is vital that the values of α and ς should be between [1, 2]. The 
position is further upgraded as in Eq. (13).

The term q3 in Eq. (13) is a random vector of the rival. In the event that the terms 
→

Q1 ∗

(

→ o
C
k

−
→ o
C
f

)

 and 

→

Q2 ∗

(

→ o
C
J

−
→ o
C
f

)

 in Eq. (11) or the term 2q3 ·
(

→ 0
C
J

−
→ 0−1
C
J

)

 in Eq. (13) became 0, then ν and τ can arbitrarily 

move every rival with suitable values across several paths. The oscillating frequency τ can be computed as in 
Eq. (14).

The term p2 in Eq. (14) represents a random value in the limit [−1, 1]. The divergence and convergence of 
the PFA searching are influenced by the values ν and τ . It has the power to speed up or slow the algorithm. For 
the search to succeed without diverging between them in each iteration, values ν and τ should be between [1, 

(9)C(i +�i) = C0(i) · d + Ef + KJ + ν

(10)CJ (i +�i) = CJ (i)+�C + τ

(11)
→ o+1
C
f

=
→ o
C
f

+
→

Q1 ∗

(

→ o
C
k

−
→ o
C
f

)

+
→

Q2 ∗

(

→ o
C
J

−
→ o
C
f

)

+ ν

(12)ν =
[

1−
(

o
/

O
)]

p1 · Nos; Nos =
∥

∥Cf − Ck

∥

∥

(13)
→ o+1
C
J

=
→ 0
C
J

+2q3 ·

(

→ 0
C
J

−
→ 0−1
C
J

)

+ τ

(14)τ = p2 · exp

(

−2o
O
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2]. The competitor can swiftly leave their positions without finding a solution if both p1 and p2 are beyond the 
range [−1, 1]. The algorithm of the recommended FEO-PFA is provided in Algorithm 1.

Algorithm 1: Recommended FEO-PFA.
The flowchart of the developed FEO-PFA is depicted in Fig. 3.

Multiscale depthwise separable adaptive temporal convolutional network for real 
time data‑aided ambient air quality prediction
Temporal convolutional network
In consecutive modeling, the convolutional technique is typically more effective than recurrent models. This study 
used a  TCN28 for the AQP sequential model. The TCN framework is capable of handling both input and output 
sequences of varying sizes when using the time series forecasting technique. The TCN concept essentially rests 
on two key tenets. TCN utilizes temporal convolution; therefore, the results are independent of the inputs’ future 
evolution. It only relies on the input received before c if it generates output at a period c . The TCN framework 
can take a series of any size and convert it to an output vector of the very same size; therefore, there won’t be any 
data loss from the forward to the history. To accomplish this goal, a 1D Fully Connected (FC) layer is used. The 
output P at period c can only be affected by a small number of past inputs at once (c − 1, c − 2, . . .) . Hence, using 
past data of greater scale necessitates a bigger receptive field. To acquire a broader receptive field, a greater size 
filter or denser connection is a necessity. The greater size of the filter is the primary cause of non-convergence 
problems, whereas complex deep connectivity is the cause of problems with training the model. The model’s effec-
tiveness is hampered by problems with non-convergence and training the model. Dilated convolution employing 
residual mapping is used to get a bigger past data volume to get over this problem. Dilated convolution doesn’t 
need the pooling operation and expands the range of perception through a sequence of dilated convolution, 
which is utilized in TCN to solve the problem of data leakage. This technique eventually incorporates excellent 
information from lengthy tracking.

Dilated convolutions are crucial for time series datasets in which long-term correlations are important, such 
as in the forecasting of air quality. Equation (15) provides the dilated convolution function e on the sequence’s 
element P.

In Eq. (15), j stands for filter size, l − g ·m stands for past direction, and g stands for dilation factor. Residual 
connections are another important element of the TCN structure. TCN substitutes a general residual unit for 
convolution. Convolutional layers of TCN units are layered in the residual blocks, which are periodic frames. 
It integrates the most recent input with the output of the preceding convolution. As a result, the output of the 
temporal unit is approximated in relation to the input. The deep channel’s learning difficulties are resolved by 
the node. Its branch includes results that are appended to the input after a sequence of transformations. As a 
result, TCN has a quick interface to perform the residual mapping from P to e(P) . The mapping function of TCN 
is determined as in Eq. (16).

(15)e(l) =
(

P ∗ g e
)

(l) =

j−1
∑

m=0

e(m)Pl−g ·m

(16)n = γ (P + e(P))
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The term γ in Eq. (16) is the activation function that is not linear in nature. There is additional activation, 
dropout layer, pooling, weight normalization, and 1D convolution in the residual block.

Developed MDS‑ATCN for ambient air quality prediction
The weighted selected features WeF

opt
fv  are given as input to the recommended MDS-ATCN framework. MDS-

ATCN is a combination of both multiscale processing and depth-wise separable convolution. Multiscaling is 
nothing but the process of operating on each data at various scales in order to obtain local and global attributes 
from it. In depth wise separable convolution, the convolution operation is divided into point-wise and depth-wise 
convolutions. Depth-wise convolution operates individually on every channel whereas the point-wise convolu-
tion fuses the results from the depth-wise convolution. The temporal and spatial network are the two main parts 
of MDS-ATCN. To extract spatial characteristics, the spatial network individually processes every air quality 
data. The series of spatial information is subsequently processed by the temporal network to identify temporal 
dependencies. From the MDS-ATCN model, the final prediction result about the air quality is obtained. The 
elements in the TCN, like filter size, random state, kernel size, and epochs, are optimized by using the imple-
mented FEO-PFA. The Fitness function of the proposed MDS-ATCN framework for AQP is given by Eq. (17).

In Eq. (17), the term fg∞ denotes the infinity norm, qs denotes the Root Mean Square Error (RMSE), ksTCNls  
denotes the optimized kernel size of TCN, fsTCNta  denotes the optimized filter size, ecTCNix  denotes the optimized 
epochs in TCN, and rsTCNjw  denotes the optimized random state of TCN. The ranges in which the epochs are 

(17)
FF2 = arg min

{

ksTCNls ,fsTCNta ,ecTCNix ,rsTCNjw

}

(

qs + fg∞
)

Figure 3.  Flowchart of the recommended FEO-PFA.
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optimized are [50, 100]. The range in which the kernel size is optimized is [1, 7]. The limit in which the filter size 
is tuned is [0, 3] that the sizes are mentioned as [16, 32, 64, 128]. The boundary of the random state optimiza-
tion is [0, 1]. The optimization of these attributes is done in order to minimize the RMSE and the Infinity Norm. 
RMSE qs is evaluated as in Eq. (18).

The terms prd in Eq. (18) represent the predicted value, and the term co represents fitted points count, com 
denotes the computational value that has to be added to every fitted point, and rl represents the real value. The 
Infinity Norm fg∞ is calculated using Eq. (19).

The term fg in Eq. (19) represents a matrix. The diagrammatic representation of the generated MDS-ATCN-
based AQP framework is given in Fig. 4.

Our predictive model is trained based on a combined and cleaned dataset drawn from four public air qual-
ity databases, all of which are very complex. This is because preprocessing is time-consuming, expensive, and 
indispensable for data integrity and increasing predictive accuracy. On the other hand, Figs. 5 and 6 concern 
the Air Quality Index dataset and underline the key phases of the preprocessing pipeline. Figure 5a shows the 
AQI dataset before outlier removal. The plot indicates raw data with probable anomalies, which may bias results 
of this predictive model. Physically, Fig. 5b indicate a much cleaner dataset; that is, outlier removal will ensure 
a more reliable set of data for training the model. This will ensure that the extreme values are removed from the 
dataset and will not blur expected patterns in the data; hence, the dataset is safeguarded for analysis. Figure 6 
shows the sample distribution of features for the preprocessed AQI dataset. The graph shows some variables’ 
distributions after data cleaning. This plot clearly illustrates the improvement in structure and quality of the 
dataset, thus showing the impact of preprocessing steps involved, from outlier removal to normalization and 
feature scaling. Proper cleaning of data and its preprocessing are hence a very essential step for the optimization 
of MDS-ATCN’s performance. As illustrated, it attains better predictive accuracy by refinement of these vari-
ables through the proposed FEO-PFA. All rigorous preprocessing guarantees that high-quality data is fed into 
the MDS-ATCN; no doubt, this has greatly contributed to the reduction of the Average Cost Function, Mean 
Absolute Error, and Root Mean Squared Error metrics, underlining the effectiveness and superiority of our 
approach over traditional methods.

The frequency of features for the input data is displayed in Fig. 5a,b before and after outlier removal proce-
dures, where sample instances of features are provided for analysis. The results show that utilizing Mahalanobis 
distance to effectively remove outliers greatly aids in producing preprocessed data that is of higher quality. 

(18)qs =

√

∑co
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rlcom1 − prdcom2

)2
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Figure 4.  Diagrammatic representation of the generated MDS-ATCN framework for ambient AQP.
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Consequently, Fig. 6 also provides a visual representation of the sample distribution of features for the pre-
processed data. Figure 7 shows the relevance score for the features selected from the dataset in the best possible 
way. Additionally, Fig. 8 shows the training and testing data partitioning according to the sample index. The 
significance of feature selection, preprocessing, data splitting, and outlier removal for classification are examined 
in light of these stages’ inferences.

Result and discussion
Experimental setup
The constructed AQP framework based on deep learning was implemented and assessed using the Python 
paradigm. The assessment outcomes were listed in the upcoming section. The AQP framework that operates on 
the principle of deep learning techniques was built with a maximum iteration count of 25 and a population size 
of 10, respectively. The AQP model based on MDS-ATCN was evaluated and contrasted with various predic-
tors like Convolutional Neural Network (CNN)29, Deep Neural Network (DNN)30, Long Short Term Memory 

(a)

(b)

Figure 5.  (a) Before outlier removal and (b) after outlier removal for Air Quality Index (AQI) dataset.
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(LSTM)31, and Temporal Convolution Network (TCN)28, and compared with conventional heuristic algorithms 
such as Jaya  Algorithm32, Deer Hunting Optimization Algorithm (DHOA)33, Salp Swarm Algorithm (SSA)34, 
and  EOO26 for illustrating the precise prediction of the suggested AQP model.

We chose the following benchmarking models for our work: Convolutional Neural Network, Deep Neural 
Network, Long Short-Term Memory, and Temporal Convolutional Network. These models have been previously 
proven to be quite efficient in air quality prediction and time-series forecasting tasks. Thereby, every benchmark-
ing model has its strengths that are targeted at different facets of the prediction challenge. One of the main char-
acteristics that makes CNNs very efficient in capturing spatial dependencies is highly critical in environmental 
monitoring applications. The DNN will learn complex representations from large and high-dimensional datasets; 
this becomes particularly central to the multifaceted nature of air quality data. LSTMs have long been particu-
larly relevant for modeling the temporal dependencies inherent in air quality datasets because, like a specially 
designed form of RNNs, they have a generic ability to capture long-term dependencies in sequential data. TCNs 

Figure 6.  Sample distribution of features for the preprocessed Air Quality Index (AQI) dataset.

Figure 7.  Feature importance for air quality prediction.



16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18437  | https://doi.org/10.1038/s41598-024-68793-x

www.nature.com/scientificreports/

apply convolution in time and thus ensure a number of benefits in capturing time patterns without common 
limitations for recurrent networks—especially the vanishing gradients—which provides robust performance in 
time-series forecasting tasks.

These models are also used for benchmarking purposes, as they have been implemented in a lot of recent 
literature, proving their effectiveness and reliability for similar predictive tasks. For instance, CNNs have already 
found an application in numerous environmental monitoring scenarios with spatially distributed data, which 
proves their capacity to deal with this kind of data. DNNs are capable of modeling complex nonlinear relation-
ships; therefore, they fit well for air quality prediction, which is indeed very complex. LSTMs have, therefore, 
gained much popularity due to the strength they possess in the treatment of sequential data, since they remain 
and use information for very extensive periods of time inherently, which is very vital for the prediction of correct 
air quality. TCNs, by processing sequences with convolutional layers, offer a compelling alternative to classical 
RNNs with better scalability and long-term sequence processing efficiency.

Validation metrics
The better operation of the recommended AQP framework is evaluated using the following error functions, as 
shown below.

(a) MEP us is determined using the formula provided in Eq. (20).

(b) SMAPE ol is calculated using Eq. (21).

(c) MAE ia is evaluated using the formula given in Eq. (22)

(d) MASE ks is computed using Eq. (23).
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Figure 8.  Training and testing data.
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The term mn in Eq. (23) represents the mean value.
(e) L1-Norm fg1 is determined using Eq. (24).

(f) L2-Norm fg2 is evaluated using Eq. (25).

(g) The RMSE is estimated using Eq. (26).

Algorithmic analysis
The algorithmic analysis of the recommended MDS-ATCN-based AQP model is shown in Fig. 9. The MAE of 
the proposed MDS-ATCN-based AQP model is 51.72%, 48.15%, 33.33%, and 17.65% lesser than the JAYA-MDS-
ATCN, DHOA-MDS-ATCN, SSA-MDS-ATCN, and EOO-MDS-ATCN algorithms, respectively for dataset 4.

Prediction evaluation on recommended model
The prediction evaluation of the implemented MDS-ATCN-based AQP model is shown in Fig. 10. The MAE 
of the proposed MDS-ATCN-based AQP model is 60%, 41.96%, 52.63%, and 28% lesser than the CNN, DNN, 
LSTM, and TCN prediction models, respectively for dataset 1.

The cost function examination of the suggested MDS-ATCN model for AQP is given in Fig. 11. The cost 
functions of the recommended MDS-ATCN-based AQP model are 13.04%, 13.04%, 5.88%, and 9.09% lesser than 
the JAYA-MDS-ATCN, DHOA-MDS-ATCN, SSA-MDS-ATCN, and EOO-MDS-ATCN algorithms, respectively 
for iteration 10 of dataset 1.

The algorithmic and prediction model comparison of the RMSE of the developed MDS-ATCN-based AQP 
framework is given in Figs. 12 and 13. The RMSE of the proposed MDS-ATCN-based AQP framework is 36.25%, 
35.03%, 26.09%, and 25% lesser than the CNN, DNN, LSTM, and TCN prediction models, respectively for 
dataset 4.

Statistical report comparison
The statistical analysis of the generated MDS-ATCN-based AQP model is provided in Table 3. The median value 
of the suggested FEO-PFA-MDA-ATCN AQP model is 17.44%, 3%, 17.7%, and 6.86% lesser than the DHOA-
MDS-ATCN, EOO-MDS-ATCN, JAYA-MDS-ATCN, and SSA-MDS-ATCN algorithms, respectively for dataset.

Comparison of various algorithms with the suggested AQP framework
The algorithmic analysis of the generated MDS-ATCN-based AQP model with other existing algorithms is pro-
vided in Table 4. The RMSE of the suggested FEO-PFA-MDS-ATCN AQP framework is 29.46%, 38.1%, 14.43%, 
and 44.27% lesser than the SSA-MDS-ATCN, DHOA-MDS-ATCN, EOO-MDS-ATCN, and JAYA-MDS-ATCN 
algorithms, respectively for dataset 1.

Comparison of other prediction models with the suggested AQP framework
The classifier-based analysis of the built MDS-ATCN-based AQP model with other conventional predictors 
is provided in Table 5. For dataset 2, the MAE of the recommended FEO-PFA-MDS-ATCN is 74.87%, 60.5%, 
81.66%, and 69.09% lesser than the DNN, TCN, CNN, and LSTM classifiers, respectively.

Conclusion
We developed and analyzed a deep learning based AQP framework. The process began with collecting real-time 
ambient air datasets from multiple publicly accessible databases. The proposed FEO-PFA is utilized to select the 
optimal features from the cleaned data, which were then weighted optimally. The innovative FEO-PFA was pivotal 
in optimizing the weights for each chosen feature. With the best-weighted features determined, the MDS-ATCN 
model forecasts outdoor air quality. Several parameters within the MDS-ATCN model, including kernel size, 
random state, filter size, and epochs, were further optimized using the FEO-PFA. A series of experiments were 
conducted, allowing us to measure the efficiency of the proposed MDS-ATCN AQP model against various pre-
dictors and existing heuristic algorithms. Our results depict that the average cost-function drop was 5.5%, while 
those for MAE and RMSE were 28% and 14%, respectively, against traditional methods—evidencing a higher 
precision and efficiency predicted by the proposed MDS-ATCN framework for ambient air quality. Finally, the 
optimally selected features along with predicted AQI levels obtained from FEO-PFA-MDS-ATCN model have 
been integrated in the IoT platform "ThinkSpeak" for future applications.
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(a) (b)

(c) (d)

(e)

Figure 9.  Heuristic algorithm-based evaluation on the recommended AQP framework in terms of “(a) Infinity 
norm, (b) MAE, (c) MASE, (d) One norm, and (e) SMAPE”.
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(a) (b)

(c) (d)

(e)
Figure 10.  Prediction-based Assessment on the Generated AQP framework in terms of “(a) One norm, (b) 
Infinity norm, (c) SMAPE, (d) MAE, and (e) MASE”.
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(a) (b)

(c) (d)
Figure 11.  Cost function analysis on the implemented AQP model with respect to “(a) Dataset 1, (b) Dataset 2, 
(c) Dataset 3, and (d) Dataset 4”.
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(a) (b)

(c) (d)
Figure 12.  RMSE Assessment on the Suggested AQP model with various algorithms with respect to “(a) 
Dataset 1, (b) Dataset 2, (c) Dataset 3, and (d) Dataset 4”.
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(a) (b)

(c) (d)
Figure 13.  RMSE assessment on the suggested AQP model with other prediction models with respect to “(a) 
Dataset 1, (b) Dataset 2, (c) Dataset 3, and (d) Dataset 4”.

Table 3.  Statistical report of the implemented AQP model with conventional heuristic algorithms for four 
datasets.

Terms/algorithm SSA-MDS-ATCN31 EOO-MDS-ATCN26 JAYA-MDS-ATCN29 DHOA-MDS-ATCN30
FEO-PFA-MDS-
ATCN

Dataset 1

 Worst 2.396 3.500 2.346 3.959 3.615

 Best 2.112 2.128 2.091 2.141 2.003

 Mean 2.201 2.358 2.213 2.304 2.257

 Standard deviation 0.124 0.499 0.121 0.387 0.555

 Median 2.112 2.148 2.175 2.194 2.003

Dataset 2

 Worst 2.678 4.703 3.111 4.373 3.993

 Best 2.158 2.111 2.114 2.019 2.014

 Median 2.158 2.111 2.114 2.019 2.070

 Standard deviation 0.140 0.508 0.410 0.781 0.543

 Mean 2.205 2.215 2.503 2.615 2.246

Dataset 3

 Best 2.150 2.130 2.237 2.136 2.011

 Mean 2.507 2.469 2.630 2.720 2.102

 Median 2.388 2.272 2.609 2.661 2.042

 Standard deviation 0.524 0.440 0.601 0.520 0.116

 Worst 5.047 3.439 4.510 5.068 2.358

Dataset 4

 Worst 2.965 4.372 3.886 3.587 3.376

 Mean 2.381 2.259 2.576 2.716 2.337

 Median 2.186 2.099 2.474 2.466 2.036

 Standard deviation 0.330 0.538 0.370 0.375 0.522

 Best 2.186 2.022 2.101 2.466 2.036
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Table 4.  Algorithmic comparison of the proposed AQP framework with four datasets.

Metrics/algorithm DHOA-MDS-ATCN26 JAYA-MDS-ATCN31 EOO-MDS-ATCN30 SSA-MDS-ATCN29
FEO-PFA-MDS-
ATCN

Dataset 1

 MEP 2.155 2.592 1.225 1.693 0.740

 SMAPE 0.025 0.030 0.014 0.019 0.008

 MASE 3244.126 3936.141 1891.773 2556.906 1227.883

 TWO-NORM 2662.716 2957.706 1926.331 2336.788 1648.394

 RMSE 15.495 17.211 11.210 13.598 9.592

 ONE-NORM 105,309.169 129,941.886 58,980.290 81,207.075 37,557.957

 INFINITY-NORM 479.250 390.250 368.000 512.250 394.250

 MAE 3.566 4.400 1.997 2.750 1.272

Dataset 2

 INFINITY-NORM 55.000 66.500 57.250 53.000 54.000

 SMAPE 0.023 0.030 0.014 0.019 0.009

 MASE 6.597 9.129 3.495 4.607 2.576

 RMSE 9.634 12.423 6.865 8.349 6.661

 ONE-NORM 413.000 568.750 223.000 292.500 161.500

 TWO-NORM 122.619 158.125 87.377 106.271 84.780

 MAE 2.549 3.511 1.377 1.806 0.997

 MEP 2.006 2.623 1.235 1.698 0.772

Dataset 3

 MEP 2.193 2.591 1.240 1.716 0.747

 TWO-NORM 585.025 716.476 459.022 556.095 358.345

 MASE 112.801 153.848 66.868 96.474 41.447

 ONE-NORM 6102.814 8102.064 3541.500 5143.250 2152.750

 RMSE 14.751 18.065 11.574 14.021 9.035

 MAE 3.880 5.151 2.251 3.270 1.369

 INFINITY-NORM 92.250 100.000 98.000 91.250 110.250

 SMAPE 0.025 0.030 0.014 0.020 0.009

Dataset 4

 SMAPE 0.024 0.030 0.014 0.020 0.009

 MASE 37.607 43.710 21.436 28.546 13.447

 MAE 17.258 20.265 9.781 13.293 6.328

 TWO-NORM 2295.560 2424.160 1722.663 2026.235 1360.999

 MEP 2.117 2.616 1.223 1.746 0.754

 INFINITY-NORM 399.000 389.000 399.000 397.000 385.000

 ONE-NORM 19,502.000 22,899.000 11,053.000 15,021.000 7151.000

 RMSE 68.289 72.114 51.246 60.277 40.487
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Table 5.  Comparison of the developed AQP model with other classifiers.

Metrics/classifier LSTM34 DNN33 TCN28 CNN32 FEO-PFA-MDS-ATCN

Dataset 1

 MASE 2922.077 3557.102 2252.857 4195.820 1544.217

 SMAPE 0.022 0.027 0.017 0.032 0.011

 ONE-NORM 94,064.620 116,451.928 70,872.226 138,957.522 47,489.470

 MAE 3.185 3.943 2.400 4.705 1.608

 RMSE 14.695 15.868 12.720 17.923 10.517

 INFINITY-NORM 460.500 355.750 479.250 436.750 411.500

 TWO-NORM 2525.343 2726.853 2185.904 3079.980 1807.277

 MEP 1.923 2.375 1.458 2.806 0.982

Dataset 2

 MEP 2.006 2.160 1.389 2.932 0.772

 INFINITY-NORM 63.250 47.000 64.750 59.500 38.250

 MAE 2.148 2.642 1.681 3.620 0.664

 TWO-NORM 117.545 120.907 104.248 150.974 52.037

 ONE-NORM 348.000 428.000 272.250 586.500 107.500

 MASE 5.520 6.809 4.373 9.351 1.705

 RMSE 9.235 9.499 8.191 11.862 4.088

 SMAPE 0.023 0.025 0.016 0.034 0.009

Dataset 3

 SMAPE 0.023 0.027 0.016 0.033 0.011

 RMSE 14.544 15.906 12.796 18.211 10.960

 MAE 3.661 4.281 2.684 5.436 1.927

 MEP 1.987 2.352 1.414 2.861 1.001

 MASE 108.963 125.229 79.095 159.972 57.179

 TWO-NORM 576.814 630.831 507.485 722.278 434.682

 INFINITY-NORM 95.250 104.500 93.750 99.000 99.000

 ONE-NORM 5758.564 6733.750 4222.250 8551.000 3031.750

Dataset 4

 RMSE 64.525 72.708 54.782 76.367 48.716

 MASE 34.964 42.352 25.107 48.251 17.183

 MAE 16.112 19.439 11.763 22.064 8.294

 SMAPE 0.013 0.029 0.017 0.027 0.008

 MEP 2.857 2.148 1.487 2.868 0.968

 INFINITY-NORM 389.000 399.000 384.000 400.000 397.000

 TWO-NORM 2169.034 2444.122 1841.512 2567.121 1637.598

 ONE-NORM 18,207.000 21,966.000 13,292.000 24,932.000 9372.000
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