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A B S T R A C T

In this paper we consider how Qualitative Spatial Reasoning (QSR) can be used to answer queries over large-
scale knowledge graphs such as YAGO and DBPedia. We describe the challenges associated with spatially
querying knowledge graphs such as point based representations, sparsity of qualitative relations, and scale.
We address these challenges and present a query engine, Parallel Qualitative Reasoner-Query Engine (ParQR-
QE), that uses a novel distributed qualitative spatial reasoning algorithm to provide answers to GeoSPARQL
queries. An experimental evaluation using a range of different query types and the YAGO knowledge graph
shows the advantages of QSR techniques in comparison to purely quantitative approaches.

1. Introduction

Qualitative Spatial Reasoning (QSR) is an area of artificial intel-
ligence research concerned with reasoning over non-numeric spatial
information. Instead of working with quantitative representations —
points, linestrings and polygons, QSR focusses on topological relations
between spatial entities. For example ‘Scotland borders England’, or
’England contains London’. Qualitative Constraint Calculi (QCC) for-
malise these relations and provide operations for deriving additional
spatial facts. QSR is a well established topic of academic interest,
constraint calculi have been studied extensively and their properties are
well understood (Dylla et al., 2017). However, despite the long standing
interest in the area of QSR, there has been relatively little research
that considers applications of QSR or considers how exactly qualitative
spatial reasoning techniques might be used in practice. One proposed
application area for QSR is GIS and querying spatial datasets (Cohn &
Renz, 2008). There are a number of reasons for thinking QSR is well
suited to this task:

• Spatial information is often only available in qualitative form.
This is especially true for data that originates in natural language;
humans typically communicate spatial information by describing
one location in relation to another, rather than by stating a
location’s coordinates (Vasardani, Winter, & Richter, 2013). A
query engine that only uses quantitative data cannot utilise this
information. Conversely, in a qualitative approach, quantitative
data can be converted to qualitative relations and combined with
qualitative facts to provide a richer dataset. Even when spatial
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queries are based around quantitative data e.g. k-nearest neigh-
bour or range queries, QSR can have a role. A hybrid approach
can be used where quantitative reasoning (by testing geometries)
can be used as a starting point for providing answers. QSR can
then enhance these results using qualitative relations (Bennett,
Cohn, & Isli, 1997).

• Many spatial datasets feature incomplete and/or imprecise
records. For example, geospatial datasets may be incomplete
due to cloud cover affecting satellite images or legal restrictions
affecting drone access (Buckley, 2017). In other cases, privacy
concerns e.g. when collecting location data from smart phones
or IoT devices, results in users’ precise locations being obfus-
cated (Duckham & Kulik, 2005). Quantitative spatial reasoning
requires complete geometric representations in order to make
decisions. On the other hand, being able to represent unknown
or imprecise spatial information is a key feature of constraint cal-
culi, making QSR well suited to situations where comprehensive
spatial information is not available.

• Algorithms that determine topological relations using quantita-
tive representations have runtimes that are dependent on the size
of the geometries being tested (Rigaux, Scholl, & Voisard, 2002).
Geometries can feature multi-polygons consisting of millions of
pairs of coordinates. Therefore, even if accurate, high resolution
geometries are available, these can prove challenging to process
in a timely manner (Long, Schockaert, & Li, 2016). In contrast,
qualitative spatial reasoning is free from constraints related to the
size of geometries.
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Intuitively, these points suggest QSR can have an effective role to
play in spatial query engines and similar arguments have been made
previously e.g. Nikolaou and Koubarakis (2013). Therefore it is rea-
sonable to ask why have not we seen many real world applications of
QSR? We believe there are two main obstacles to the adoption of QSR
techniques. The first is that real world datasets featuring qualitative
spatial relations tend to be quite sparse. Even when datasets feature a
greater number of relations, these typically have a scale-free structure
where a small number of spatial entities have a large number of
relations and many entities have few (Nikolaou & Koubarakis, 2014).
The second issue is one of scale. QSR reasoners typically maintain
a complete list of relations between spatial entities, resulting in 𝑛2

relations (where 𝑛 is the number of spatial entities). Even compar-
atively small datasets of 10,000 spatial objects become challenging
to reason over (Sioutis, 2014). Of course, the two issues are related.
Denser, richer datasets have the greatest utility because they afford a
greater number of inferences, but these datasets also pose the greatest
challenge for reasoners.

This paper considers how these challenges can be addressed, and
goes on to demonstrate the use of QSR to answer spatial queries over
large-scale real world knowledge graphs. The use case we focus on
concerns the use of Linked Data (Heath & Bizer, 2011) and spatially
querying the YAGO1 knowledge graph. We chose this example because
it illustrates many of the obstacles to implementing QSR. Although
the YAGO knowledge graph features millions of spatial facts, without
enhancement it is not dense enough for QSR to be useful in query
answering. Secondly, it is a large scale knowledge graph and there-
fore presents challenges for reasoning at scale. Furthermore, there is
real value in implementing QSR over YAGO. YAGO is a rich source
of knowledge about real world entities such as movies, people and
organisations. Integrating this knowledge with qualitative reasoning
over spatial properties allows us to execute queries that are not possible
using existing approaches. Our basic approach is to enhance the knowl-
edge graph with additional spatial information, and then use parallel
distributed computing to deal with the issue of scale. We make the
following contributions:

• Practical demonstration of techniques to develop an enhanced
large-scale knowledge graph that features both extensive quali-
tative relations, and high resolution geometries.

• The design and implementation of ParQR-QE (Parallel Qualitative
Reasoner - Query Engine), a distributed query answering system
that can reason over large-scale knowledge graphs to answer
GeoSPARQL queries. To our knowledge, this is the first time QSR
techniques have been used at scale as part of a query answering
system.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of qualitative spatial reasoning and the fundamental
path consistency algorithm that is used to reason over qualitative
spatial data. Section 3 describes the challenges of implementing spatial
queries over large-scale knowledge graphs. Section 4 describes the
approach taken in preparing the YAGO dataset so it can support spatial
querying. This involves the use of Linked Data to integrate YAGO with
other sources of geographic data. Section 5 provides an overview of
ParQR-QE. Section 6 describes the backward chaining algorithm that
forms the fundamental reasoning mechanism of ParQR-QE. Section 7
presents an evaluation of ParQR-QE using a variety of queries, a
comparison to a query answering system that uses a purely quantitative
reasoning approach, and a comparison to other question answering
systems. Section 8 discusses related work. Finally, Section 9 provides a
conclusion and considers future work.

1 https://yago-knowledge.org/

Fig. 1. The basic relations of RCC-8.

2. Preliminaries

2.1. Qualitative spatial reasoning

Qualitative spatial constraint calculi define relations between spa-
tial objects and a means to reason about these relations. We focus on
the Region Connection Calculus (RCC) (Randell, Cui, & Cohn, 1992),
and specifically the RCC-8 variant. RCC-8 describes eight possible
topological relations between regions. These are shown in Fig. 1 and
are known as the basic relations of the calculus. The relations are
jointly exhaustive and pairwise disjoint (JEPD) i.e. the relation between
any two regions must be one of these eight, and only one relation
can exist between two regions. The set of basic relations is denoted
with the symbol . Each basic relation has an inverse e.g. the inverse
of 𝑇𝑃𝑃 is 𝑇𝑃𝑃 𝑖. If the exact relation between two regions is not
known, a disjunction of basic relations is used to specify this indefinite
knowledge e.g. 𝑥{𝑃𝑂,𝐸𝐶}𝑦 - region 𝑥 either overlaps region 𝑦 or is
externally connected to it. Often no information is known about how
two regions are related in which case the relation could be any one of
the eight basic relations. This is referred to as the universal relation.

Collectively, a group of regions and the relations defined between
these regions, form a qualitative constraint network (QCN), specifically
an RCC-8 network. This is a directed graph (𝑉 , 𝐶), where 𝑉 is the set
of regions and 𝐶 is a mapping between a pair of regions and a relation
𝑟, where 𝑟 ⊆ . Furthermore, for all 𝑣 in 𝑉 , 𝐶(𝑣𝑖, 𝑣𝑖) = 𝐸𝑄, the identity
relation, and the inverse of 𝐶(𝑣𝑖, 𝑣𝑗 ) is 𝐶(𝑣𝑗 , 𝑣𝑖).

Fig. 2 show an example of an RCC-8 network. Note that for clarity
inverse relations are not shown, neither are self relations.

The basic mechanism for reasoning over a QCN involves the weak
composition operation (⋄) which considers how the relations 𝐶(𝑣𝑖, 𝑣𝑗 )
and 𝐶(𝑣𝑗 , 𝑣𝑘) constrain the relation 𝐶(𝑣𝑖, 𝑣𝑘). For a specific example,
and referring to Fig. 2, what do the relations 𝑢{𝑁𝑇𝑃𝑃 }𝑧 and 𝑧{𝐸𝐶}𝑦
tell us about the possible relation between regions 𝑢 and 𝑦? If 𝑢 is
a non-tangential proper part of 𝑧, and 𝑧 is externally connected to 𝑦,
the only possible relation that can hold between 𝑢 and 𝑦 is 𝐷𝐶, they
are disconnected. A composition table, a |𝐵| ⋅ |𝐵| matrix showing all
compositions between basic relations, can be used to look up these
inferred relations. Part of the composition table for RCC-8 can be seen
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Table 1
Part of the Composition Table for RCC8.
⋄ EC PO TPP NTPP

EC {DC, EC, PO, TPP, TPPi, EQ} {DC, EC, PO, TPP, NTPP} {EC, PO, TPP, NTPP} {PO, TPP, NTPP}
TPP {DC, EC} {DC, EC, PO, TPP, NTPP} {TPP, NTPP} {NTPP}
NTPP {DC} {DC, EC, PO, TPP, NTPP} {NTPP} {NTPP}
PO {DC, EC, PO, TPPi, NTPPi} * {PO, TPP, NTPP} {PO, TPP, NTPP}

* denotes the universal relation.

Fig. 2. Example RCC-8 Network.

in Table 1. The full table can be found in Renz and Nebel (1999). Note
that the result of composition could be a disjunctive relation e.g. if the
relation between 𝑢 and 𝑧 had been 𝑇𝑃𝑃 , then 𝑢{𝑇𝑃𝑃 }𝑧 ⋄ 𝑧{𝐸𝐶}𝑦 →
𝑢{𝐸𝐶,𝐷𝐶}𝑦. Composition can also be applied to disjunctive relations
by taking the union of the composition of each basic relation in 𝐶(𝑣𝑖, 𝑣𝑗 )
with each basic relation in 𝐶(𝑣𝑗 , 𝑣𝑘).

The weak composition operation restricts the possible relations that
can exist between a pair of regions. However, the RCC-8 network
may already feature a relation for this pair of nodes. For example, in
Fig. 2, before any reasoning has taken place, the relation between the
regions 𝑤 and 𝑦 is {𝑃𝑂,𝑁𝑇𝑃𝑃 }. Applying composition for 𝑤{𝑁𝑇𝑇𝑃 }𝑥
and 𝑥{𝑁𝑇𝑃𝑃 }𝑦 results in the relation 𝑁𝑇𝑃𝑃 . We can then update
the relation between 𝑤 and 𝑦 by taking the intersection of the initial
relation and the result of composition, resulting in 𝑤{𝑁𝑇𝑃𝑃 }𝑦. If this
intersection results in an empty set this indicates an inconsistency in the
network. These two operations, using weak composition to derive new
relations between regions, and then taking the intersection to check
consistency, forms the basis for reasoning and can be summarised as:-

∀𝑣𝑖, 𝑣𝑗 , 𝑣𝑘 ∈ 𝑉 , 𝐶(𝑣𝑖, 𝑣𝑗 ) ∩ (𝐶(𝑣𝑖, 𝑣𝑘) ⋄ 𝐶(𝑣𝑘, 𝑣𝑗 )) → 𝐶(𝑣𝑖, 𝑣𝑗 )

The operations execute iteratively until a fixed point is reached, at
which point we describe the RCC-8 network as being algebraically
closed or ⋄-consistent. Determining ⋄-consistency for an RCC-8 network
is a type of constraint satisfaction problem. The algorithm, that checks
three node subsets of the network, can be considered a form of path
consistency.

In the general case this path consistency algorithm is an approxima-
tion i.e. it does not guarantee to discover all inconsistencies. Determin-
ing consistency for RCC-8 networks is known to be -hard (Renz &
Nebel, 1998). However, there are tractable subsets of RCC-8 for which
path consistency can effectively decide consistency for a network. For
example, the ̂8 maximal subset (Renz & Nebel, 1999) is of practical
use as it contains 148 relations including all of the basic relations,
the more general contains ({𝑇𝑃𝑃 ,𝑁𝑇𝑃𝑃 }) relation, and the universal
relation.

Although the focus in much of the literature is on using path
consistency to determine consistency, the execution of the algorithm
also has the benefit of pruning relations between regions so that spatial
queries can be answered. For example, before reasoning, if we asked the
question does region 𝑦 contain region 𝑤? We could not be sure. After
executing path consistency we can definitively answer ‘yes’.

2.2. Knowledge graphs, RDF, SPARQL and GeoSPARQL

Knowledge graphs are datasets that have a graph structure where
nodes in the graph represent entities and edges between nodes repre-
sent relations between entities. In comparison to the relation or NoSQL
model, the graph structure affords greater flexibility as entities can
be linked via many different relations, free from the constraints of a
rigid schema or hierarchical structure (Hogan et al., 2021). See Fig. 3
for an example of a knowledge graph. Prominent knowledge graphs
such as YAGO, DBPedia and Wikidata use the Resource Description
Framework (RDF) data model for implementation. In RDF, knowledge
graphs are constructed using triples that describe a pair of nodes and
the relation between them. For example, yago:Belgium rdfs:type
schema:country. Querying RDF knowledge graphs is accomplished
using the SPARQL language which specifies a structure or basic graph
pattern to search for within the target knowledge graph. It is also
possible to add a spatial element to queries using GeoSPARQL, an
Open Geospatial Consortium (OGC) standard that extends SPARQL to
support querying for topological relations such as contains, touches and
overlaps (OGC, 2024). For example, Query C1 shows a GeoSPARQL
query that finds all the museums in Belgium.

Query C1
SELECT ?museum

WHERE {
?museum rdf:type schema:Museum.
?museum geo:sfWithin yago:Belgium.

}

SPARQL queries are composed of a number of triple patterns
e.g. ?museum rdf:type schema:Museum. is a triple pattern. Variables,
prefixed with a question mark, are substituted for entities from the
knowledge graph at query time to generate the results. The second
query triple demonstrates GeoSPARQL and the geo:sfWithin property.
This is executed by testing whether the entities of type museum are
spatially within the boundary of Belgium. GeoSPARQL also supports
querying using a user specified geometry for example Query R1.

Query R1
SELECT ?museum
WHERE{

?museum rdf:type schema:Museum.
FILTER(geof:sfWithin(?museum,

" POLYGON((4.321423...))"^^geo:wktLiteral))
}

Here the FILTER clause restricts results to museums that can be found
within the given polygon.

3. Spatially querying knowledge graphs

Before presenting our implementation of QSR for querying large-
scale knowledge graphs, it is first necessary to describe how spatial
information is typically represented in many knowledge graphs and
the challenges these representations present. We used YAGO as our
example knowledge graph. Specifically, we used the English Wikipedia
version of YAGO 4 which features over 200 million RDF triples. Al-
though the following discussion focusses on YAGO, it is important
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to note that the issues we raise here are applicable to many other
knowledge graphs e.g. DBpedia.

YAGO features significant amounts of quantitative spatial data
where locations of places are represented as points, using the
schema:geo predicate. For example, the location of Belgium is repre-
sented using its centroid as yago:Belgium schema:geo geo:50.641,
4.668. Similarly, the location of the Hergé Museum is represented
as yago:Musée_Hergé schema:geo geo:50.6678,4.6116. YAGO also
contains qualitative spatial information where some locations have a
schema:containedInPlace property e.g. yago:Wellington_Museum,
_Waterloo schema:containedInPlace yago:Waterloo,_Belgium. Us-
ing spatial predicates and GeoSPARQL it should be possible to spatially
query the YAGO knowledge graph in a variety of ways:

• Containment queries e.g. Query C1 which finds museums in
Belgium.

• Adjacency queries e.g. Query A1 which finds Argentinian
provinces that border Chile.

• Spatial joins e.g. Query J1 which finds Oscar winning actors and
the US states they were born in.

• Range queries e.g. Query R1 which finds museums within a user
specified polygon.

We have selected these queries because they demonstrate the use
of different RCC-8 relations, spatial joins introduce the challenge of
querying using multiple spatial entities, and range queries allow us
to investigate the potential of QSR in hybrid reasoning that uses both
quantitative and qualitative data.

Query A1
SELECT ?province

WHERE {
?province rdf:type yago:Provinces_of_Argentina.
?province geo:sfTouches yago:Chile.

}

Query J1
SELECT ?actor ?birthplace ?state

WHERE {
?actor schema:Award

yago:Academy_Award_for_Best_Actor.
?actor schema:birthPlace ?birthplace.
?state rdf:type yago:U.S._state.
?birthplace geo:sfWithin ?state.

}

A query such as Query C1 could be executed quantitatively by
looking up the schema:geo properties, and qualitatively by reasoning
using schema:containedInPlace predicates. However, such a query would
fail to return useful results for a number of reasons. Attempting to
answer Query C1 using quantitative reasoning would fail due to Bel-
gium being represented as a simple point. For smaller spatial features
e.g. museums or railway stations points can suffice, but for larger
geographical features that might form the basis of a containment query,
a simple centroid is of limited value.

Qualitative reasoning is also going to fail to return comprehensive
results due to the sparsity of qualitative relations in the knowledge
graph. Even though YAGO features over a million qualitative spa-
tial triples, these are not comprehensive. For example, yago:Waterloo,
_Belgium has a containedInPlace property of yago:Walloon_Brabant (the
province it is located within), but yago:Walloon_Brabant does not have
a containedInPlace predicate. Consequently, Query C1 would fail to
identify yago:Wellington_Museum,_Waterloo if executed qualitatively.

Considering a range query such as Query R1 raises further issues.
In theory, this query could be answered using a hybrid approach.
Quantitative reasoning could be used to identify places within the query

Fig. 3. Enhanced knowledge graph.

polygon. Qualitative reasoning could then be used to find museums
located within these places. Again, the point based representation be-
comes an obstacle. The polygon defined in Query R1 covers a small part
of Belgium. However, the centroid for Belgium is within this polygon.
Therefore, all museums with a schema:containedInPlace relation with
Belgium would be returned as results even though only some of them
are actually within the query polygon.

4. Generating an enhanced knowledge graph

To address the issues described in Section 3 we took two actions.
First, we linked YAGO resources to complex multi-polygon geometries.
Second, we computed additional qualitative relations between spatial
entities.

A number of open datasets such as OpenStreetMap2 (OSM) and
Database of Global Administrative Areas (GADM)3 provide geometries
in the form of polygons/multi-polygons for places found in the YAGO
dataset. Using the principles of Linked Data, a query such as Query
C1 can be executed by following owl:sameAs links between places
in YAGO and a linked polygon based geometry. For this project we
used GADM which describes the boundaries of countries and their
administrative areas. GADM is comprehensive, it provides complete
coverage of the globe, regions are arranged hierarchically (which lends
itself to easy mapping to RCC-8 relations), and the geometries are high
resolution and consistent i.e. we do not get bordering regions with
geometries that overlap because of differences in granularity. We used
the first two layers of GADM, layer 0 (countries) and layer 1 (first level
administrative areas).

Then, using both the GADM geometries and the point based repre-
sentations in YAGO, we pre-computed a number of additional RCC-8
relations. Combined with the existing qualitative relations already
present in YAGO and GADM this provided a richer RCC-8 network
capable of answering queries qualitatively.

Fig. 3 shows a subset of the resulting enhanced knowledge graph
after these two tasks have been executed. The relations displayed in
bold are newly added relations. The following describes exactly how
these two tasks were accomplished.

2 https://www.openstreetmap.org/
3 https://gadm.org/
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Table 2
Results of linking GADM regions to YAGO.

Layer 0 Layer 1
(Countries) (Admin Areas)

GADM Regions 255 3609
Matches Identified 200 2285
Correct Matches 198 2271
Precision 99% 99.38%
Recall 77.64% 62.92%

4.1. Linking GADM regions to YAGO

Identifying equivalent spatial entities in separate datasets has been
done previously in a number of projects such as LinkedGeoData
(Stadler, Lehmann, Höffner, & Auer, 2012). We used similar techniques,
with our exact approach using the following process:

• Using rdf:type information, relevant points in the YAGO knowl-
edge graph were obtained e.g. places of the type schema:Country
or places of the type schema:AdministrativeArea. For administra-
tive areas we were also able to use additional, more specific type
information e.g. whether a region is province, canton, oblast etc.
as this information was often present in both YAGO and GADM.

• By comparing the YAGO point based location to the MBB (Min-
imal Bounding Box) of GADM regions, potential matches were
identified.

• The text similarity of the candidate YAGO resource’s label was
compared to the GADM region name.

For example, if a GADM country had an MBB that contained a YAGO
place of type schema:Country, and the GADM gadm:name property had
a high text similarity to the YAGO place’s label, it was assumed to be a
match. The Jaro–Winkler distance (Winkler, 1990) was used to obtain
the text similarity score. Table 2 shows the results for the linking of
resources. In order to calculate precision and recall, we assumed that
matches with a similarity score ≥98% were accurate, we then manually
checked the remaining matches. Table 2 shows that we were able to
match with a high level of precision, but without complete coverage
of GADM regions, especially the administrative areas. The recall is low
for a number of reasons. In some cases there were differences in how
regions are classified in GADM and YAGO. However, the biggest reason
was simply a lack of equivalent resources in YAGO for GADM regions.
For example, Australian states and territories are not represented in
YAGO.

4.2. Computing additional qualitative relations

In computing additional RCC-8 relations, we were looking to strike
a balance between generating enough relations so that useful reasoning
could take place, but at the same time limit the scale of this task.
Furthermore, our focus was on relations that would help in answering
the types of queries that we described in Section 3. The following
relations were computed:

EC relations between GADM regions within layers. Computing for individ-
ual layers made the computation feasible, and was sufficient to allow
for effective reasoning to follow. For example, reasoning can infer that
the Chubut province of Argentina borders Chile using 𝐸𝐶 relations
between countries/regions within a layer and the {𝑇𝑃𝑃 ,𝑁𝑇𝑃𝑃 } re-
lations between regions and their parents. Computing the 𝐸𝐶 relations
was handled by Apache Sedona,4 a library for processing large-scale
spatial data, that is built on top of the Apache Spark5 distributed
programming framework. These were computed using standard library
functions, the details of which we do not provide here.

4 https://sedona.apache.org/
5 https://spark.apache.org/

𝑁𝑇𝑃𝑃 Relations between YAGO places and GADM regions. It was not
necessary to find all regions that contained a given YAGO place, only
the ’highest layer’ region. At query time, reasoning can be used to infer
relations between a YAGO place and parent regions. For example, refer-
ring to Fig. 3 we computed that Musée Hergé has an 𝑁𝑇𝑃𝑃 relation
with Walloonie. Reasoning executed for Query C1 will return Musée
Hergé as a result because Walloonie has an existing {𝑁𝑇𝑃𝑃 , 𝑇𝑃𝑃 }
with Belgium. Computing these relations equated to executing point
in polygon tests for each relevant YAGO point (YAGO places that we
had already linked to GADM geometries were not included). Again the
Sedona library was employed to perform these computations.

These computed 𝐸𝐶 and 𝑁𝑇𝑃𝑃 relations were combined with
existing qualitative relations to generate a final RCC-8 network. There
were two sources of existing qualitative relations. Implicitly, the GADM
dataset already featured containment relations. These were extracted
using the hierarchical ids used for regions e.g. BEL.3_1 indicates a
{𝑁𝑇𝑃𝑃 , 𝑇𝑃𝑃 } relation with Belgium. As described previously, the
YAGO knowledge graph features over a million schema:containedInPlace
triples. These were mapped to 𝑁𝑇𝑃𝑃 relations.

We found that the resulting RCC-8 network featured several in-
consistencies. There were two main reasons. The first source of in-
consistencies was when the computed 𝑁𝑇𝑃𝑃 relation contradicted a
schema:containedInPlace triple, either because the coordinates for the
YAGO place were incorrect, or the schema:containedInPlace triple was
erroneous. The second was ambiguity over the meaning of ’contained in
place’. For example, rivers in YAGO often have schema:containedInPlace
relations with multiple YAGO places when in fact they overlap them.
To solve these issues we simply limited each YAGO place to a single
𝑁𝑇𝑃𝑃 relation. Similar projects e.g. Ragalia et al. (Regalia, Janow-
icz, & McKenzie, 2019) also found inconsistencies between computed
relations and topological relations present in DBpedia. Despite the
limitations of our approach, we still found that the resulting knowledge
graph was a rich source of qualitative spatial data with the final
knowledge graph featuring 1,102,691 RCC-8 relations.

5. ParQR-QE: Parallel qualitative query engine

ParQR-QE6 is a query engine that is able to use knowledge graphs
such as the one generated in Section 4 to answer GeoSPARQL queries.
A reasoner called ParQR (Mantle, Batsakis, & Antoniou, 2019) has been
presented previously. Although we have used some of the same tech-
niques, ParQR-QE is a completely separate application that provides
query answering functionality, and a fundamentally different reasoning
algorithm.

ParQR-QE has been built using the Apache Spark framework. Spark
is an industry standard distributed programming framework for work-
ing with large-scale datasets (Zaharia et al., 2016). The Spark frame-
work takes care of low level distributed programming tasks such as
splitting input files into separate partitions and distributing data to
machines in a cluster. The framework also offers a number of different
interfaces for working with datasets. In ParQR-QE, the lower level
RDD API was used to implement the QSR algorithm (Section 6). Other
aspects of the query engine use the Spark SQL interface that supports
execution of SQL queries over distributed datasets. The Sedona library,
which is an extension for Spark, was used to execute quantitative
spatial functions.

The justification for taking a distributed approach to processing is
the size of the enhanced knowledge graph generated in Section 4. Even
without considering the spatial elements, previous work e.g. Galárraga,
Hose, and Schenkel (2012) and Schätzle, Przyjaciel-Zablocki, Skilevic,
and Lausen (2016) demonstrate the benefits of using a distributed

6 Full code listings can be found at https://github.com/mmantle-hud/
ParQR-QE.
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Table 3
Vertically partitioned hasOccupation table.

Subject Object

yago:Soe_Win_(prime_minister) yago:Politician
yago:Chimaobi_Nwaogazi yago:Football_player
yago:Finian_McGrath yago:Politician
... ...

approach when querying large-scale RDF graphs. Furthermore, tradi-
tional approaches to reasoning over RCC-8 networks such as the GQR
reasoner (Westphal, Wölfl, & Gantner, 2009) do not scale to networks
featuring millions of relations. Among the most effective approaches
for large-scale QSR are those that use a distributed, parallel approach.

The following provides an overview of how data is stored and
queries are executed in ParQR-QE. In Section 6 we describe the dis-
tributed backward-chaining spatial reasoning algorithm used in ParQR-
QE that allows queries to be answered qualitatively.

5.1. Data storage

ParQR-QE stores triples from the input knowledge graph in three
ways:

Non-spatial triples. These are stored using a Vertical Partitioning (VP)
approach (Abadi, Marcus, Madden, & Hollenbach, 2007) where a sep-
arate table is created for each predicate in the knowledge graph, see
Table 3 for an example. Parquet,7 a distributed column based file
format, is used to store the tables.

RCC-8 relations. These are extracted from the knowledge graph and
dictionary encoded. The text based representations e.g. yago:Belgium
are replaced with primitive integers. The simpler representation re-
duces the memory requirements and affords faster processing e.g. when
used as keys during the reasoning process.

Quantitative spatial data. Range queries require a hybrid approach in-
volving quantitative and qualitative reasoning. Therefore it is necessary
to store the geometries of spatial entities. Multi-polygon geometries are
split into polygons (to support greater parallelisation). These polygons
are combined with points and stored in a geometries Parquet table.

5.2. Query execution

Fig. 4 shows the query execution for Query A1. Executing the non-
spatial part of the query involves mapping GeoSPARQL query triples
to SQL queries. These queries are then executed using the vertically
partitioned tables. For example, the non-spatial element of Query A1
is mapped to an SQL statement that selects Argentinian Provinces from
a type table. The query parsing and mapping to Spark SQL is handled
with the assistance of the Apache Jena8 semantic web framework.

The spatial part of the query is executed separately using qualitative
spatial reasoning that derives all possible relations for the given query
objects. This is shown in Fig. 4 as a call to the reason function. After
reasoning has completed, these relations are filtered to only keep
relations that match the spatial predicate of the query. In this example
only locations that have an 𝐸𝐶 relation with yago:Chile will be retained.
These results are joined to the results from the non-spatial part of the
query to provide the final query response. Containment queries follow
an identical plan, but with filtering on the basis of {𝑇𝑃𝑃 𝑖,𝑁𝑇𝑃𝑃 𝑖}.
The execution of joins is similar, but multiple spatial objects are passed
to the reason function e.g. an array of US States for Query J1.

The execution of range queries is more involved, implementing
Query R1 is shown in Fig. 5. The spatial part of the query starts by

7 https://parquet.apache.org/
8 https://jena.apache.org/index.html

Fig. 4. Query execution for query A1.

finding all spatial entities that are quantitatively located within the
query polygon. This is accomplished using the geometries table, both
polygons and points are tested using the Sedona library’s ST_Contains()
function. These matching objects are then passed to qualitative spatial
reasoning where RCC-8 relations are derived for these entities. These
relations are then filtered on the basis of containment and combined
with the quantitative results. Finally, the spatial results are joined to
the non-spatial part of the query to provide the overall results.

6. Backward chaining query answering

In theory, it would be possible to use the path consistency algorithm
described in Section 2 to reason over an RCC-8 network like the one
generated in Section 4 and materialise relations. The spatial part of
queries could then be answered simply by looking up relations in the
resulting network. The obstacle to this is the size and topology of the
RCC-8 network generated in Section 4. We found that using ParQR, a
state of the art reasoner designed for working with large-scale datasets,
we were unable to successfully compute closure for this network. This
is consistent with the results presented in Mantle et al. (2019) where
current state of the art reasoners struggled with similar networks that
allow for a very large number of inferences to be made.

An alternative approach to inferring query answers is to backward
chain and only derive those relations that are needed to provide an
answer to the query. Limiting reasoning to spatial objects specified
in the query can still be challenging, however, the volume of data
generated becomes much more manageable. Furthermore, although
not a factor for the use case presented here, backward chaining is
useful when reasoning with knowledge graphs that are dynamic and
frequently change. New information can be added to a constraint
network and inferences made without having to re-compute the full
closure.
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Fig. 5. Query execution for query R1.

6.1. Overview and parallelisation

Fig. 6 visually depicts the backward chaining algorithm used in
ParQR-QE. Although the example presented here focusses on RCC-8,
the reasoner is a general one. The inputs are simply a composition table
and a qualitative constraint network. The reasoner can work with any
qualitative constraint calculi. For example, reasoning over qualitative
temporal relations using Interval Algebra (Allen, 1983), or the relative
orientation of objects using Cardinal Direction Calculus (Ligozat, 1998).
Edges in the input network are represented as tuples in the form (head
node, relation, tail node, distance). The distance value represents the
distance between the nodes of the edge, and is needed to prevent
unnecessary duplicate derivations.

ParQR-QE only stores edges where the relation between nodes is not
the universal relation. This reduces the memory requirements for the
reasoner. The universal relation represents an absence of information,
and is of no benefit in refining the network. Also, if not already present,
the reverse of each edge is added to the network as a pre-processing
step. This is to ensure that all possible chains inference can be followed.
However, for clarity the reverse edges are not shown on Fig. 6.

At query time, an array of spatial objects from a GeoSPARQL query
(query objects) are passed to the reasoner. See the query execution
plans, Figs. 4 and 5, where 𝑟𝑒𝑎𝑠𝑜𝑛(...) indicates a call to the backward
chaining algorithm.

Fig. 6. Overview of the backward chaining algorithm.

The RCC-8 network is filtered to obtain only those edges that feature
a query object as the head node. These query edges are partitioned so
that all edges for the same query object reside in the same partition.
For example, In Fig. 6, we assume that two objects, 𝑎 and 𝑓 have been
passed from the GeoSPARQL query. The RCC-8 network is filtered and
split into two partitions, one for edges featuring 𝑎 as the head node and
one for those featuring 𝑓 . Reasoning then proceeds in parallel, and only
once reasoning has completed are the results from different partitions
combined.
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A key design choice that facilitates this is to use a broadcast or map-
side join. Ahead of query time, the entire RCC-8 network is copied to
each machine in the computing cluster. This is shown on the figure as
Broadcast RCC-8. This allows reasoning to execute completely within
partitions, which circumvents the need for costly shuffling of data
between machines, which would take place if the default join strategy
was implemented.

Reasoning is an implementation of path consistency, but only for
objects specified in the query. This is accomplished by iteratively deriv-
ing new relations for the query objects. Fig. 6 shows the first iteration
of the algorithm. At each iteration there are two stages, composition
and intersection. During composition, query edges are joined to edges
in Broadcast RCC-8, and new relations are inferred. The join is made
by matching the tail nodes of query edges to the head nodes of edges
in the broadcast RCC-8 network. A composition table (as described in
Section 2) is used to look-up the inferred relation. The outputs from
the composition stage are combined with the existing query edges and
form the input to the intersection stage where RCC-8 relations between
pairs of nodes are pruned by taking the intersection of the relations.
This reasoning continues iteratively, until no more new relations can
be inferred.

Algorithm 1 shows the reason function. The mapPartitions operation
executes over partitions, consequently a number of while loops (lines
12–17) execute in parallel, each performing reasoning for a subset of
the query objects. At each iteration the composition and intersection
stages are delegated to sub-routines. These are shown in Algorithms
2 and 3.

Algorithm 1: Reason.
1: reason(RCC8, queryObjects) {
2:
3: //filter to obtain edges featuring query objects
4: queryEdges = RCC8.filter(edge.head ∈ queryObjects)
5: .map(edge ⇒ (edge.head, edge))
6: .repartition()
7:
8: //reason for the selected edges
9: result = queryEdges.mapPartitions(queryEdges ⇒ {

10: count = 0
11: i=1
12: while queryEdges.count() ≠ count {
13: count = queryEdges.count()
14: newEdges = composition(queryEdges, i)
15: queryEdges = intersection(queryEdges ∪ newEdges, i)
16: i++
17: }
18: return queryEdges
19: })
20: return result
21: }

6.2. Preventing duplicate derivations

In order to prevent duplicate derivations it is necessary to limit
which edges can participate in the join at a given iteration. This is
shown in Algorithm 2. The right side of the join always remains the
same, this is the broadcast RCC-8 network. The left side of the join
varies with each iteration. At iteration 1 edges from the input network
are used. At iteration 2, to prevent duplicate derivations being made,
we only want the newly generated edges from the previous iteration
to form the left side of the join. To do this we assign an integer value
to each edge (see Algorithm 2, line 24). We call this value distance
(dist on the algorithms), as it represents the distance between the nodes
in the original RCC-8 network. This value is then used at subsequent
iterations to determine which edges can participate in the join, see
Algorithm 2, line 4. Without this filtering the join size would grow
with each iteration, generating duplicate derivations, and soon become
unmanageable.

Algorithm 2: Composition.
1: composition(queryEdges, i) {
2:
3: // filter to prevent same derivations as previous iterations
4: lhsEdges = queryEdges.filter(edge ⇒ edge.dist = i)
5:
6: // join edges
7: joinedEdges = lhsEdges.map(lhsEdge ⇒ {
8: tailNode = lhsEdge.tail
9: //get edges from the broadcast RCC-8 network

10: rhsEdges = broadcastRCC8(tailNode)
11: //join to lhsEdge
12: joinedEdges = rhsEdges
13: .map(rhsEdge ⇒ {
14: return (lhsEdge,rhsEdge)
15: })
16: .filter( lhsEdge.head ≠ rhsEdge.tail) //no loops
17: return joinedEdges
18: })
19:
20: //use composition to infer new relations
21: newEdges = joinedEdges.map((lhsEdge, rhsEdge) ⇒ {
22: //look-up inferred relation using composition table
23: rel = lookUp(lhsEdge.relation, rhsEdge.relation)
24: dist = i+1
25: return (lhsEdge.head, rel, rhsEdge.tail, dist)
26: }).filter(newEdge.relation ≠ universal relation)
27: return newEdges
28: }

6.3. The algorithm makes all possible inferences with respect to the query
nodes

The algorithm follows all paths from the starting query nodes, one
edge at a time, at each iteration. This continues until all reachable
nodes have been discovered, and all constraints are considered, making
the algorithm sound and complete under the given constraint calculi for
the given query nodes. For example, Fig. 6 shows a relation between
a and e being inferred at iteration 1. However, by following the path
through 𝑏, 𝑐 and 𝑑 further constraints will be put on this relation at
iteration 3, when it will be updated to 𝑁𝑇𝑃𝑃 .

By following every path the reasoner utilises all available spatial
information for the given query objects. There are only two conditions
that halt the following of a path. The first is if the inferred relation
between two nodes is the universal relation. In which case this edge is
not added, see Algorithm 2, line 26. The second is if a newly inferred
relation is the same or weaker than an existing relation. This is deter-
mined in the intersection stage (Algorithm 3) where relations between
pairs of nodes are compared and only if the newly inferred relation is
stronger will the distance value be updated. This is implemented by
generating a key for each edge so that different edges for the same pair
of nodes can be compared. The comparison is then executed using a
reduceByKey operation that takes the intersection of the relations, tests
for consistency, and determines if the new relation is stronger.

6.4. Complexity analysis

The 𝑟𝑒𝑎𝑠𝑜𝑛 algorithm runs in polynomial time with respect to the
number of nodes in the RCC-8 network. In the worst case the input RCC-
8 network is a complete graph with 𝑛2 edges, and all the edges are query
edges i.e. it is necessary to infer relations for all nodes in the network.
The key part of the algorithm from a time complexity perspective is the
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 function; this uses nested iteration to implement a join for
deriving new relations. Assuming the worst case scenario, one side of
this join (𝑙ℎ𝑠𝐸𝑑𝑔𝑒𝑠) features every edge in the network, and the join is
executed between each of these edges and their adjacent edges giving
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𝑛2 ⋅ 𝑛 = 𝑛3 operations. 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is executed from within the while
loop of the 𝑟𝑒𝑎𝑠𝑜𝑛 function. In the case of a complete graph, a relation
between every pair of nodes will be derived in a single iteration of this
while loop. Each relation can be updated a maximum of eight times
(for each of the basic RCC-8 relations), consequently the loop runs
in constant time and the overall time complexity of the algorithm is
(𝑛3). Other aspects of the algorithm involve simpler, flat linear time
operations such as 𝑚𝑎𝑝 and 𝑓𝑖𝑙𝑡𝑒𝑟.

In terms of space complexity, 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 can return 𝑛3 edges. These
results are combined with the input network (Algorithm 1, line 15),
potentially resulting in 𝑛2 + 𝑛3 edges being passed to intersection where
they are reduced to no more than 𝑛2 edges. Therefore the overall space
complexity is also (𝑛3).

Of course we do not expect to see this worst case scenario in
practice. As described above, real world knowledge graphs tend to
be fairly sparse and queries tend to focus on specific spatial objects
or spatial objects of a particular type. Furthermore, the algorithm
is executed in a distributed setting with the query edges split over
multiple partitions allowing processing and memory requirements to be
shared between machines in a cluster. However, there are limits to the
parallelisation. A complete copy of the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑅𝐶𝐶8 variable is sent
to every machine in the computing cluster. Therefore, each machine
needs sufficient memory to be able to store this potentially 𝑛2 data
structure in memory.

Algorithm 3: Intersection.
1: intersection(edges, i) {
2:
3: //generate a key for each edge
4: keyedEdges = edges.map(edge⇒ {
5: return (edge.head+’#’+edge.tail, edge)
6: })
7:
8: //reduce by key to compare relations
9: conEdges = keyedEdges.reduceByKey((edgeA,edgeB)⇒ {

10: isect = edgeA.rel ∩ edgeB.rel
11: if |isect| = 0
12: stop() //inconsistency detected
13: end if
14: dist = if(edgeA.dist = (i+1) and |edgeB.rel| > |isect|)
15: edgeA.dist
16: else if (edgeB.dist = (i+1) and |edgeA.rel| > |isect|)
17: edgeB.dist
18: else
19: Math.min(edgeA.dist, edgeB.dist)
20: endif
21: return (edgeA.head, isect, edgeA.tail, dist)
22: })
23: return conEdges
24: }

7. Evaluation

We evaluated ParQR-QE in a number of ways. First, we compared
the ParQR-QE to a quantitative approach to resolving spatial queries.
To do this we developed a separate query engine, named Quan-QE,
that used the same input knowledge graph, however, instead of using
QSR, the spatial parts of queries were executed using the geometries of
spatial objects. This was implemented using functions from the Sedona
library. Secondly, we were interested in ParQR-QE’s wider utility as
a query answering system therefore we compared it to alternative
approaches to answering the types of query described in Section 3.
Finally, seeing as ParQR-QE is a distributed application, we also wanted
to test the scalability of the reasoner.

Queries. The evaluations focussed on four different types of queries,
containment queries (C1–C4), adjacency queries (A1–A4), spatial joins
(J1–J4) and range queries (R1–R4). Query response times do not in-
clude pre-processing and set-up tasks such as dictionary encoding,
broadcasting of the QCN, and generating the VP tables. Queries were
executed cold and warm. For the cold execution the queries were run
immediately after system start-up. For warm execution, the same query
was executed an additional five times and the mean average response
time was recorded. The warm response times are significantly faster
due to characteristics of the Spark framework that speed-up subsequent
operations on the same dataset. For example, by default and beyond the
end users control, shuffled data is stored on worker nodes ready to be
reused in needed.

The experiments were run using a 4-node computing cluster on
the Google Dataproc9 cloud computing platform. Each machine in the
cluster had 8vCPUs and 52 GB of memory. We set a limit of five minutes
for query execution time.

7.1. Comparison with quantitative reasoning

Table 4 shows the results for the queries using both ParQR-QE and
Quan-QE. As expected there are differences in the number of results
returned for many of the queries. ParQR-QE was often able to return
additional results. This is not surprising, qualitative relations were
generated for all YAGO points, therefore any result found by quan-
titative reasoning could also be found through qualitative reasoning.
In addition, ParQR-QE was often able to find extra, qualitative only
based, results. For example, Query C2 (find Barcelona footballers that
were born in Catalonia) returns 268 results for ParQR-QE, but only 263
results for Quan-QE. Closer analysis of these results shows that there
are places, such as Navarcles, that are located in Catalonia, but do
not have a schema:geo predicate. As a consequence, footballers born
in Navacles do not appear in the results of quantitative reasoning.
However, Navarcles does have a qualitative schema:containedInPlace
predicate so it can be found using qualitative reasoning. Mataró is a
coastal town whose YAGO schema:geo predicate inaccurately locates it
in the Mediterranean Sea, outside the geometry of Catalonia. Therefore,
footballers born in Mataró do not appear in the results of quantitative
reasoning. Again, Mataró has a schema:containedInPlace property so it is
included in the results from ParQR-QE. These two factors, incomplete
and inaccurate quantitative data, explain the differences in the number
of results returned for the queries shown in Table 4 and show the
advantages of using a qualitative approach.

The query response times for ParQR-QE are largely dependent
on the volume of derivations that are made during reasoning. For
example, the fastest executing query A4 (countries that border Chad)
results in ParQR-QE outputting 17,140 relations. In comparison, the
longest running Query J4 (Nuclear power plants and the countries they are
located within) results in 61,101,239 relations. Query J4 is a join where
reasoning is executed for all spatial objects of the type schema:Country.
In comparison, Query A4 involves a single object in a comparatively
sparse part of the RCC-8 network, resulting in fewer derivations being
made. With range queries, again multiple spatial entities are passed
to ParQR-QE, which creates the possibility of more relations being
inferred, and a larger volume of data being processed. This can be seen
in the runtimes of the range queries, especially queries R1 and R4.

When comparing runtimes to Quan-QE we are not looking to make
definitive statements about the speed of qualitative vs quantitative
spatial reasoning. The Quan-QE system we developed simply uses the
standard functions of Sedona. We have made little attempt to fine tune
the Quan-QE implementation or consider query optimisation in-depth.

However, it is still worth considering where query times differ and
the reasons why. Quan-QE results show much greater variability in

9 https://cloud.google.com/dataproc
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Table 4
Experimental Results comparing ParQR-QE and Quan-QE.

Query ParQR-QE Quan-QE

Time Time No. of Time Time No. of
(cold) (warm) results (cold) (warm) results

C1 21.896 11.068 149 21.113 9.804 137
C2 24.501 10.939 268 11.901 2.675 263
C3 25.552 11.564 9 – – –
C4 24.959 14.602 4 9.765 2.280 4
A1 19.234 8.255 10 39.361 16.759 10
A2 30.718 12.262 4 220.520 166.345 4
A3 24.827 12.535 2 8.559 1.975 2
A4 27.684 7.820 6 22.602 7.891 6
J1 41.983 24.762 49 16.419 4.076 48
J2 28.915 11.822 45 – – –
J3 25.768 9.083 52 28.653 10.604 21
J4 126.730 83.231 305 112.532 45.506 279
R1 40.922 21.056 4 11.404 3.456 3
R2 25.688 15.248 53 13.261 3.632 53
R3 28.894 12.457 2 13.559 3.825 2
R4 56.272 40.390 50 14.598 4.008 41

comparison with ParQR-QE. The runtimes for queries that success-
fully completed varied between 1.975 and 166.345 s. The runtimes
are heavily dependent on the size and complexity of the geometries
being processed. For example, Query A2 (US States that border Mexico)
involves testing the multi-polygon geometry of Mexico against the
multi-polygon geometries of US States. Queries involving geometries
with fewer coordinates or queries where one side of the join are spatial
objects represented by simple points, run much faster. Two queries,
C3 and J2, failed to complete within the five minute time limit. This
is a consequence of some very large geometries being tested. For
example, Query C3 video game developers that were founded in Canada
requires the geometries for Canada and Japan to be compared. The
GADM geometry for Canada is a multi-polygon comprised of 24,482
polygons and 3,889,947 coordinates which Quan-QE struggled to pro-
cess efficiently. In comparison, the query response times for ParQR-QE
show less variance. This indicates one possible utility of QSR in query
answering. Quantitative reasoning approaches are dependent on the
scale and complexity of the geometries being processed. Free of such
constraints, qualitative reasoning can prove advantageous in scenar-
ios where large-scale datasets featuring objects with high resolution,
complex geometries are being used.

7.2. Comparison with other question answering systems

To our knowledge there are not any existing applications capable
of answering GeoSPARQL over large scale knowledge graphs therefore
we consider alternative systems for answering the queries shown in
Table 4. We ran the queries using ChatGPT 3.5,10 DBPedia’s SPARQL
endpoint11 and Open Street Map’s (OSM) Overpass API.12 Table 5
shows the results of running the same queries using these comparison
systems. Clearly, because the queries are being answered using different
datasets, for many queries we expect different results. We are more
interested in the types of queries that can be answered, and any issues
associated with running the queries.

The family of GPT large language models that ChatGPT is built
on have shown impressive performance in question answering (QA)
tasks (Tom Brown et al., 2020) and therefore provide a useful compari-
son for ParQR-QE. As ChatGPT is not capable of answering GeoSPARQL
queries directly, the queries were re-phrased as natural language ques-
tions. For example, Query C1 was posed as ’List all the museums in

10 https://chatgpt.com/
11 https://dbpedia.org/sparql/
12 https://overpass-turbo.eu/

Belgium’. A complete list of questions asked and responses from Chat-
GPT can be found at,13 ,14 and15 ChatGPT was unable to provide answers
for the range queries, but provided useful responses to all the other
queries. Despite being asked to provide comprehensive results, it often
had to be repeatedly prompted to provide additional results. For queries
with lots of results, eventually it started producing duplicates, and
we stopped prompting any further, see Table 5. In some cases Chat-
GPT provided factually incorrect answers. However, these were always
accompanied by an explanation. For example, when asked for actors
born in Germany that appeared in the film Casablanca (Query C4), it
included actors considered German that were not actually born in Ger-
many, but explained this was the case. It is also interesting that despite
being trained on vast quantities of data (Tom Brown et al., 2020), it
often failed to provide a complete list of correct answers e.g. Query
J1 Argentinian Provinces that border Chile. These results demonstrate the
limitation of LLMs for QA tasks (Lazaridou, Gribovskaya, Stokowiec,
& Grigorev, 2022) (Maynez, Narayan, Bohnet, & McDonald, 2020),
namely that they can experience hallucinations. Furthermore, when
question answering using LLMs it is not easy to determine the basis of
the answer given (Pörner, Waltinger, & Schütze, 2019) or to update fac-
tual information without re-training the model (Verga, Sun, Soares, &
Cohen, 2021). In comparison, when using a symbolic knowledge base,
such as the enhanced knowledge graph used for ParQR-QE’s results, the
exact source of answers can be identified, and the knowledge graph can
be easily modified to add, remove and update triples.

Although GeoSPARQL are not supported, it was possible to execute
some queries against the DBPedia knowledge graph by mapping to
plain SPARQL and using DBPedia properties such as dbo:location to test
for containment instead of the GeoSPARQL geo:sfWithin property. For
example Query C1 was re-written as:

Query C1 in SPARQL
select ?museum WHERE {

?museum rdf:type dbo:Museum.
?museum dbo:location dbr:Belgium.

}

See16 for a full listing of all the queries. The results for DBPedia
expose many of the points listed in Section 3. For example, it was
not possible to run adjacency or range queries. For the containment
type queries that were possible, many useful results were missed. For
example, many Belgian museums have a dbo:location property for a
town or city they are based in, but not directly with Belgium. Without
spatial reasoning, it was not possible to return these as results.

OpenStreetMap is an open geographic database that features a wide
range of features including buildings, roads, amenities and boundaries.
The OSM Overpass API allows for the execution of spatial queries
against OSM data. Again, GeoSPARQL queries are not supported so
queries were mapped to the Overpass Query Language. For example
Query C1 was translated as:

Query C1 in Overpass QL
[out:csv(name)];
(area [" ISO3166 -1"=" BE "][ admin_level=2];)->.b;
node [" tourism " = " museum "]( area.b);
out;

13 C1–C4: https://chatgpt.com/share/947382f6-3767-4bb2-b3dc-
8e42515f3f8e.

14 A1–A4: https://chatgpt.com/share/be4526d1-443c-41af-9396-
fc0b25c073d5.

15 J1–J4: https://chatgpt.com/share/126b48d2-1682-4825-a87a-
aec1a94172d2.

16 https://github.com/mmantle-hud/ParQR-QE/tree/master/evaluation_
queries
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Table 5
No. of query results for ParQR-QE, ChatGPT, DBpedia + SPARQL and OSM + Overpass
API.

Query ParQR-QE ChatGPT DBPedia OSM
+ SPARQL + Overpass API

C1 149 > 66+★ 50 446
C2 268 > 85+★† 369 –
C3 9 > 25+† – –
C4 4 3+† 1 –
A1 10 8+ – 11
A2 4 4 – 4
A3 2 2 – 2
A4 6 6+ – 6
J1 49 > 36+★† 28 –
J2 45 33+★ – –
J3 52 > 47+★ 40 794
J4 305 > 127+★ 145 167
R1 4 – – 5
R2 53 – – 165
R3 2 – – 13
R4 50 – – 273

− = Not possible to run the query.
+ = Needed to be prompted for additional answers.
★ = Produced duplicate answers.
† = Produced incorrect answers, but with explanation.

Fig. 7. Query Response time for ParQR-QE as a function of the no. of machines in the
computing cluster.

Again, see16 for a full list of queries. Table 5 shows it was possible
to execute a variety of different queries including adjacency and range
queries. OSM is a rich source of geographical data featuring over
9.2 billion nodes many of which represent points of interest (Open-
StreetMap Statistics, 2024), and queries often returned a greater num-
ber of results than ParQR-QE using YAGO and GADM. In comparison to
using a knowledge graph such as YAGO, the limitation of OSM is that
features are tagged with basic properties such as their type and name,
but lack a richer set of properties and are not linked to other entities.
Therefore it was not possible to run queries that rely on anything other
than geometric properties and basic type information. In comparison
ParQR-QE was able to use both qualitative spatial information and
non-spatial properties to answer queries.

7.3. Scalability

ParQR-QE is a parallel distributed reasoner therefore we also evalu-
ated its ability to parallelise processing effectively. For this experiment
we ran Query J4 repeatedly, each time using different sized computing
clusters. Fig. 7 shows that as we add more machines to the computing
cluster, greater parallelisation is achieved and query response time
decreases significantly. A standard metric used to evaluate parallel,
distributed systems is scaled speed-up, 𝑡1

𝑡𝑛
÷ 𝑛 where 𝑡1 is the execution

for a single machine, 𝑛 is the number of machines, and 𝑡𝑛 the execution
time for the 𝑛-machine cluster. A single machine was unable to handle
the size of the RCC-8 network so a two machine cluster was used as the

Fig. 8. Scaled speed-up for ParQR-QE.

baseline and the scaling factor adjusted accordingly. Fig. 8 shows scaled
speed-up. Ideally, when the number of machines in the cluster doubles
the reasoning time will halve, giving linear speed-up. Moving from two
to four machines, ParQR-QE shows super linear speed-up, before drop-
ping to sub-linear speed-up when eight and sixteen machines are used.
This is not unusual for distributed applications where at some point
all the necessary tasks can be launched simultaneously and the benefit
of further parallelisation reduces. Although we have demonstrated
the capability of ParQR-QE to reason over large-scale networks and
parallelise a workload, it is worth noting that the broadcast approach
we have taken, which requires each machine in the cluster to have
sufficient memory to store the entire network, could at some point be
a limitation for the reasoner.

7.4. Potential and limitations

Section 7 evaluated ParQR-QE in answering a number of differ-
ent queries using an enhanced YAGO knowledge graph. However, it
is worth considering the wider applicability, and the potential and
limitations of the work presented here.

Using alternative knowledge graphs. Obtaining useful results was largely
dependent on the enhanced dataset generated in Section 4. The knowl-
edge graph was carefully crafted to ensure all YAGO points had a
relation with a GADM region, and that relations between GADM regions
within layers were present. Without this pre-processing, chains of rea-
soning could not have been executed by the reasoner. Given the often
sparse nature of real world constraint networks, in order for ParQR-QE
to have wider applicability, it is likely that similar pre-processing would
be necessary to ensure the topology of the constraint network will
support useful reasoning. However, the methods described in Section 4
can be easily applied to other knowledge graphs. For example, the
same process can be applied to DBpedia, where spatial entities are also
represented using points and dbo:location properties could be used for
mapping to RCC-8 instead of containedInPlace.

Choice of queries. We have focussed on four types of query. These
cover a wide range of query types, and utilise a range of RCC-8
relations ({𝐸𝐶, 𝑇𝑃𝑃 ,𝑁𝑇𝑃𝑃 , 𝑖𝑇 𝑃𝑃 , 𝑖𝑁𝑇𝑃𝑃 }). Furthermore, the range
query shows how QSR can be used as part of a hybrid approach
that combines quantitative and qualitative representations. The query
implementation can be extended for other types of query. For example
a spatial k-nearest neighbour query (or distance query) can be imple-
mented using an approach similar to the query plan shown in Fig. 5.
Quantitative reasoning can be used to find candidate spatial objects,
qualitative reasoning to find additional spatial objects contained within
these candidate objects, and a final filtering to find the k nearest objects
to the point in question.

The obvious omission in terms of RCC-8 relations is querying for
overlapping (𝑃𝑂) relations. YAGO does not feature 𝑃𝑂 type relations.
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Furthermore, the point based representations in YAGO meant that
when generating the RCC-8 network in Section 4 no 𝑃𝑂 relations were
computed. The enhanced knowledge graph generation described in
Section 4 could be extended to include other spatial features e.g. com-
puting 𝑃𝑂 relations between GADM regions and the geometries of
rivers and national parks. Further ‘overlaps’ type queries would then be
possible such as find all the countries that the river Rhine flows through.
It should also be noted that there was a benefit to the absence of 𝑃𝑂
relations. Reasoning using 𝑃𝑂 often results in a disjunctive relation,
see Table 1. The absence of 𝑃𝑂 relations meant that reasoning resulted
in the derivation of one of the basic relations, and we could provide
definitive answers to queries. Including 𝑃𝑂 relations would not render
the application impractical, it would simply mean that querying may
present answers in the form of a disjunction of relations.

Using other qualitative constraint calculi. It is important to emphasise
the reasoning element of the query engine is not restricted to RCC-8.
Provided with a suitable composition table and constraint network, it
can work with any qualitative constraint calculi. For example, by using
a different query execution layer, it would be possible to answer tempo-
ral queries using Interval Algebra without having to make any changes
to the reasoner. Although the reasoner is not capable of reasoning over
a combination of two or more calculi (often a challenging task (Liu,
Li, & Renz, 2009)), it would be possible to reason separately using
two different calculi and take the intersection of the results to provide
query answers. For example, to answer spatio-temporal queries (RCC-8
and Interval Algebra) ‘all the Oscar winning actors born in England during
the Second World War’ or using two different spatial constraint calculi
(RCC-8 and CDC) ‘find museums in Belgium that are south of Brussels’.

8. Related work

There are number of semantic web frameworks that support the
parsing and execution of GeoSPARQL queries e.g. Apache Jena,17 On-
top.18 However, such frameworks do not implement spatial reasoning
in order to answer queries.

There are also distributed approaches to storing and querying RDF
data e.g. S2RDF (Schätzle et al., 2016) is a distributed RDF query en-
gine built using Spark. The limitation of these distributed RDF systems
is they are not capable of answering GeoSPARQL queries, they can only
provide answers to non-spatial queries. Therefore we focus our analysis
of related work on two areas (1) spatial query answering systems that
use QSR and (2) systems that utilise Linked Data and a combination of
qualitative and quantitative data to answer spatial queries.

8.1. Answering spatial queries using QSR

Bennett et al. first proposed the use of QSR for query answering
in GIS (Bennett et al., 1997). A prototype system was described that
featured quantitative polygon data and RCC-8 relations, and used QSR
to evaluate queries. The system was limited in scale, showed no real
world application, and no evaluation was presented. It was presented
to ‘‘explore possible ways to exploit qualitative spatial reasoning’’.

Since this time a number of reasoners have been developed that
use QSR to answer spatial queries, notably PelletSpatial (Stocker &
Sirin, 2009) and CHOROS (Christodoulou, Petrakis, & Batsakis, 2012).
CHOROS is an extension of PelletSpatial, which itself extends the Pellet
reasoner. These applications have some similarities to ParQR-QE. Both
systems are centred around using semantic web technologies, and the
spatial part of queries is handled by QSR reasoning. However, there
are also significant differences. These are non-distributed systems that
run on a single machine. Furthermore, in both reasoners, path consis-
tency is computed for the entire RCC-8 network ahead of query time.

17 https://jena.apache.org/
18 https://ontop-vkg.org/

These factors mean both systems lack the ability to scale. Experiments
presented in Stocker and Sirin (2009) and Christodoulou et al. (2012)
contained no details on queries, and focussed on using comparatively
small datasets consisting of hundreds of relations.

8.2. Qualitative knowledge in geospatial query answering over linked
geospatial datasets

A number of systems have been developed that use linked geospatial
datasets and a combination of quantitative and qualitative knowledge
to answer spatial queries.

The work by Regalia et el. Regalia et al. (2019) has many similarities
with the work we have presented in Section 4. They enriched DBpedia
with qualitative relations by matching DBpedia places with geometries
from Open Street Map, and then computed topological relations be-
tween entities using the polygons and polylines from OSM. Compared
with the enhanced knowledge graph presented in Section 4, this was a
smaller example. They focussed on a single country, the United States, a
limited set of spatial entities, and generated a smaller dataset consisting
of 120,681 relations. However, the dataset they generated had greater
complexity. They used polygons for cities, counties and parks, and
polylines for streams and roadways. As a result, they were able to utilise
a wider range of relations, this included the 𝑃𝑂 relation in addition to
𝐸𝐶, 𝑇𝑃𝑃 and 𝑁𝑇𝑇𝑃 RCC-8 relations, but also relations from other
formalisms. For example approximate topological relations, such as
nearly meets or nearly contains.

The focus of their research was on computing the relations and
generating an enhanced dataset. They presented a small number of
example queries that demonstrated both the performance benefits of
their approach and that additional results are generated. They also
provided an example of how reasoning over these relations could be
used to infer additional facts. However, reasoning was not integrated
into a wider query answering system.

Younis, Jones, Tanasescu, and Abdelmoty (2012) developed a sys-
tem for answering spatial queries using data from DBPedia and the
Ordnance Survey. The Ordnance Survey data, comprised of polygons
representing UK regions was stored in a PostGIS database. DBPedia
spatial entities represented by points were stored separately. Similar
to the range queries described above, spatial queries were answered by
first accessing this quantitative data, and then executing queries using a
SPARQL endpoint to enhance these results with qualitative knowledge
from DBPedia e.g. using dbpo:locatedInArea properties. They did not
provide any detail on query response times. But, like our work, they
found that integrating qualitative data returned richer results.

A similar approach is taken by GeoQA (Punjani et al., 2020) a
geospatial question answering system that utilises data from GADM,
Open Street Map and DBPedia. Resources in these different datasets
were semantically interlinked. Queries were then answered by interro-
gating the three datasets and combining quantitative and qualitative
spatial knowledge.

These three examples are significantly different from the work pre-
sented here. These systems simply combine data from different sources
to answer queries. There is not any reasoning to infer additional results
that are not already present. Furthermore, these approaches do not use
a distributed architecture in the way ParQR-QE does. As a result we
would not expect them to handle large-scale knowledge graphs. In each
case, the datasets used for testing were limited in scale, focussing on
one or two countries.

9. Conclusions

In this paper we have presented ParQR-QE, a distributed query
engine that uses qualitative reasoning to provide answers to spatial
queries for large-scale knowledge graphs. To our knowledge, this is
the first demonstration of QSR techniques being used in this way.
We have evaluated ParQR-QE using an enhanced YAGO knowledge
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graph by running a variety of queries and comparing to a purely
quantitative approach. Our evaluation has shown that ParQR-QE is able
to parallelise workloads effectively and deal with large-scale datasets.
We have also shown the benefits of using QSR in query answering.
Using ParQR-QE we were able to generate a greater number of results
compared to quantitative only techniques, and in some cases provide
faster query times.

There are some limitations to the work we have presented here. For
example, we took a simple approach to dealing with inconsistencies
encountered in the YAGO knowledge graph. Also we chose to focus on
adjacency and containment queries, and generated an RCC-8 network
that was limited to 𝐸𝐶, 𝑇𝑃𝑃 and 𝑁𝑇𝑃𝑃 relations. As a consequence
QSR was often able to infer basic, rather than disjunctive relations, and
could therefore provide definitive answers to queries. Less controlled
scenarios featuring a wider range of RCC-8 relations and query types
are unlikely to result in similarly neat results. Furthermore, as noted
in Section 6, in some situations the scalability may be limited by the
broadcast join approach we have employed.

There are a number of directions for future work. There is room to
optimise the query execution. For example we expect that early filtering
for transitive relations, applying selectivity for joins, and materialising
a greater number of relations in advance of query time will speed up
response times.

Furthermore, the techniques we have presented can be generalised
to other situations. For example, we plan to look at using ParQR-QE
in scenarios which are dynamic e.g. natural disaster situations where
spatial information is likely to be imprecise, incomplete and rapidly
changing. We believe an approach like we have described here, that
can integrate quantitative and qualitative data, represent imprecise and
incomplete information, and provide reasoning at query time, will be
beneficial.
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