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ABSTRACT 

Deterministic variables are variables that are functionally determined by one or more parent variables. 

They commonly arise when a variable has been functionally created from one or more parent 

variables, as with derived variables, and in compositional data, where the 'whole' variable is 

determined from its 'parts'.  

This article introduces how deterministic variables may be depicted within directed acyclic graphs 

(DAGs) to help with identifying and interpreting causal effects involving derived variables and/or 

compositional data. We propose a two-step approach in which all variables are initially considered, 

and a choice is made whether to focus on the deterministic variable or its determining parents.  

Depicting deterministic variables within DAGs brings several benefits. It is easier to identify and avoid 

misinterpreting tautological associations, i.e., self-fulfilling associations between deterministic 

variables and their parents, or between sibling variables with shared parents. In compositional data, 

it is easier to understand the consequences of conditioning on the ‘whole’ variable, and correctly 

identify total and relative causal effects. For derived variables, it encourages greater consideration of 

the target estimand and greater scrutiny of the consistency and exchangeability assumptions.  

DAGs with deterministic variables are a useful aid for planning and interpreting analyses involving 

derived variables and/or compositional data. 

KEY WORDS:  

Causal inference, directed acyclic graphs, compositional data, derived variables, composite variables, 

tautological associations  
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INRODUCTION 

Causal directed acyclic graphs (DAGs) are increasingly popular aids for identifying and estimating 

causal effects(1,2) and for recognizing and understanding various forms of error, bias, and non-causal 

associations.(3–7) However, little attention has been given to their utility for understanding analyses 

involving deterministic variables.(8,9) A deterministic variable is a variable that is functionally 

determined by one or more other variables such that its value can be known with certainty once its 

parents are known.(8,9) They are extremely common in health and social science, typically arising in 

the following types and settings:  

1. Derived variables. Derived variables are variables that have been functionally created from 

one or more parent variables.(10) They include simple derived variables (e.g., macrosomia), 

which are created from a single parent variable (e.g., birthweight), and composite derived 

variables (e.g., waist-to-hip ratio), which are created from two or more parent variables (e.g., 

waist circumference and hip circumference).(11)  

2. Compositional data. Compositional data is a form of hierarchical data that contains ‘part 

variables’ (e.g., fat mass and fat-free mass) that perfectly sum to a ‘whole’ variable (e.g., total 

mass) or a constant.(12–14)  

 Because DAGs are primarily used to consider probabilistic relationships,(15) deterministic variables 

have received limited attention within DAGs. Indeed, DAGs containing deterministic variables have 

additional statistical implications that make them incompatible with many routine causal identification 

and discovery algorithms.(16) Depicting deterministic variables within DAGs can, however, be useful 

for understanding certain challenges involved in the analyses and interpretation of deterministic 

variables.  

In the following, we introduce how deterministic variables can be depicted within DAGs and discuss 

the benefits for identifying and interpreting causal effects involving derived variables and/or 

compositional data. 

DEPICTING DETERMINISTIC VARIABLES WITHIN DAGS 

A causal DAG is a graphical representation of the hypothesized causal relationships between a set of 

variables (or 'nodes').(1,2) Any two variables in the graph may be connected by a unidirectional arrow 

(or 'arc'), which signifies that the first variable (the 'parent' or 'ancestor') exerts a causal effect on the 

second (the 'child' or 'descendent'). Because a DAG is acyclic, no variable may cause itself at the same 

moment in time. To ensure that deterministic variables are handled appropriately within DAGs, they 

should be distinctively depicted. To achieve this, we follow the convention that any 'child' variable 

that is fully determined by one or more 'parent' variables is depicted with a double-outlined node.(17) 

We also suggest: 1) all arcs entering a deterministic variable should be double-lined, to denote that 

they are part of a functional, not probabilistic, relationship(12); and 2) all arcs leaving a deterministic 

variable should be dashed; this denotes that, while it may be useful to conceptualize the 'implied’ 
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causal effect of a deterministic variable, no residual effect exists beyond that caused by the parent 

variables.(10,18) Finally, where a child variable and all determining parent variables occur 

concurrently, we suggest enclosing the family within a dashed-outline box.(12) Examples of this 

notation are given in Figure 1, which depicts a simple derived variable (Figure 1A), a composite 

derived variable (Figure 1B), and compositional data (Figure 1C).  

Figure 1  Causal directed acyclic graphs using deterministic notation to depict: A) a simple derived variable; B) 
a composite derived variable; and C) compositional data. 

 

Fully determined child variables are represented by double-outlined nodes, deterministic relationships are 
represented by double-lined arcs, arcs leaving a deterministic variable are represented as dashed arcs, and situations 
where a child variable and its determining parent variables occur simultaneously in time are enclosed within a 
dashed-outline box. An example outcome, cardiovascular disease (CVD) has been added to all examples. In A) the 
simple derived variable, macrosomia (𝑿), is a binary variable that is fully determined by birthweight (𝑋1). In B) the 
composite derived variable, waist-to-hip ratio (𝒀), is fully determined by dividing the waist circumference (𝑌1) by the 
hip circumference (𝑌2). In C) the 'whole' variable, total mass (𝒁), comprises two 'part' variables, fat mass (𝑍1) and fat-
free mass (𝑍2) and can therefore be fully determined by summing both parent components. 

ALGORITHMIC APPROACHES AND THE BENEFIT OF DAGS 

For many years, deterministic variables were not strictly compatible with DAGs because deterministic 

variables bring additional statistical dependencies.(1) This was resolved with the introduction of the 

D-separation criterion (note the uppercase ‘D’), which extends the familiar d-separation criterion to 

accommodate the behavior of deterministic variables.(17) Despite this, most causal modelling and 

discovery algorithms are not natively compatible with deterministic variables.(16) Such variables are 

hence usually treated as nuisance nodes that need to be identified and removed.(17) Shachter's 

Deterministic Node Reduction algorithm achieves this by identifying all deterministic variables within 

a DAG and transferring the incoming and outgoing probabilistic arcs to their parent nodes to create 

barren nodes that may be removed from the graph without losing information about the relationships 

between the remaining variables.(8)  

Simply identifying and removing deterministic nodes is not especially useful when a deterministic 

variable is the exposure or outcome of interest. In these circumstances, we advocate an alternative 

two-step approach to ensure that the assumptions and implications are fully considered. First, a 'full' 

DAG is drawn that includes the deterministic exposure and/or outcome, as well as all determining 
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parents. Next, an explicit choice is made whether to focus on the deterministic variable(s) or the 

determining parents.  

UNDERSTANDING TAUTOLOGICAL ASSOCIATIONS  

Perhaps the most straightforward benefit of depicting deterministic variables within DAGs is the 

ability to identify and avoid misinterpreting tautological associations. We define tautological 

associations as the self-fulfilling associations that arise when a deterministic variable is analyzed in 

direct relation to one of its parent variables, or a sibling variable with at least one shared parent 

component.  

The problem of tautological associations was first identified by Karl Pearson in 1897 in the context 

of analyzing ratio variables.(19) Ratio variables (e.g., 𝑋/𝑁) are composite derived variables created by 

dividing one parent variable (e.g., 𝑋) by a second parent variable (e.g., 𝑁).(20) Assuming faithfulness,(1) 

Pearson warned that two ratio variables with a shared denominator parent variable (e.g., 𝑋/𝑁 and 

𝑌/𝑁) would share a 'spurious (organic) correlation' even if the numerators (e.g., 𝑋, 𝑌) are unrelated.(19) 

Using deterministic notation, this phenomenon can be depicted and understood using a DAG that 

contains the three parent variables (i.e., 𝑋, 𝑌, and 𝑁) and the two child variables (𝑋/𝑁 and 𝑌/𝑁) (Figure 

2A).  

Perhaps the most well-known example of a tautological association occurs in the context of analyzing 

change score variables. Change score variables (e.g., ∆𝑋 =  𝑋1 − 𝑋0) are composite derived variables 

created by subtracting an earlier measure of a time-varying variable (e.g., 𝑋0) from a subsequent 

measure of that variable (e.g., 𝑋1) (Figure 2B). In 1962, Oldham warned that change score variables 

share a negative ‘spurious correlation’ with their baseline parent variable that is ‘entirely produced by 

our arithmetical procedure’ (21) Known sometimes as the ‘law of initial value’, this occurs because of 

the negative parametrization of the baseline variable in the change score variable.(22) Other examples 

of tautological associations can be found in the literature, under the term 'mathematic(al) coupling',(23) 

although most examples probably occur in applied analyses with no awareness of the phenomenon. 

In statistical terms, tautological associations are neither erroneous nor biased.(24) The expected 

association between two ratio variables, for example, is an accurate reflection of their common 

denominator variable.(24) However, for causal interpretation, inferential bias can occur when the 

underlying tautology is not recognized and the resulting associations are misattributed to other 

(causal) mechanisms. Such misinterpretations are probably more common for composite derived 

variables with many parent variables since the deterministic origins become easier to overlook. 

Nevertheless, there are examples of simple tautological associations (e.g., between hypertension and 

blood pressure) being overlooked when analyses are conducted at aggregate level (Figure 2C).(25) By 

placing the parent variables for all deterministic exposure and outcome variables within a DAG, we 

believe such mistakes become less likely. 
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Figure 2  Causal directed acyclic graphs of three tautological associations: A) between two ratio variables 
with a common denominator parent variable; B) between a change-score variable and its baseline 
parent variable; and C) between two aggregate variables. 

 

In A) the observed variables GDP (𝑿) and CO2 emissions (𝒀) are both caused by population size (𝑁), making 𝑁 a 
confounder for the apparent relationship between 𝑋 and 𝑌. Two composite derived variables have also been created 
by diving both 𝑋 and 𝑌 by 𝑁 to create GDP per capita (𝒁𝟏) and CO2 emission per capita (𝒁𝟐), respectively. Since both 
𝒁𝟏 and 𝒁𝟐  share the same parent variable (𝑁), they will share a tautological association. In B) the baseline 
measurement of a repeated measure variable (𝑋0) causes the follow-up measurement (𝑋1), from which a change score 
variable (𝜟𝑿) has been created by subtracting 𝑋0 from 𝑋1. Since 𝑋0 is a deterministic parent of 𝜟𝑿, they share a 
tautological association. In C), where subscript 𝑖 denotes individual-level and 𝑗 denotes area-level, a simple derived 
variable, hypertension (𝑿𝒊), is a dichotomized individual-level variable that is fully determined by the continuous 

individual-level variable systolic blood pressure (𝑿𝟏
𝒊 ). Area-level mean systolic blood pressure (𝑿𝟏

𝒋
) and area-level 

prevalence of hypertension (𝑿𝒋) are determined at the aggregate level from 𝑿𝟏
𝒊  and the area-level population (𝑵𝒋). 

Since both 𝑿𝟏
𝒋

 and 𝑿𝒋
 share the same two parent variables (𝑿𝟏

𝒊 , 𝑵𝒋), they share a tautological association. 

CONSIDERING SIMPLE DERIVED VARIABLES 

Most simple derived variables are created for statistical rather than causal reasons. For example, an 

exposure variable may be log transformed to more accurately model a nonlinear relationship with the 

outcome.(26) Although important for estimation,(27) such transformations have limited implications 

for causal reasoning, except where the transformation leads to a loss of information, e.g., due to 

coarsening.(28)  

Coarsening commonly occurs when a dichotomous variable (e.g., smoker) is created by collapsing a 

continuous or multinomial variable (e.g., daily cigarettes smoked) into two categories.(29) Coarsening 

the exposure has particular implications for the consistency assumption, which requires that there 
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must be no two versions of the exposure such that, for the same exposure value, the different 

versions have different probabilities of one or more possible outcomes.(30) If multiple versions of the 

exposure are collapsed into a single value, then these versions need to have the same effect on the 

outcome to provide a well-defined causal effect, an assumption known as effect equivalence.(28) 

Without effect equivalence, the estimated effect of the coarsened variable will be a poorly defined 

weighted average of the effects of the multiple parent versions of the exposure and their frequencies 

in the study population.(31)  

Coarsening the exposure can be especially problematic for instrumental variable analyses because a 

coarsened exposure will likely violate the exclusion restriction assumption, i.e., that the instrument 

has no effect on the outcome other than through the exposure.(32,33) This is because the instrument 

is likely to cause the outcome through variation in the parent exposure variable that is not captured 

by the coarsened child exposure.(32,33) 

To illustrate, suppose we are interested in the average causal effect of smoking on the risk of 

Alzheimer’s disease. Smoking is a dichotomized child of daily cigarettes smoking. If the number of 

daily cigarettes smoked has a dose-response relationship with the risk of Alzheimer’s disease, then 

the average causal effect of smoking will reflect a poorly defined weighted average of different 

smoking levels. If we tried to estimate this effect using an instrumental variable (e.g., cigarette price), 

the exclusion restriction assumption would be violated by any such dose-response effect.(32,33) This 

assumption can be seen visually in a DAG containing both the parent and child exposure variables as 

the (residual) path between the parent exposure and the outcome (Figure 3). 

Although the issues with variable coarsening cannot be solved by simply depicting derived variables 

and their parent variables within DAGs, the practice may help to ensure that the resulting implications 

and assumptions are more explicitly considered. 

Figure 3  Causal directed acyclic graph of an instrumental variable scenario with a coarsened exposure 
variable.  

 
In this scenario, the continuous variable, daily cigarettes smoked (𝑋1) has been coarsened into a dichotomised 
variable, current smoker (𝑿). The implied causal effect of 𝑿 on the outcome, Alzheimer’s Disease (𝒀) is depicted with 
a dashed arc, although this effect is technically entirely explained by 𝑋1. Another direct path is depicted from the 
parent exposure to the outcome (𝑋1 → 𝑌), which represents the residual (dose-response) effect of the 𝑋1 on the 
outcome that does not act through 𝑿. For the causal effect of 𝑿 on 𝒀 to be robustly estimated, this residual path 
𝑋1 → 𝑌 must be zero (the effect equivalence assumption). This is apparent if we imagine estimating the effect of 𝑿 
on 𝒀 using an instrumental variable, cigarette price (Z), since the residual path 𝑋1 → 𝑌, if non-zero, would violate the 
exclusion restriction assumption. 
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CONSIDERING COMPOSITIONAL DATA 

The benefits of depicting deterministic variables within DAGs increase with the complexity of the 

variables and/or relationships being considered. Compositional data is a common form of complex 

data structure that naturally contains deterministic relationships because the 'part' variables sum to 

a 'whole' variable or constant (Figure 1).(12,14) This makes compositional data notoriously 

challenging to analyze and interpret correctly.(12,14,34,35) Pearson's warning on the use of ratio 

variables was allegedly motivated by observing biologists dividing bone measurement variables (e.g., 

femur length) by length measurement variables (e.g., leg length).(19) Since then, the area of 

Compositional Data Analysis (CoDA) has emerged to develop specific analytical strategies.(13,14) 

We focus on the insights that arise from considering compositional data within DAGs.(12,34,35) 

Simplifying features of compositional data 

There are two important features of compositional data that reduce the potential complications when 

compared with composite derived variables. First, the 'whole' variable can usually be directly 

observed. Indeed, whether a variable is a 'whole' or 'part' is often a matter of perspective or 

convenience rather than external structure. All variables can potentially be divided into further parts 

or summed to a greater whole. The choice of whether to focus on the 'whole' or the 'parts' is therefore 

usually a trade-off between the competing benefits of aggregation and subdivision.  

The second key feature of compositional data is that the 'whole' variable and all 'part' variables occur 

at the same moment in time. This avoids many of the more serious issues affecting composite derived 

variables discussed below.  

Choosing the target estimand 

Analyses of compositional data generally consider two types of estimands: total compositional 

effects and relative compositional effects. Total compositional effects represent the effects of 

increasing the 'whole' variable either by intervening on the 'whole' directly or through one or more 

specified 'part' exposures.(12,34–36) Relative compositional effects represent the joint effect of 

increasing a specified 'part' exposure while simultaneously decreasing one or more substituting 'parts' 

to keep the 'whole' fixed.(12,34–36) Different analytical strategies are required to estimate these two 

effects, and misinterpretations occur when the wrong strategy is used inadvertently, or when the 

relative nature of structurally fixed data (e.g., time-use data) are not recognized.(12,34,35)  

Since compositional data occur at the same time, the 'whole' and 'part' variables may be drawn in 

multiple ways, but it is intuitive to consider the 'whole' as being determined by the 'parts' (Figure 

1C).(12) Drawn like this, the 'whole' can be usefully interpreted as a collider for the 'parts', and it is 

clear that conditioning on the 'whole' introduces a dependency between the 'parts'.(12) The individual 

effect of a specific 'part' cannot therefore be estimated when conditioning on the 'whole'.(12) 

To illustrate, we consider the total effect of carbohydrate consumption on the risk of diabetes, where 

the consumption of carbohydrates, proteins, and fats determines the total energy intake (Figure 4A). 
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In nutritional epidemiology, it is common to evaluate the effects of one or more specific dietary 

component(s) on subsequent health outcomes while conditioning on total energy intake as a proxy 

"confounder" for the diet.(37) However, when drawn as suggested, it is apparent that conditioning 

on total energy intake would introduce a dependency between carbohydrate consumption and the 

other macronutrient variables, creating a relative effect (Figure 4B). Exactly which relative effect will 

depend on whether additional adjustments are made for any of the other macronutrients (Figure 

4C).(34,35)  

Figure 4  Causal directed acyclic graphs examining the identification of causal effects in compositional data, 
here represented by total energy intake.  

 
The 'full' DAG for the scenario is depicted in A), where the 'whole' variable, total energy intake (𝑿) is fully determined 
by intake from three 'part' variables, carbohydrate intake (𝑋1), protein intake (𝑋2), and fat intake (𝑋3), which together 
cause type 2 diabetes (𝒀). In B) the 'whole' has been conditioned on (denoted by square brackets and an absence of 
onward arcs), inducing conditional dependencies between the unconditioned 'part' variables. The causal effect of 
any 'part' variable (e.g., 𝑋1) on 𝒀 would thus be relative to the other unconditioned 'part' variables (e.g., 𝑋2, and 𝑋3). 
In C) one of the other 'part' variables (𝑋2) has been conditioned on in addition to the whole, which removes it from 
the relative compositional effect; the effect of 𝑋1 on 𝒀 will thus be relative to 𝑋3 only. In D) a confounding variable, 
lifestyle (𝑪), is introduced that commonly causes all ‘part’ variables. Confounding from such common causes can be 
reduced by conditioning on other ‘part’ variables to block the confounding paths downstream. 
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Identifying and estimating causal effects in compositional data 

This simple three-nutrient example demonstrates how retaining both the 'whole' and 'part' variables 

within a DAG can help with understanding compositional data. The optimal analytical strategy then 

depends on whether the investigator is interested in the total effect of a particular 'part', a relative 

effect of a particular 'part', or the summary effect of the 'whole'. There are, however, additional 

caveats.  

First, the exchangeability assumption requires that the units of analysis have an equal probability of 

all possible values of the outcome at the time of exposure, i.e., there must be no confounding or 

selection bias for the exposure-outcome relationship of interest.(1,3) In compositional data, 

confounding can arise from common causes of the ‘parts’, even if these causes have no residual effect 

on the outcome, because each part is itself likely to cause the outcome. In our three-nutrient example, 

such common causes might include lifestyle behaviors. Ideally, these common causes should be 

directly measured and conditioned on, but this is not always possible. Instead, confounding by 

common causes may be reduced by conditioning on other 'parts' to block the confounding paths 

downstream (Figure 4D). Where each 'part' has a unique effect and variance, this requires measuring 

and conditioning on every part variable. In practice, aggregated 'part' variables are often used, such 

as 'remaining energy intake' (i.e., energy from all parts except the exposure), but this may introduce 

residual confounding wherever the causal effect of each 'part' differs from the average effect of the 

aggregate variable.(34,35) 

In some situations, the average effect of increasing the 'whole' may be of more interest than the 

individual 'parts' specifically. Here, it may be reasonable to discard the parent variables from the DAG 

and treat the 'whole' variable as the exposure. However, this increases the chance of violating the 

consistency assumption, since the same value of the 'whole' can be obtained from many different 

combinations of the 'parts'. If each 'part' has different causal effects on the outcome and/or different 

variances, then the summary effect of the 'whole' will not be the mean-weighted average effect but 

will be distorted towards those 'parts' with the largest variances;(38) we have previously termed this 

phenomenon composite variable bias.(34,35) 

In theory, measuring and modelling all components offers the ideal approach to compositional data 

analyses. In practice, the benefits of achieving greater consistency need balancing against the 

demands of modelling ever more variables. As the number of components increases, there is a greater 

chance of violating the positivity assumption, which requires that within every stratum, there must 

be a non-zero probability of all (relevant) values of the exposure being observed.(39) The choice of 

whether to focus on the 'whole' or the 'parts' will therefore involve balancing the desired degree of 

consistency with the quality and availability of the data. 

CONSIDERING COMPOSITE DERIVED VARIABLES 

Within a DAG, a composite derived variable appears similar to a 'whole' variable in compositional 

data, with two or more parents causing a fully determined child (Figure 1). There are however some 
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important features of composite derived variables that make them particularly challenging for causal 

effect estimation. First, many composite derived variables cannot be directly measured; they can only 

be known once the parents themselves are known.(10) Second, the parent variables may be subject 

to a range of functional transformations besides addition, including subtraction, division, and 

exponentiation.(11) Finally, the parent components may not occur at the same moment in time, giving 

them different temporal positions within the DAG. It is therefore extremely important to consider 

the nature and purpose of every composite derived variable being considered as a potential exposure 

or outcome. 

Choosing the target estimand 

Composite derived variables are commonly constructed for one of two reasons:  

• To summarize several interrelated variables (e.g., deprivation index) into a single variable, 

either to capture a latent concept (e.g., socioeconomic circumstances), define a multifactorial 

state (e.g., metabolic syndrome), or provide a global summary (e.g., disease activity scores).  

• To standardize one or more variables against one or more other variables (e.g., GDP per capita), 

either to account for another variable (e.g., population size), or rescale to a common unit (e.g., 

percentage change). 

Whether a composite variable has been constructed to summarize or to standardize has immediate 

implications for its analysis and/or interpretation. The creation of a summary variable implies an 

interest in estimating the average effect of, or on, the parent variables. Conversely, composite 

variables that seek to standardize imply an interest in one or more parent variables while controlling 

for one or more 'nuisance' components. Ratio variables and change score variables, for example, both 

seek to isolate one parent from another, using division and subtraction, respectively.(19,22,24) 

Unfortunately, such approaches simply transform, rather than remove, the nuisance 

components.(19,22,24,34) Causal analyses of ratio variables and change score variables are hence 

particularly prone to inferential bias.(19,22,24,34) For most standardized composite variables, it is 

likely that the true target of interest is one or more target parent variables conditional on one or more 

nuisance parent variables. Rather than attempting an algebraic solution, such conditioning should be 

attempted using an appropriate approach, such as covariate adjustment within a linear regression 

model. 

To illustrate, we consider the causal effect of body mass index (BMI = weight/height-squared) on the 

risk of cardiovascular disease (Figure 5A). In probabilistic terms, BMI contributes no information 

beyond what is captured by weight and height.(18) Deterministic Node Reduction would hence 

reduce BMI to a barren node that may be removed without losing information about the relationship 

between the remaining variables (Figure 5B). This explains previous assertions that "no causal 

knowledge is gained by estimating a nonexistent effect of body mass index".(18) Nevertheless, BMI may 

still have some utility depending on the target estimand and our reasons for creating the composite 

derived variable.  



 

12 

Since BMI is constructed by dividing weight by height-squared, it seems reasonable to assume it was 

conceived to standardize weight by height. However, inventor Adolphe Quetelet (1832) offers no 

specific motivation beyond reporting that, 'weight increases approximately with the square of the 

height'.(40) Similarly, Keys et al. (1972), who transformed the name and prominence of the index, only 

appear interested in finding the best proxy measure of skinfold thickness.(41) Whether BMI is 

intended purely as a measure of weight standardized for height or a summary of information about 

both weight and height cannot therefore be known from history or algorithm, but the two 

perspectives carry different implications. If BMI is hypothesized as a valuable joint summary of weight 

and 1/height-squared then focusing on the composite measure may be reasonable, notwithstanding 

the issues discussed below (Figure 5C). Alternatively, if BMI is simply a measure of weight 

standardized by height, then the appropriate target would be weight conditional on height (Figure 5B). 

Since the two approaches likely provide different results, determining the true estimand of interest 

is clearly extremely important. 

Figure 5  Causal directed acyclic graphs considering the causal effect of a composite derived variable (body 
mass index, BMI) on an outcome (cardiovascular disease, CVD).  

 
The 'full' DAG in A) shows BMI (𝑿) as a fully determined child of height (𝑋1) and weight (𝑋2). An explicit choice can be 
made, based on the target estimand of interest, to either retain and focus on the parent nodes 𝑋1 and 𝑋2, as shown 
in B), or to retain and focus on the child node 𝑿, as shown in C).  

Identifying and estimating causal effects involving composite variables 

Regardless of their potential utility, most composite derived variables are likely to experience issues 

with satisfying the consistency and exchangeability assumptions. As with ‘whole’ variables in 

compositional data, composite derived variables have an inherent risk of consistency violations 

because the same value can be obtained from many different combinations of the parents. However, 

since composite derived variables are typically made from a more heterogeneous mix of parent 

variables than the 'whole' variable in compositional data, the impact of these violations may be more 

severe. When only the summary effect of the composite is available, the individual parent effects are 

lost and it becomes impossible to know which parent variables are responsible and to what 
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extent.(42) Furthermore, due to composite variable bias, the summary effect of the composite 

derived variable will be skewed towards the parent variables with the largest variation within the 

sample,(38) which may lead to sample-specific effects that do not transport reliably.(31,43) 

Regardless, the exchangeability assumption is likely the greatest barrier to identifying the causal 

effect of, or on, a composite derived variable. In theory, robustly identifying the causal effect of, or 

on, a composite derived variable requires that all confounding and selection paths are closed for all 

parent variables. Unfortunately, when working with the composite parent variable alone, the unique 

paths to and from each parent variable become conflated. Attempts to block confounding paths may 

therefore experience residual confounding, since only the diluted summary effect is modelled. More 

concerningly, if the parent variables occur at different moments in time, it is possible they will have 

different relationships with the supposed confounders. Indeed, it is possible that a confounder for 

one parent variable may be a mediator for another, leaving no means to appropriately adjust for 

confounding without also blocking part of the true causal effect. Identifying the causal effect of a 

composite derived variable, as with any analysis of multiple exposures, therefore requires no time-

varying confounding.(44) To illustrate, we consider the causal effect of metabolic syndrome on the 

risk of cardiovascular disease (Figure 6). Metabolic syndrome is a composite derived variable, 

commonly studied as an exposure, created from waist circumference, lipid concentration, blood 

pressure, and glucose concentration. In a parentless DAG, we might draw the relationship between 

metabolic syndrome and cardiovascular disease as shown in Figure 6A. With metabolic syndrome 

depicted as a single node in time, the role of other contextual variables, represented by 𝐶, may seem 

unremarkable (Figure 6A). However, the parent variables of metabolic syndrome are unlikely to occur 

at the same time; instead, it is likely that some of the parents (e.g., waist circumference) may cause 

some of the other parents (e.g., glucose concentration). . A variable 𝐶 might therefore have a very 

different relationship with the parent components depending on when it occurred. If 𝐶 occurred 

before birth (e.g., maternal weight in pregnancy), then it would likely cause all the components of 

metabolic syndrome and be an uncomplicated confounder for its effect on the risk of cardiovascular 

disease (Figure 6B). However, if 𝐶 occurred in adulthood (e.g., sleep apnea), then it might be caused 

by some ‘earlier’ parts of metabolic syndrome (e.g., waist circumference)(45), while in turn causing 

other ‘later’ parts (e.g., glucose concentration) (Figure 6C).(46) Although these specific examples can 

be debated, the 'true' 𝐶 is likely to represent multiple variables, each of which may have different 

relationships with the individual components of metabolic syndrome. In this case, the time separation 

between the  different parents of metabolic syndrome therefore makes the causal effect of metabolic 

syndrome on the risk of cardiovascular disease impossible to identify and estimate. While such issues 

may sometimes be avoided with repeated measures, we believe the assumption of no time-varying 

confounding can only by explicitly considered by depicting all parent variables within a DAG.  
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Figure 6  Causal directed acyclic graphs examining the challenges of identifying a causal effect for a 
composite derived variable (metabolic syndrome) when the parent variables are separated in time.  

 
When a composite derived variable, such as metabolic syndrome (𝑿), is included in a DAG without including the 
parents, the distinct relationship with all other contextual variables may be overlooked. In A) the contextual variable 
𝑪 appears to be an unremarkable confounder for the effect of 𝑿 on the outcome, risk of cardiovascular disease 
(CVD, Y), because the parents of 𝑿 have not been considered. In fact, 𝑪 may have very different relationships with 
the parent variables – waist circumference (𝑋1), blood lipid concentration (𝑋2), blood pressure (𝑋3), and glucose 
concentration (𝑋4) – because they do not occur at the same point in time. In B) the variable 𝑪 (e.g., maternal weight 
in pregnancy) occurs before all the parent components, making it an uncomplicated confounder of 𝑿. In C) the 
variable 𝑪 (e.g., sleep apnea) occurs in between the variables that make up metabolic syndrome; it is caused by 𝑋1 
but causes 𝑋2, 𝑋3, and 𝑋4 meaning it simultaneously confounds and mediates different parts of the effect of 𝑿 on 𝒀 
making this effect impossible to identify. 
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CONCLUSION 

Deterministic variables are ubiquitous in health and social science research due to the widespread 

use of derived variables and the common occurrence of compositional data. Unfortunately, despite 

repeated warnings over many decades,(19,21–24,47) the analytic and interpretational challenges of 

such variables remain largely underappreciated. With appropriate care and notation, we believe that 

DAGs can provide a novel and effective means to transform our recognition and understanding of 

these issues. We therefore encourage researchers to consider including deterministic variables in 

their DAGs when they are planning and/or interpreting analyses involving derived variables and/or 

compositional data. 
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BOX 1: GLOSSARY OF TERMS 

Barren Nodes 

In a directed acyclic graph, barren nodes are nodes that do not cause any other nodes.(8) 

Change score variables 

Change score variables (also known as difference score variables, gain score variables, or 

change-from-baseline variables) are a variety of composite derived variable in which an earlier 

measure of a time-varying variable is subtracted from a subsequent measure of that 

variable.(22) For example, gestational weight gain (i.e., ∆𝑊 = 𝑊1 − 𝑊0) is a change score 

variable made by subtracting a pregnant person’s weight at the start of pregnancy (i.e., 𝑊0) 

from their weight at the end of pregnancy (i.e., 𝑊1).  

Compositional data  

Compositional data, also known as comparative data, is a form of hierarchical data (formally 

known as a ‘mereology’) that contains ‘part’ variables (or ‘meronyms’) that perfectly sum to a 

‘whole’ variable (a ‘holonym’) or a constant.(12) For example, the total number of children and 

the total number of adults (the ‘part’ variables) sum to the total population (the ‘whole’ 

variable). Alternatively, the total time spent physically active and the total time spent inactive 

(the ‘part’ variables), sum to a constant (total time in a day). 

Compositional Data Analysis (CoDA) 

The methodological area focused on the analysis of compositional data, historically with a 

focus on geometric transformations.(13,14)  

Composite derived variables 

Composite derived variables, also known simply as composite variables or compound 

variables, are variables that have been functionally created from two or more parent 

variables.(11) The value of a composite derived variable can be known with certainty once the 

value of all parents are known. For example, the clinical disease activity index (CDAI) is a 

composite derived variable created by adding together four parent variables: the total number 

of swollen joints, the total number tender joints, a patient-reported measure of disease 

severity, and a clinician-reported measure of disease severity.(48) 

Composite variable bias 

Composite variable bias refers to the systematic divergence between the average causal 

effect of a deterministic variable and the mean-weighted average causal effect of its parent 
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variables. In general, the average effect of the deterministic variable will be distorted towards 

the components with the largest variance.(38) For example, consider the causal effect of 

metabolic syndrome – a composite derived variable created from waist circumference, lipid 

concentration, blood pressure, and blood glucose concentration – on the risk of 

cardiovascular disease. If these parent components have different variances and different 

causal effects on the risk of cardiovascular disease, then we can expect that the average 

causal effect of metabolic syndrome will differ from the mean-weighted average causal effect 

of the parent components. 

Coarsening 

Coarsening is the process of collapsing a continuous variable, or higher-order categorical 

variable, into a lower-order categorical variable such as a dichotomized variable. A coarsened 

variable has less information than its parent variable.(28) Unless the effect equivalence 

assumption is met, the causal effect of, or on, a coarsened variable may produce a biased 

estimate of the causal effect of, or on, the parent variable.(28)  

D-separation 

D-separation (with an uppercase ‘D’) is an extension of the d-separation criterion for 

identifying whether two (sets of) variables (e.g., 𝑿, 𝒀) are independent conditional on a third 

set of variables (e.g., 𝒁) that accounts for the additional dependencies created by 

deterministic variables.(1) For 𝑿 and 𝒀 to be independent conditional on 𝒁 (i.e., D-separated 

by 𝒁), then there must be no path between 𝑿 and 𝒀 where: 1) all collider nodes on that path 

are in 𝒁 or are descended from 𝒁; and 2) all other (non-collider) nodes are outside 𝒁 and/or 

not functionally determined by 𝒁.(1) 

Deterministic Node Reduction 

Deterministic Node Reduction is an algorithm for reducing the number of nodes in a DAG. 

The algorithm involves identifying all deterministic variables and transferring their incoming 

and outgoing probabilistic arcs to their parents.(8) The resulting barren nodes may then be 

removed from the graph without losing information about the relationship between the 

remaining variables.(8)   

Derived variable 

Derived variables are variables that have been functionally created from one or more parent 

variables.(10) They include simple derived variables and composite derived variables.  

Deterministic variables 
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Deterministic variables are variables that are functionally determined by one or more other 

variables, such that their value can be known with certainty once their parents are 

known.(8,9) Deterministic variables occur in compositional data and when derived variables 

are created. 

Dichotomized variables 

Dichotomized variables are simple derived variables, in which a continuous or multinomial 

parent variable has been collapsed into two categories.(29) For example, macrosomia is a 

dichotomized variable made from dichotomizing birthweight; birthweights of under 4500g are 

considered normal and weights of 4500g or more are considered macrosomic. 

Effect equivalence 

The effect equivalence assumption, which applies to the estimation of causal effects involving 

coarsened variables, requires that all versions of the exposure that have been collapsed into a 

single value must have the same effect.(28) This assumption is violated if a residual dose 

response relationship exists that is not captured by the coarsened variable.(28) Without effect 

equivalence, the estimated effect of the coarsened variable will be a poorly-defined weighted 

average of the effects of the multiple parent versions of the exposure and their frequencies in 

the study population.(31) For example, the estimated effect of hypertension on the risk of 

vascular dementia would violate the effect equivalence assumption if, among those 

categorized as having hypertension, those with severe hypertension had a greater risk than 

those with mild hypertension. 

Ratio variables 

Ratio variables are composite derived variables, in which one parent variable (e.g., 𝑋) is 

divided by second parent variable (e.g., 𝑁).(20) For example, gross domestic product (GPD) per 

capita is a ratio variable made by dividing total GDP by total population. 

Relative compositional effects 

In compositional data, a relative compositional effect is the joint effect of increasing a 

specified 'part' exposure while simultaneously decreasing one or more substituting 'parts' to 

keep the 'whole' fixed.(12,34–36) For this reason, relative compositional effects are 

sometimes known as substitution effects. 

Simple derived variables 

Simple derived variables, also known as transformed variables, are variables that have been 

functionally created from a single parent variable. The value of a simple derived variable can be 
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known with certainty once the value of its parent variable is known. For example, five-year age 

group is a simple derived variable that is made by categorizing the continuous age variable into 

five-year categories (e.g., 0-4 years, 5-9 years, 10-14 years, etc.). 

Tautological associations 

Tautological associations, also known as spurious organic correlations and mathematical 

coupling, are the self-fulfilling associations that arise when a deterministic variable is analyzed 

in direct relation to one of its parent variables or to a sibling deterministic variable with at least 

one shared parent variable.(19,23,24) For example, gestational weight gain is a deterministic 

variable made by subtracting the weight at the end of pregnancy from the weight at the start 

of pregnancy; we can therefore expect gestational weight gain to share a tautological 

association with both weight at the start of pregnancy and weight at the end of pregnancy. 

Alternatively, GDP per capita and hospital bed per capita are two ratio variables with a common 

parent variable (total population); we can therefore expect them to share a tautological 

association. 

Total compositional effects 

In compositional data, a total compositional effect is the effect of increasing the 'whole' 

variable either by intervening on the 'whole' directly or through one or more specified 'part' 

exposures.(12,34–36) Total compositional effects are sometimes known as ‘additive effects’ 

because they describe the effect of ‘adding’ to the total by increasing one or more parts.  
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