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ABSTRACT
The aim was to assess concurrent validity and test–retest reliability of spatiotemporal gait parameters 
from a thoracic-placed inertial measurement unit (IMU) in lab- (Phase One) and field-based (Phase Two) 
conditions. Spatiotemporal gait parameters were compared (target speeds 3, 5 and 7.5 m·s−1) between 
a 100 Hz IMU and an optical measurement system (OptoJump Next, 1000 hz) in 14 trained individuals 
(Phase One). Additionally, 29 English Premier League football players performed weekly 3 × 60 m runs 
(5 m·s−1; observations = 1227; Phase Two). Mixed effects modelling assessed the effect of speed on 
agreement between systems (Phase One) and test–retest reliability (Phase Two). IMU step time showed 
strong agreement (<0.3%) regardless of individual or running speed. Direction of mean biases up to 
40 ms for contact and flight time depended on the running speed and individual. Step time, length and 
frequency were most reliable (coefficient of variation = 1.3-1.4%) but confounded by running speed. Step 
time, length and frequency derived from a thoracic-placed IMU can be used confidently. Contact time 
could be used if bias is corrected for each individual. To optimise test–retest reliability, a minimum 
running distance of 40 m is needed to ensure 10 constant-speed steps is gathered.

ARTICLE HISTORY 
Received 28 January 2024  
Accepted 17 September 2024 

KEYWORDS 
Accelerometer; monitoring; 
soccer; team sport

Introduction

Monitoring neuromuscular fatigue within elite football is a 
vital process as it can be present for up to 72 h after match- 
play, and thus potentially require consideration when prescrib-
ing subsequent training sessions (Girard et al., 2015; Rampinini 
et al., 2011). However, concerns have been raised surrounding 
the time efficiency and validity of common monitoring pro-
cesses such as the countermovement jump and subjective 
questionnaires when applied in elite practical environments 
(Carling et al., 2018; Jeffries et al., 2020). Therefore, unobtrusive 
monitoring processes such as standardised running tests (SRT) 
has been proposed as more feasible and specific measures 
(Leduc et al., 2020). As elite football players habitually wear 
inertial measurement units (IMUs) on the thoracic spine, one 
such approach is a SRT in which players run at a constant speed 
between 50 to 60 m whilst concurrently wearing the device 
(Leduc et al., 2020).

IMUs contain a triaxial accelerometer that can assess the 
magnitude of instantaneous accelerations as an overall vector, 
or as individual vertical, mediolateral and anteroposterior vec-
tors. Previous studies observing these vectors during SRTs have 
reported pre- and post-changes following team sport matches 
and training (Garrett et al., 2019; Leduc et al., 2020). It is 
thought that this is due to changes in spatiotemporal gait 
parameters such as step length and frequency (Leduc et al.,  
2020; Small et al., 2009). Although spatiotemporal gait 

parameters change when fatigued (Apte et al., 2021; Riazati 
et al., 2022), a direct association with accelerometer measures 
has not been provided. Additionally, accelerometer magnitude 
measures are conceptually ambiguous and limit the interpreta-
tion of the potential mechanisms of change, which potentially 
reduces their use in practice (Leduc et al., 2020). Considering 
that accelerometer measures are proposed as an indirect mea-
sure of spatiotemporal parameters, and a larger body of evi-
dence has observed alterations to spatiotemporal gait 
parameters with fatigue (Apte et al., 2021), it is likely more 
beneficial to assess these measures directly rather than through 
global accelerometer measures. However, currently such vari-
ables are not provided by common manufacturers of IMUs used 
in elite sport (Fitzpatrick et al., 2021) and hence requires algo-
rithm development for calculation.

A previous study has observed spatiotemporal parameters 
(i.e., step time) from a thoracic placed accelerometer to have 
good agreement (R = 0.68–0.98) with ground reaction force 
derived from an instrumented treadmill in a single team sport 
athlete (Buchheit et al., 2015). However, the external validity is 
questionable due to potential between-subject variability in gait 
kinematics (Phinyomark et al., 2015). For an algorithm to be used 
across multiple athletes, it must be robust to between-subject 
variability in gait strategy when deriving spatiotemporal para-
meters. Recently, Horsley et al. (2023) assessed the agreement 
between spatiotemporal parameters from a thoracic 
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accelerometer vs. lower back- and tibia-placed accelerometers. 
Despite absolute mean biases of less than 4% between place-
ment sites for step time and step frequency, irrespective of 
running speed (3–8 m·s−1), there was a lack of assessment 
against a criterion measure (e.g., OptoJump, video analysis). 
Therefore, to establish the suitability of these parameters for 
practical sporting environments, agreement against a criterion 
measure is also needed.

Regardless of the measure, the protocol used to identify altera-
tions to gait also needs consideration. Currently, variation exists in 
running protocols in practice, including average running speeds 
(5.0 to 6.7 m·s−1) and distances (50 to 60 m) (Leduc et al., 2020). 
Although both running speed (Novacheck, 1998) and the number 
of steps included (as per the central limit theorem) within analyses 
are likely to affect the observed average spatiotemporal para-
meters, no study has assessed how alterations to these affect 
parameter validity and reliability. Identifying a protocol that max-
imises these would allow for alignment of protocols in future 
studies, consequently leading to more accurate between-study 
comparisons, and provide useful guidelines for practitioners. 
Therefore, this study had two distinct phases. In phase one, the 
aim was to assess the concurrent validity of IMU gait parameters 
against a criterion measure. In phase two, the aim was to assess 
the test–retest reliability of further derived spatiotemporal gait 
parameters within an elite male footballing environment.

Methods

Participants and study design

Both experimental (Phase One) and observational (Phase Two) 
designs were conducted leading to two separate groups of 
participants (Figure 1). In Phase One, 14 trained male indivi-
duals (age: = 24.5 ± 2.4 yrs, height: = 1.81 ± 0.07 m, mass: = 85.1  
± 9.7 kg, maximum speed = 8.26 ± 0.68 m·s−1) completed three 
testing visits (1 × familiarisation; 2 × data collection; 48 h 
between) comprising a warm-up and three sets of three 60 m 
runs in a single lane of an indoor athletics track. Concurrently, 
participants wore an IMU (STATSports Apex, STATSports, 
Newry, UK) whilst 40 m of the criterion OptoJump Next photo-
cell system (Microgate, Bolzano, Italy) sampling at 1000 Hz was 
placed either side of the running lane. A final step count of 
6429 was observed during this phase, with which the IMU data 
collected during these testing sessions was used to develop 
and validate an algorithm (Figure 2) to calculate temporal gait 
characteristics (i.e., step-, contact- and flight time and duty 
factor).

In Phase Two, 29 male players from a single English Premier 
League (EPL) football team (age: = 27.5 ± 5.4 yrs; height: = 1.84  
± 0.05 m; mass: = 84.1 ± 7.0 kg) participated. This number was 
limited by the number of players in the squad. Across the two 
pre-season and in-season periods, participants performed 42.3  

Figure 1. Outline of the study design with descriptive statistics across a typical training week for the participants in phase two. Values are reported at mean ± standard 
deviation (range). MD = match-day. HSR = high speed running. High speed running and sprinting distances were deemed the distances covered above running speeds 
of 5.5 and 7.2 m·s− 1.
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Figure 2. Outline of the algorithm development. A – a vertical accelerometry signal collected in phase 1 of the study highlighting the portion of the accelerometry 
signal occurring during the countermovement jump and run observed by OptoJump. b - anteroposterior accelerometry, running speed and acceleration collected 
during a single run during phase 2. c – the raw and filtered anteroposterior signal during the constant speed phase of a run. d – a representation of the identification of 
take-off and touchdown from the anteroposterior accelerometry signal.
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± 23.7 SRTs during an on-field warm-up (Figure 1), typically 42 h 
(725 player-observations) or 76 h post-match (257 player- 
observations). Other trials occurred 1 day before matches 
(129 player-observations) or during pre-season (116 player- 
observations) for a final total of 1227 player-observations. 
Participants completed 3 × 64 ± 0.8 m runs, each over 12 s, 
with 30 s passive rest. All testing was performed as part of the 
participants’ regular monitoring regimen. Informed written 
consent was provided with ethical approval granted by the 
Leeds Beckett University Carnegie School of Sport Ethics 
Committee (Reference Number 112,885).

Protocols and data collection

Phase one – concurrent validity
During the trials (3 × 3 × 60 m run), running speed 
increased across the three sets (3 m·s−1, 5 m·s−1, 7.5  
m·s−1). Passive rest was provided between each repetition 
(30 s) and set (5 min). An audio cue controlled the speed, 
with participants aiming to pass cones every 15 m at the 
beep. Five minutes after the final set, participants com-
pleted a single 60 m maximal sprint to calculate each 
participant’s maximal speed which was later used to 
express submaximal speeds as a relative percentage. The 
number of required steps was calculated using GPower 
(Erdfelder et al., 1996), with an alpha value of 0.05, 
power of 0.8, and correlation coefficient of 0.1. The sub-
sequent requirement of 1077 steps was met (n = 6429) with 
a sample size of 14. Participants wore the IMU (100 Hz 
triaxial accelerometer) during trials between the scapulae 
within the manufacturer’s vest and assigned the same 
device and vest throughout. Although intra-unit reliability 
has not been assessed for this specific accelerometer, simi-
lar devices have shown high reliability of instantaneous 
accelerometry derived measures (CV < 10%) (Crang et al.,  
2021). Additionally, 40 m of OptoJump Next photocell sen-
sors (Microgate, Bolzano, Italy) were connected in series 
and placed either side of the running lane. Approximately 
20 s before the start of each set, participants performed a 
submaximal countermovement jump between the 
OptoJump sensors (Figure 2(a)). This allowed for synchro-
nization between the accelerometry signal and OptoJump.

OptoJump has demonstrated concurrent validity for spatio-
temporal measures against video analysis and force plates 
(mean bias < 0.004 s) during overground race walking at speeds 
between 3.0 and 4.2 m·s−1 (Hanley & Tucker, 2019). OptoJump 
has additionally shown good inter- and intra-session reliability 
(CV = 5% to 7%) for contact- and step-time (Gomez Bernal et al.,  
2016). To minimise the bias of OptoJump, at least three light 
emitting diodes were required interruption to infer ground 
contact (Hanley & Tucker, 2019). During all runs, OptoJump 
continuously collected step-, contact-, and flight time and 
speed for each step. All accelerometry and OptoJump data 
were downloaded using SONRA and OptoJump Next software, 
respectively.

Gait characteristics algorithm
This algorithm involved the identification of runs and their 
constant speed phases (Figure 2(a,b)), correction & filtering of 

triaxial accelerometry data (Figure 2C), and touchdown and 
take-off identification (Figure 2(d)). The concurrent validity of 
IMU-derived temporal parameters were then compared with 
OptoJump Next-derived parameters.

Phase two – field based test-retest reliability
Over a period of two pre-seasons (n = 14 weeks) and in-season 
periods (n = 48 weeks) the participants performed three bouts 
(30 s passive recovery between bouts) of 60 m running on 
a grass pitch at a target speed of 5 m·s−1 (n = 1227 player 
observations), as per previous methods (Leduc et al., 2020). 
The number of participants in this phase was limited to 29 by 
the number of available players in the Running speed was 
controlled by a physical performance coach who ran alongside 
the participants with a stopwatch. Two familiarisation sessions 
were performed before data collection. Other than the inclu-
sion of a countermovement jump, participants performed the 
same procedure as described for phase one. Following each 
training session, 100 Hz triaxial accelerometer and 10 Hz speed 
data were exported to a CSV file using SONRA software. 
Observations were not considered further if data were <8 con-
nected GNSS satellites (16.8 ± 4.3) (Malone et al., 2017), result-
ing in the removal of three observations (final observations 
[n] = 1224).

Analysis

The algorithm to calculate step-, contact-, and flight time and 
duty factor was implemented on data collected in both 
phases of the study. This resulted in a total of 6429 steps 
extracted from 257 bouts of 60 m runs observed in Phase 
One, and 104,023 steps extracted from 3627 runs observed in 
Phase Two. In addition to step-, contact-, and flight-time and 
duty factor, during the second phase, step length, step fre-
quency, running load index (RLI) metrics (Total, anteroposter-
ior, mediolateral, and vertical), and vertical stiffness were also 
calculated on a step-by-step basis. Vertical stiffness, maxi-
mum vertical force, and vertical displacement were calculated 
in accordance with Morin et al. (2005). The definitions and 
equations for all metrics are provided in Supplementary 
Table S1. Additionally, during the second phase, following 
visual inspection of the step length histogram, steps were 
removed if their magnitude was greater than or equal to 
2.36 m. Past this step length, the frequency of each step 
length was one or less, and therefore deemed erroneous. 
This resulted in the removal of 153 steps, and a final sample 
of 103,870 steps.

Statistical analysis – phase 1

For both IMU- and OptoJump-derived step characteristic 
variables, normality of step-, contact, flight time, and duty 
factor were assessed by visual inspection of Q-Q plots. All 
variables apart from flight time derived from OptoJump 
were deemed non-normal. It is likely that skewness was 
caused by disparities in the number of steps observed at 
each target speed (3 m·s−1 = 2938; 5 m·s−1 = 1884; 7.5 m·s−1  

= 1607). To assess absolute agreement, Spearman correla-
tions with bootstrapped 95% confidence intervals (95% CI) 
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were computed and interpreted as per previous guidelines 
(Schoeber et al., 2018). To assess potential mean biases and 
non-parametric 95% limits of agreement (LoA) Bland- 
Altman plots were produced. The non-parametric LoAs 
were identified as the 2.5% and 97.5% quantiles of the 
difference scores. To identify any potential effect of abso-
lute or relative speed on the absolute agreement between 
OptoJump and the IMU, a mixed-effects model with random 
intercept (τ0Þ and slope (τ1Þ was fitted using the lmer func-
tion in the lme4 R package (Bates et al., 2015). The depen-
dent variables were the absolute differences in step time, 
contact time, flight time, and duty factor between the IMU 
and OptoJump. Full model details are provided in 
Supplementary Table S1.

Statistical analysis – phase 2

The test–retest reliability of all metrics derived from the IMU 
was assessed iteratively on a step-by-step basis from the first 
three steps of the constant speed phase, up to 25 steps. Two 
general linear mixed-effect models were built for each metric 
per iteration. The first was an empty random effects model with 
participant as the random effect. Absolute speed and its quad-
ratic term were added as fixed effects in the second. The 
buildlme function within the buildmer package (Voeten, 2023) 
optimised model fit via Aikake Information Criterion and back-
wards elimination of both fixed and random effects. This pro-
duced finalised general linear mixed effect models or linear 
regressions. A first-order autoregressive covariance structure 
with respect to days since the first observation was used within 
each model (Hecksteden et al., 2015). Model assumptions of 
normality and homoscedasticity of residuals, multicollinearity, 
and autocorrelation were assessed, and found unviolated. 
Coefficients of variation (CV) and smallest worthwhile changes 
were calculated at the group level by expressing the standard 
deviation (SD) of residual variation and 0.2 multiplied by the 
between-subject variation as percentages of the predicted 
score at the mean speed observed across all trials (5.76 m·s−1) 
respectively. Significant effects of fixed effects on each spatio-
temporal gait parameter were determined if p < 0.05. The sta-
tistical power achieved by the models including speed was 
assessed via simulation-based analyses with the mixedpower 
function in the mixedpower R package (Kumle et al., 2021).

Results

Concurrent validity (phase one)

Table 1 provides descriptive statistics for all temporal variables 
for both IMU and OptoJump.

Figure 3 shows the correlation between measures for all 
temporal variables and Bland-Altman plots indicating overall 
mean bias and the change in mean biases across different 
absolute and relative speeds.

IMU step time showed the greatest agreement with 
OptoJump (R value [95% CI] = 0.88 [0.87 to 0.89]; mean 
bias [95% LoA] = −0.4 ms [−63.0 to 63.0 ms]). IMU contact 
time (mean bias [95% LoA] = −0.4 ms [−78.3 to 86.0 ms]) and 
flight time (−0.02 ms [−89.0 to 82.0 ms]) showed similar 
magnitudes of bias, but different degrees of consistency 
(contact time R value [95% CI] = 0.69 [0.68 to 0.71]; flight 
time = 0.17 [0.14 to 0.19]). Duty factor derived from the IMU 
also showed poorer consistency (R value [95% CI] = 0.10 
[0.08 to 0.13]), and a mean bias of −0.58% (95% LoA =  
−10.4 to 15.0%).

Absolute and relative speed significantly affected (p < 0.05) 
the magnitude of mean biases for contact time, flight time and 
duty factor (Suplementary Table S2). At group level, biases for 
these temporal parameters were minimal at absolute and rela-
tive speeds of 4.5 m·s−1 and 53%, respectively (Figure 3).

Test–Retest Reliability (Phase Two)

Across all trials, the mean speed of the constant speed phases 
was 5.76 ± 0.29 m·s−1 (range = 3.93 to 6.56 m·s−1). Table 2 
shows test–retest reliability results when calculated with and 
without the inclusion of speed across 25 steps. Across both 
methods, step length and step frequency produced a CV < 3%. 
However, the inclusion of speed as a fixed effect within the 
model approximately halved their respective CVs (step length  
= 2.98 to 1.48%; step frequency = 2.81 to 1.52%). Flight time 
(13.62 to 13.72%) consistently showed a poorer test–retest 
reliability than contact time (6.28 to 6.84%). For RLI metrics, 
RLITotal (CV = 4.88 to 5.48%) and RLIVertical (CV = 7.06 to 7.80%) 
were the most reliable. Apart from RLIMediolateral , vertical stiff-
ness was the least reliable measure (CV = 14.68 to 15.57%).

Figure 4 provides a visual representation of the change in test– 
retest reliability of IMU derived metrics when the maximum num-
ber of steps ranging from 3 to 25 was used during their calcula-
tion. Lower variation in CV was observed post-10 steps (σ = 0.08 to 
0.40%) than pre-10 steps (σ = 0.29 to 0.68%) for all metrics.

Discussion

The aims of this study were to quantify the concurrent validity 
of temporal gait parameters from a thoracic-placed IMU across 
running speeds and describe the test re-test reliability of 
further calculated spatiotemporal gait parameters in elite 
male football players. The findings showed that differences 

Table 1. Descriptive statistics for all variables calculated from the algorithm and OptoJump at each target speed during phase one. Values are presented as mean ± SD. 
IMU = inertial measurement unit.

Variable

IMU OptoJump

All Speeds 3 m · s−1 5 m · s−1 7.5 m · s− 1 All Speeds 3 m · s−1 5 m · s−1 7.5 m · s−1

Actual Speed (m · s−1) / / / / 4.70 ± 1.70 3.07 ± 0.26 5.19 ± 0.42 7.13 ± 0.52
Step Time (ms) 334 ± 56 374 ± 36 330 ± 37 267 ± 35 334 ± 49 374 ± 25 330 ± 25 267 ± 21
Contact Time (ms) 216 ± 44 244 ± 38 203 ± 33 179 ± 30 220 ± 58 275 ± 28 197 ± 22 147 ± 16
Flight Time (ms) 118 ± 42 130 ± 37 126 ± 39 88 ± 40 114 ± 28 99 ± 28 133 ± 23 119 ± 18
Duty Factor (%) 32.4 ± 4.9 32.6 ± 4.4 31.0 ± 4.9 33.8 ± 5.5 32.4 ± 5.1 36.8 ± 3.4 29.8 ± 2.8 27.6 ± 2.5
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Figure 3. Absolute agreement between step characteristics (step time, contact time, flight time, duty factor) derived from the IMU and OptoJump (row one). Mean bias 
and 95% limits of agreement between IMU and Optojump derived step characteristics (row 2). Changes in the differences between the IMU and OptoJump derived step 
characteristic variables across absolute (row three) and relative speeds (row four). Graphs are presented at the group level (bold line) and at the individual level (faint 
lines).

Table 2. The coefficient of variation and smallest worthwhile changes of variables derived from the IMU when using different calculation methods in elite male football 
player during phase 2. SD = standard deviation. σₑ = SD of residual variance. CV = coefficient of variation. SWC = smallest worthwhile change. mR2 = marginal 
R2. cR2 = conditional R2. RLI = Running Load Index.

Metric Mean ± SD (Min-Max)

Mixed Model without Speed Mixed Model with Speed
Power 

Achieved

σₑ CV (%) SWC (%) mR2 cR2 σₑ CV (%) SWC (%) mR2 cR2 Speed Speed2

Step Length (m) 1.80 ± 0.9 (1.38 – 2.07) 0.05 2.98 0.78 0.000 0.633 0.03 1.48 0.74 0.310 0.905 1.00 1.00
Step Time (ms) 312 ± 14 (268 – 357) 8.71 2.79 0.73 0.000 0.638 4.81 1.54 0.74 0.266 0.893 0.48 0.98
Step Frequency (Hz) 3.21 ± 0.15 (2.80 – 3.73) 0.09 2.81 0.73 0.000 0.632 0.05 1.52 0.74 0.263 0.896 0.87 1.00
Contact Time (ms) 211 ± 21 (166 – 283) 14.4 6.84 1.38 0.000 0.512 13.3 6.28 1.36 0.082 0.584 0.31 0.58
Flight Time (ms) 101 ± 18 (50 – 147) 13.6 13.72 2.27 0.000 0.416 13.6 13.62 2.29 0.009 0.429 0.06 0.05
Duty Factor (%) 33.6 ± 2.7 (27.3 – 41.6) 2.11 6.25 1.04 0.000 0.421 2.10 6.24 1.04 0.003 0.422 0.17 0.19
Vertical Stiffness (kN∙m−1) 12.5 ± 2.6 (6.0 – 21.8) 1.87 15.57 3.09 0.000 0.504 1.75 14.58 3.05 0.071 0.562 0.17 0.34
Maximum Force (kN) 1.92 ± 0.19 (1.35 – 2.46) 0.12 6.21 1.68 0.000 0.652 0.12 6.21 1.68 0.000 0.652 0.06 0.06
Change in Vertical Displacement (mm) 158 ± 24 (111 – 247) 16.1 10.23 2.23 0.000 0.550 14.0 8.84 2.21 0.122 0.662 0.37 0.65
RLITotal (mG·m−1 ·s2) 432 ± 50 (311 – 561) 23.2 5.48 2.23 0.000 0.807 20.7 4.88 2.19 0.045 0.842 0.91 0.74
RLIAnteroposterior (mG·m−1 ·s2) 194 ± 34 (104 – 296) 18.7 9.88 3.01 0.000 0.701 18.3 9.64 3.02 0.015 0.717 0.23 0.14
RLIMediolateral (mG·m− 1 ·s2) 127 ± 38 (62 – 275) 18.8 16.06 5.81 0.000 0.768 18.8 16.06 5.81 0.000 0.768 0.11 0.11
RLIVertical (mG·m− 1 ·s2) 327 ± 47 (218 – 470) 25.1 7.80 2.51 0.000 0.723 22.7 7.06 2.47 0.057 0.769 0.88 0.71
Speed (m∙s−1) 5.76 ± 0.29 (3.93 – 6.56) 0.28 4.87 0.23 0.000 0.096 / / / / / / /
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between step time from a thoracic IMU and OptoJump were 
negligible regardless of running speed or participant. Secondly, 
magnitudes of biases for contact time, flight time and duty 
factor can differ across participants and their running speeds. 
Thirdly, all metrics derived from step time (i.e., step length and 
frequency) showed excellent test–retest reliability in an elite 
sporting context (CV < 3%).

Phase one – concurrent validity

In the current study, step time calculated from a thoracic-worn 
IMU showed excellent agreement (R = 0.88) with OptoJump, 
and negligible mean bias across all speeds (<3 ms) regardless 

of the individual. This agrees with previous research where 
accelerometer-derived (foot and sacrum) step time showed 
good agreement (R = 0.75–0.95 and mean biases <3 ms) with 
criterion measures of motion capture and an instrumented 
treadmill (Falbriard et al., 2018; Lee et al., 2010). As the step 
time is typically calculated as the time from touchdown to 
touchdown, the rhythmic nature of running gait allows its 
accurate depiction if the conditions for touchdown identifica-
tion remain consistent. Step time derived from an IMU placed 
between the scapulae can therefore be used as a viable mea-
sure in practice. Consequently, an SRT may provide practi-
tioners a more direct insight into player’s neuromuscular 
status (e.g., post-match fatigue, hamstring injury risk). Such 

Figure 4. Coefficient of variation across the number steps involved within its calculation. CV = coefficient of variation. RLI = Running Load Index.
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variables, when compared with indirect accelerometer-based 
measures (i.e., RLI) would enhance practitioners’ decision- 
making. Contact time derived from the IMU also showed 
a relatively high level of absolute agreement with OptoJump 
(R = 0.69). This agrees with previous observations assessing the 
agreement of the contact time derived from a foot-mounted 
accelerometer against OptoJump (R = 0.66) (García-Pinillos 
et al., 2021). Additionally, previous studies have typically 
observed similar underestimations in contact time of 11.5 and 
48.7 ms at the foot and lumbar spine, respectively, at running 
speeds between 3.3 and 4.3 m·s−1 (Horsley et al., 2021). 
However, a novel finding from this study is the observation of 
overestimated contact times at previously unobserved higher 
speeds (>6 m·s−1), with biases as high as 40 ms. Furthermore, 
the flight time showed similar magnitudes of bias across speed, 
but these biases acted in the opposite direction to the contact 
time (Horsley et al., 2021). Although, as there is a lack of 
literature investigating the validity and reliability of temporal 
gait parameters derived from OptoJump at running speeds 
above 6 m·s−1, it is plausible that the observed biases are by 
means of OptoJump rather than the IMU. Despite this, as SRTs 
in practice are regularly performed at speeds slower than 6  
m·s−1, (5 to 5.5 m·s−1) the observed biases of the IMU are 
applicable when implementing an SRT.

However, although lower biases at speeds regularly used 
during SRTs were observed compared to higher speeds 
(>7.5 m·s−1), the presence of biases may still cause concern if 
looking to use an IMU during the SRT, especially when con-
sidering that the magnitude of bias differs at the individual 
level (Figure 3). As the contact and flight time biases are equal 
and opposite, practitioners could overcome this limitation by 
using a correction factor based on running speed. However, it is 
recommended that this is performed at the individual level 
because of between-subject variability in the running speed– 
bias relationship. To do this, practitioners could look to perform 
their own concurrent validity analysis as part of a pre-season 
testing battery using the methods described in the current 
study, or potentially with 1 m of OptoJump on a treadmill.

Phase two - test-retest reliability

The results of this study show that during an SRT, regardless of 
the number of steps at constant speed, step time, step length 
and step frequency show the greatest test–retest reliability. The 
reliability statistics for these, along with contact time and flight 
time, agreed with previous laboratory-based studies (Horsley 
et al., 2021), whilst RLI measures agreed with those observed in 
another field-based study (Leduc et al., 2020).

The CV of all measures tended to converge at approximately 
10 steps (Figure 4). As the average speed of the run is above the 
typical threshold of high-speed running (5.5 m·s−1), it is likely 
that practitioners would want to moderate this type of expo-
sure solely for testing purposes. Therefore, if attempting to 
control for a similar speed as the current study and obtain 10 
steps at constant speed, practitioners are advised to use 
a minimum of 40 m for the SRT to be completed in 8 s, with 
20 m allowed for the constant speed phase, and 10 m for the 
acceleration and deceleration phases.

Despite aiming to minimise the between-trial variability in 
running speed during Phase Two, variation was still apparent 
(SD = 0.29 m·s−1). This variation caused significant changes to 
temporal gait characteristics during the constant speed 
phase. For example, at the group level, an increase in running 
speed from 5 to 6 m·s−1, led to a 0.19 m increase in step 
length (from 1.65 to 1.84 m). It is unknown whether this 
variation in speed was due only to measurement error or if 
neuromuscular fatigue also led to decreases in speed, as 
previously observed (Garrett et al., 2021). The dose–response 
effect between step length and speed, however, is not unex-
pected, as increased running speed is attributed to concur-
rent increases in step length and frequency, and decreased 
contact time (Novacheck, 1998). The effect of speed was 
greatest for step length, step frequency and contact time; 
however, the effect of speed on flight time was negligible, 
which contrasts with previous findings (Novacheck, 1998). 
This discrepancy is potentially due to a combination of the 
relatively high measurement error of flight time caused by 
the low sampling frequency of the accelerometer (100 Hz), 
and the low variation in speed across which flight time was 
observed. Another possibility is the low statistical power 
(Table 2) for the association between flight time and speed 
(Power = 0.06 & 0.05). This low power is due to the use of 
a smaller sample size than necessary to detect a potential 
significant association. This potential inaccuracy may have led 
to an inflated residual error value, and thus, reliability statis-
tic. However, the magnitude of this for flight time and other 
metrics, also with poor statistical power (Table 2), is unknown, 
and requires investigation with a greater number of 
participants.

From a practical standpoint, if practitioners want to use 
such an approach, they need to consider any variations in 
speed because of its potential effect on spatiotemporal 
variables. To achieve such an optimal interpretation of 
changes over time, practitioners could consider a direct 
comparison between a “predicted” score calculated through 
statistical modelling against the observed score of the day. 
For an example of this approach, please see Lacome et al. 
(2018). Meaningful changes can then be interpreted by 
comparing the change score to the magnitude of the stan-
dard error (σₑ) as calculated in this study. Otherwise, practi-
tioners will need to be careful when interpreting any 
observed changes as it could be the result of a change in 
speed. Therefore, they will have to monitor speed alongside 
those variables concurrently.

The reliability statistics calculated through the method 
used in this study is dependent upon appropriate confound-
ing factors (e.g., speed) being identified and included within 
the analyses. It is likely that the exclusion of confounding 
factors (e.g., sleep, nutrition, surface stiffness) can inflate the 
calculated reliability statistic. As such factors were not mon-
itored in the current study, it is unknown as to what extent 
the true measurement error was inflated. Therefore, explor-
ing the magnitude of effects for these confounders along-
side those already identified in the current study may be an 
area for future investigation. Another limitation of the cur-
rent study is the sampling frequency of the IMU used to 
calculate spatiotemporal gait parameters. IMU in the current 
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study, along with most other thoracic-placed IMUs available 
in practice, sample at 100 Hz. This means that temporal gait 
parameters can only be calculated to the closest 10 ms. As 
temporal gait parameters in the current study tended to be 
below 400 ms, it would be beneficial to use an IMU that 
samples at 1000 Hz to obtain optimal precision and sensitiv-
ity to changes. As technology develops (e.g., storage capa-
city), this could be feasible if IMUs placed within similar 
microtechnology have the capacity to sample at higher 
rates.

Conclusion

Step time and its derivatives, step length and step frequency 
showed agreement with a criterion and proved to be reliable 
measures when extracted from an IMU placed on the upper 
back whilst running at a constant speed. Contact time and 
flight time could also be considered by practitioners; however, 
because of potential inter-individual variation in the mean bias 
of these metrics, it is recommended that practitioners carry out 
their own analysis to allow for individualised corrections to the 
algorithm. It is also recommended that to enhance the relia-
bility of their results, practitioners collect a minimum of 10 
steps during the constant speed phase for analysis. These 
results provide an avenue for practitioners to monitor athlete 
gait in an unobtrusive way. However, currently, attempts to 
observe alterations to gait post-fatiguing exercise are limited. 
Future work should look to address whether longitudinal 
changes to spatiotemporal gait parameters in the days post- 
exercise are valid measures of altered neuromuscular status.
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