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Abstract: High-performance computing (HPC) in data centers increases energy use and operational
costs. Therefore, it is necessary to efficiently manage resources for the sustainability of and reduction
in the carbon footprint. This research analyzes and optimizes ENEA HPC data centers, particularly
the CRESCO6 cluster. The study starts by gathering and cleaning extensive datasets consisting
of job schedules, environmental conditions, cooling systems, and sensors. Descriptive statistics
accompanied with visualizations provide deep insight into collated data. Inferential statistics are then
used to investigate relationships between various operational variables. Finally, machine learning
models predict the average hot-aisle temperature based on cooling parameters, which can be used to
determine optimal cooling settings. Furthermore, idle periods for computing nodes are analyzed
to estimate wasted energy, as well as for evaluating the effect that idle node shutdown will have on
the thermal characteristics of the data center under consideration. It closes with a discussion on how
statistical and machine learning techniques can improve operations in a data center by focusing on
important variables that determine consumption patterns.

Keywords: data center optimization; high-performance computing; energy efficiency; machine
learning; thermal management; predictive modeling

1. Introduction
1.1. Background and Motivation

The motivation for analyzing the energy-intensive operations within a DC is to pro-
vide deeper insight into DC energy consumption and build reliable predictive models. This
study presents AI-based modeling approaches and strategies for managing energy effi-
ciency in DC with a focus on IT reliability and sustainability as well as thermal operations.

For the modern digital economy, data centers play critical roles in service provision such
as cloud computing and big data analytics through different activities’ management such as
collection, storage, and distribution. To accomplish its objectives, a good system should have
a sufficient computing capacity in terms of hardware such as high processing units for servers,
which could support the efficient handling of large amounts of information.

1.2. Data Center Components

A data center’s core is made up of servers, which perform multiple functions ranging
from file storing to complex analysis procedures. They are classified into server racks
depending on their functions (e.g., application servers, database servers, or web servers).
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Blade servers provide a compact solution that optimizes real-estate utilization within the
server room [1].

Storage infrastructures ensure availability and integrity within the organization’s
premises to improve operations. Data centers have several storage options such as Storage
Area Networks (SANs) and Network Attached Storage (NAS), which provide scalability
and flexibly [2].

The network infrastructure within a data center is designed to facilitate internal as
well as external connections. It essentially includes devices such as routers and switches,
which manage efficient data transmission. On the other hand, software-defined networking
(SDN) enhances the agility and efficiency of this system [3].

To ensure the uninterrupted power supply of energy in the facility, data centers must
be equipped with Uninterruptible Power Supplies (UPS) and backup generators. The
facility’s electrical energy is distributed using efficient Power Distribution Units (PDUs)
that minimize energy wastage. Nonetheless, cooling systems are necessary to mitigate heat
dissipation by computing devices, particularly, emergent immersion cooling systems which
offer enhanced thermal management as well as energy saving [4].

1.3. CRESCO6 Cluster

At the ENEA HPC data center in Portici, the CRESCO6 cluster consists of 434 nodes,
each having two Intel Xeon Platinum 8160 processors and 192 GB RAM. These nodes are
interconnected over an Intel Omni-Path network that supports parallel simulations and big
data processing applications. CRESCO 6 is the second-biggest HPC cluster in Italy and the
possibility to provide AI analysis using a real energy/thermal/computing consumption
dataset related to this cluster is a privilege and novelty with respect to the current state of
the art.

1.4. Aim and Research Objectives

The study is expected to focus on the CRESCO6 cluster, with an emphasis on energy
consumption and resource allocation optimization. The research objectives are categorized
into four phases:

• Phase 1: Exploratory data analysis—Explore and understand the dataset;
• Phase 2: Inferential statistical analysis—Explore relationships between operational

variables;
• Phase 3: Predictive modeling—Create and train models that can predict hot-aisle

temperature from operational data;
• Phase 4: Impact of idle node shutdown—Investigate the impact of thermal characteris-

tics and energy consumption.

1.5. Rationale

Network infrastructures within a data center consist of routers, switches, and other net-
work devices handling data flow to ensure efficient data transmission. In contrast, advanced
solutions such as software-defined networking (SDN) improve agility and efficiency [3].

Optimized energy consumption leads to reduced operational expenses and increased
economic and environmental benefits. Technologies such as machine learning and big
data analytics may be utilized to implement smarter resource allocation strategies for
more energy-efficient facilities [5]. Despite efforts towards improving efficiency at data
centers, there is a gap in the deployment of comprehensive, predictive analytics-driven
approaches with incorporated optimization techniques. This study seeks to address this
gap by identifying mechanisms that can be used to efficiently reduce energy utilization [6].
Data-center-related best practice recommendations could also benefit data center policy-
makers [7].
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1.6. Contribution of Research

The present study improves predictive analytics for energy demand within data
centers by using and comparing different machine learning algorithms. These models
are more accurate and reliable; hence, they can be used for better predicting resulting in
informed decisions toward resource management [8]. This study presents a step forward
in terms of AI techniques applied to real-energy-consumption data center datasets.

In addition to theoretical contributions, this article offers practical recommendations
and guidelines for operators of data centers. The insights come from empirical analysis and
are verified by simulations, making them valuable sources of information to practitioners
who want to improve their energy efficiency and effectiveness [9].

2. Related Work

In this section, the authors discuss the state-of-the-art and emerging energy-efficiency
measures that have reduced DC energy consumption. This study reviews various practices
and methods for advanced DC energy management.

Energy efficiency in data centers is crucial due to the increasing demand for digital
services and computing power [10], which could have negative implications on the envi-
ronment. To keep up with high-density computing equipment, servers, storage devices,
and networking equipment need an uninterruptible electricity supply. Policies aimed at
improving energy efficiency will not only minimize GHG emissions but also reduce electric
bills [11]. Moreover, it enhances reliability by reducing hardware failure due to excessive
heat and higher power usage rates within the facility.

2.1. Historical Evolution and Current State of Data Centers

Data centers have undergone major transformations over time due to their initial
dependence on large, centralized mainframe computers tailored to specialized conditions
and then the server farms, occasioned by smaller affordable servers, that followed when
cloud computing became common during the early 2000s, enabling the flexible, cost-
effective delivery of computer resources over the internet. During this transformation,
companies such as Google, Amazon, and Microsoft played a central role [12].

Virtualization technology involving multiple virtual machines running on one physical
server increases resource utilization and reduces hardware needs [13]. Modern servers are
more energy efficient, while innovations in cooling technologies have further enhanced
efficiency.

2.2. Challenges in Achieving Energy Efficiency

There are numerous challenges to achieving energy efficiency. Since servers in data cen-
ters must operate continuously, the data center’s power requirements remain constant [14].
There is also the issue of more being generated due to denser computing racks that could
not be efficiently cooled by traditional cooling systems [15]. Additionally, older servers and
networks consume more power, while over-provisioned assets result in energy wastage
during off-peak periods. The need for data processing and storage continues to increase,
thus escalating energy consumption.

2.3. Strategies for Improving Data Center Energy Efficiency

Progressing towards better energy utilization entails advancement in the technical
and operational aspects of data centers. For example, modern servers are equipped with
more advanced power management capabilities [16]. Cutting-edge cooling systems such as
liquid cooling or free air-cooling are more effective compared to traditional air conditioning
methods [17]. The deployment of multiple virtual machines on a single physical server
increases the rate of resource utilization by reducing the number of hardware equipment
needed per unit area [18]. Data Center Infrastructure Management (DCIM) tools help to
optimize energy efficiency through resource monitoring and management. Solar and wind
energies among other renewable sources are also being integrated into DC operations.
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2.4. Thermal Management in Data Centers

Thermal management must be prioritized in data center designs since it would in-
evitably affect its availability and reliability. This helps to maintain optimal operating
temperatures by preventing overheating, which eventually leads to system failure [19].
More advanced cooling processes such as liquid cooling aid in maintaining optimal tem-
perature and reducing energy use, while free air cooling is a more efficient substitute for
traditional air conditioning [20].

To manage airflow more efficiently, many data centers use hot/cold-aisle-containment
strategies. In this setup, servers are arranged in alternating rows, or aisles, of hot and cold
air. Cold aisles face the air conditioning output vents, ensuring that cool air is drawn into
the server intakes. Hot aisles face the server exhausts where hot air is expelled [21].

Computational fluid dynamics (CFD) is another advanced technique used to simulate
and analyze airflow patterns within data centers. The use of CFD involves developing
detailed models of the data center, which include server placement, cooling systems, and
physical barriers with such information that it is possible to tell how air will circulate and
where hot spots could develop [22].

2.5. Machine Learning Applications in Data Centers

Machine learning (ML) helps to increase the efficiency and manageability of data
centers. It can automate processes such as predictive maintenance and energy optimiza-
tion [23]. Predictive maintenance uses machine learning to anticipate possible hardware
failures and reduce downtime. Energy usage is also optimized by ML through the analysis
of consumption patterns and system optimization [24].

Workload management is another area where machine learning is making a significant
difference in data centers. The best way that tasks can be distributed across servers based
on their workloads can be predicted by ML algorithms for performance optimization with
minimum energy wastage. This balancing act helps to prevent overheating on servers,
hence reducing the chance of hardware failure risk through discharge into low-power
states [25].

2.6. Workload Placement and Optimization

Efficient workload placement enhances the performance of a data center and its energy
efficiency also. Load balancing involves even-workload distribution to prevent over or
under loading [26]. In dynamic resource allocation, resource provision is based on demand,
while virtualization involves running multiple virtual machines on one server, thereby
increasing resource utilization [27]. Machine learning algorithms help optimize workload
placement for efficient resource use and thermal management [28].

3. Methodology

The study has four stages of data center performance analysis and optimization. Each
phase employs specific tools and approaches.

3.1. Phase 1: Exploratory Analysis

In this phase, data cleaning, pre-processing, and descriptive statistical analysis are
employed to explore the characteristics of the datasets. Data are collected from the ENEA
Portici HPC data center for the period of 1 January to 31 December 2020 (Table 1).

Data cleaning involves handling missing values, removing duplicates, and normaliz-
ing data. For example:

• Missing values in the job dataset’s directory column were filled with “Not Specified”,
and invalid job status values were corrected;

• The environmental data’s “FAIL” values were replaced by averaging adjacent valid entries.
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Table 1. Dataset columns.

Dataset Columns

Job data id, jobid, numcores, user, queue, directory, executable, jobstatus, start,
stop, numhost, hostlist

Environmental data timestamp, timestamp2, cold/hot-aisle temperature, cold/hot-aisle
humidity

Cooling data time, machine name, machine status, supply air, return air, relative
humidity, fan speed, cooling, free cooling

Sensor data nodename, tempo, timestamp_measure, sys power, cpu power, mem
power, fan1a, fan1b, fan5a, fan5b, sys util, cpu util, mem util, io util

As the next step, summary statistics such as mean, median, and standard deviation
are computed. Data visualizations in the form of histograms and box plots provide insights
into data distributions and variability.

3.2. Phase 2: Inferential Statistical Analysis

In this phase, we explore the relationships between different parameters within the
data center. Correlation analysis is conducted:

• Environmental and cooling parameters: We compute correlation matrices between
environmental variables (e.g., average hot-aisle temperature) and cooling system
variables (e.g., fan speed, cooling capacity) to identify significant correlations;

• Cooling system and node sensor measurements: Correlations between cooling param-
eters and node sensor data (e.g., CPU power, ambient temperature) are analyzed to
understand system-load impacts;

• Job parameters and sensor data: To understand job-load impacts on the data center
operations, correlations between job characteristics (e.g., cores used, job duration) and
sensor measurements are studied.

Heatmaps are used to visualize the strength and direction of correlations.

3.3. Phase 3: Machine Learning Model for Cooling Optimization

In this phase, machine learning models are proposed for predicting optimal cooling
parameters based on environmental and sensor data.

For data preparation, we merge sensor, cooling, and environmental datasets into
a single data frame with imputed missing values where needed using mean values to
maintain the integrity of the dataset.

Next, we train the following models:

• Temperature prediction: We use ridge regression (alpha = 1.0) to predict average
hot-aisle temperature based on cooling parameters. The data are split into training
(80%) and testing (20%) sets, and features are standardized using StandardScaler;

• Optimal cooling parameters: Another ridge regression model predicts optimal cooling
parameters (fan speed, cooling capacity) based on sensor and environmental data.

These models are then run against all the records in the dataset to predict cooling
parameters as well as average hot-aisle temperature for robust performance across different
scenarios.

3.4. Phase 4: Idle Node Analysis and Predictive Modeling for Thermal Impact

Phase four includes the analysis of periods when nodes are idle to compute energy
waste and predict the thermal impact of turning off idle nodes.

The information about the time during which the nodes were idle is derived from
job data, considering that any gaps between when a job starts and stops may imply an
idle period longer than 3 h. Next, a dynamic calculation of the wasted energy during idle
periods based on the sensor readings’ time differences is carried out using the sensor data.
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For the predictive modeling:

• The idle node shutdown is considered in the development of the ridge regression
model, which predicts hot aisle average temperature values;

• The performance of the model is assessed using Mean Squared Error (MSE), and
predictions are compared with actual recorded temperatures to determine how they
impact the thermal state of DCs.

4. Results and Discussion
4.1. Phase 1: Exploratory Data Analysis

First, job submission patterns, job status distribution, and queue distribution were
analyzed. Key results include:

• Daily job counts: Trends over time (Figure 1);
• Job status distribution: Visualized using a count plot (Figure 2).
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The analysis of daily job counts shows a generally consistent pattern with minor
fluctuations observed on certain days. These fluctuations may be attributed to variations in
workload demand or scheduling practices. Despite these occasional changes, the overall
stability in job counts indicates a well-managed and balanced job distribution within the
data center.

The job status analysis shows that many jobs have “exited”, meaning they did not
finish as expected. This leads to wasted energy since the resources used for these jobs are
not productive. Reducing the number of exited jobs is important to avoid unnecessary
energy consumption.
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Next, the seasonal trends in average temperatures and humidity for the hot and cold
aisles are analyzed. The results are shown in Figure 3. As we can see, the aisles were
overheating during the first 4 months of the year.
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To investigate the overheating issue, we analyze the temperature gradient at nodes
and the average CPU temperature over time (Figure 4).
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The results suggest that there was no significant overheating in the CPU and inside
the nodes, which means that there must have been an issue with the cooling system since
the hot-aisle temperature was higher from the month of January till April.

4.2. Phase 2: Inferential Statistics

In this phase, we analyzed environmental conditions, cooling parameters, job charac-
teristics, and sensor parameters to understand the correlations between them.

As we can see in the correlation matrix (Figure 5), there is a strong positive correlation
between the average hot-aisle temperature and return-air temperature (0.94). This indicates
that higher hot-aisle temperatures are associated with higher return-air temperatures.
Conversely, there is a strong negative correlation with fan speed (−0.82), suggesting that,
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as the hot-aisle temperature increases, the fan speed decreases. This might indicate that the
cooling system is trying to adjust to maintain optimal conditions.
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4.3. Phase 3: Predictive Modeling of Hot-Aisle Temperature and Cooling Parameters

First, we built a model to predict average hot-aisle temperature based on the cooling
parameters. The model is tested on the entire dataset to predict the average hot-aisle
temperature. The MSE for the full dataset was 1.3156, demonstrating consistent model
performance across different data splits (Figure 6). The close alignment of data points
along the diagonal line in the plot indicates that the model consistently performs well in
predicting the average hot-aisle temperatures.
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Next, we trained a regression model to predict optimal cooling parameters under
ideal conditions, where the average hot-aisle temperature was between 18 ◦C and 27 ◦C.
The prediction was performed based on the data center sensor readings. The model was
applied to the entire dataset under ideal conditions. The MSE for the full dataset was
42.6744, which indicates variability in the data.
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Figure 7 shows the actual versus predicted cooling fan speed values under ideal
conditions. The proximity of the points to the diagonal line indicates good predictions,
excluding a specific period. We found in Phase 1 that there was a period in the dataset with
cooling system disruptions. Therefore, this behavior is correct since the model optimizes
the cooling values during the disruption period.
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Finally, to assess the impact of using ideal cooling parameters, the predicted cool-
ing parameters determined by the ridge regression model were applied to the whole
dataset. The results indicate how closely the predicted temperatures align with the actual
recorded temperatures.

The scatterplot in Figure 8 shows the actual versus predicted average hot-aisle temper-
atures with the recommended ASHRAE maximum temperature of 27 ◦C highlighted. This
comparison indicates whether the predicted temperatures remain within the recommended
range under ideal cooling conditions.
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When the ideal cooling parameters are applied, there is a noticeable decrease in the
average hot-aisle temperature. This adjustment ensures that the cooling system operates
at its most efficient settings, effectively reducing the thermal load within the data center.
The results shows that most of the predicted temperatures fall below the maximum recom-
mended temperature of 27 ◦C. This indicates that the optimized cooling parameters are
successful in maintaining a lower and more stable temperature, which is crucial for the
efficient and reliable operation of the data center’s equipment.

4.4. Phase 4: Energy Optimization and Thermal Management

In this phase, we first identified the idle periods for each node over the entire year.
These periods were defined as times when the nodes were not running any jobs. The
results showed that there were significant idle periods throughout the year for many nodes.
Then, we calculated the wasted energy during these idle periods. The wasted energy was
computed by summing the power consumption of the nodes during the idle times. The
initial calculation showed that a significant amount of energy was wasted when the nodes
were idle.

As the next step, we trained a model to predict the data center average hot-aisle
temperature based on the sensor parameters. The model’s MSE was calculated to be 0.61,
suggesting an accurate prediction (Figure 9).
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Finally, we applied the temperature prediction model created previously on the data
where nodes were turned off during idle periods to predict the average hot-aisle tempera-
ture. The MSE for these predictions was higher at 9.30, indicating some deviations due to
the changes in power consumption patterns.

As shown in Figure 10, the predicted temperatures are consistently lower than the
recorded values across various periods. This indicates that, by turning off idle nodes, the
data center could achieve a more stable and improved thermal state. The reduction in
temperature highlights the potential effectiveness of this approach in enhancing the overall
cooling efficiency and reducing unnecessary thermal loads within the data center.
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5. Recommendations

Based on our findings, we make several recommendations to enhance the efficiency
and sustainability of the ENEA HPC data center with a special focus on the CRESCO6
cluster. However, this study suggests that these models should be used to predict aver-
age hot-aisle temperature and adjust cooling parameters accordingly. Therefore, it can
maintain optimum thermal conditions and reduce reactive cooling needs. It is important
to regularly review and adjust cooling settings to comply with the ASHRAE guidelines
concerning temperatures.

It is necessary to develop job-scheduling algorithms that consider the thermal effect of
job allocations. These strategies ensure the equitable dispatch of computations across nodes
leading to optimal thermal states while preventing hotspots from developing. Resource
distribution can be adjusted in real time by monitoring systems based on current thermal
characteristics and job requirements.

Establishing a comprehensive real-time monitoring system that tracks environmental
conditions, cooling system performance, and job metrics is vital. This information will
provide informed decision-making as well as trigger alerts when there are deviations from
ideal environmental conditions. Continuously collecting high-quality data from sensors
and monitoring systems, validating it regularly, and cleaning it up are all essential for
ensuring accuracy.

Cooling parameters vs. energy consumption correlation analysis can be used to reduce
energy use. Implementing energy-efficient cooling practices, as well as optimizing cooling
system operations, reduces energy wastage. Furthermore, the integration of renewable
energy sources such as solar/wind power would reduce environmental effects to enhance
sustainable goals.

6. Conclusions and Future Work

This research aimed to improve cooling effectiveness and thermal management in the
ENEA HPC data center, with a focus on the CRESCO6 cluster. The study was divided into
four phases, each addressing one of the main aspects of operation principles in data centers.

In Phase 1, we looked at job patterns, environmental conditions, cooling system
performance, and sensor data. We identified important trends and correlations such
as those between hot-aisle temperatures and cooling parameters. The Gini coefficient
further demonstrated that nodes had fairly equal job allocations, meaning the efficient use
of resources.



Electronics 2024, 13, 3542 12 of 14

Phase 2 of the research encompassed a detailed correlation analysis between envi-
ronmental conditions, cooling parameters (fan speed and return-air temperature), power
consumption, and job characteristics. This enabled us to identify very strong relationships
between hot-Aisle temperatures versus fan speeds and/or exhaust-air temperatures to
assess various influences on data center thermal characteristics.

The next stage involved the development of models that could estimate the average
hot-aisle temperature based on cooling parameters. The ridge regression model has a
Mean Squared Error (MSE) of 1.3191, indicating that it can accurately predict temperature
changes, and most predicted temperatures were within the ASHRAE limits, guaranteeing
safe operational temperatures.

Lastly, our focus shifted toward energy optimization for the CRESCO6 cluster. We
switched off nodes during idle periods, thus minimizing energy waste, which also con-
tributed to improved thermal characteristics. The correlation between the sensor data and
average hot-aisle temperature showed the effectiveness of this approach, while the tem-
perature prediction model worked well despite variations due to changing cooling needs.
This analysis demonstrated that proactive energy management, together with real-time
monitoring, is essential in improving efficiency in a data center.

The outcome of this research shows that data-driven approaches have a significant role
in optimizing data center operations. We utilized relationships between various operational
parameters to build models for the effective predicting and managing of thermal conditions.
The approach taken in this thesis demonstrates that small changes like switching off unused
nodes can lead to substantial improvements in energy efficiency and thermal stability. This
would not only cut down on operating expenses but also support international efforts
toward green data centers by reducing environmental effects.

Additionally, the study underscores the significance of continuous monitoring and
adaptive strategies in maintaining optimal conditions within data centers. The predictive
models developed herein serve as a basis for more advanced systems capable of automati-
cally adjusting cooling parameters and resource allocation in real time. It is important to
have this ability since it helps to manage the increased complexity and demands associ-
ated with modern high-performance computing environments, hence making them run
efficiently and sustainably.

Further work could be carried out by considering several strategies. Future work can
extend this study in several ways:

• By using real-time monitoring systems, we can make dynamic adjustments of cooling
parameters based on current conditions. This applies the learned models in real time,
thus improving efficiency;

• Exploring advanced machine learning techniques such as neural networks, ensemble
methods, and deep learning could help to improve prediction accuracy for cooling
and thermal conditions;

• Optimizing job scheduling algorithms considering both computational efficiency and
thermal management could help to balance workloads while maintaining optimal
thermal conditions;

• Incorporating new datasets from other HPC data centers, such as CRESCO7 and
CRESCO8, could help to validate and enhance the models developed, ensuring broader
applicability and robustness across different environments.

Addressing these aspects will enable further research to increase the sustainability
and efficiency of, as well as the reliability of, data center operations towards broader
environmental conservation objectives and cost reduction. This thesis has displayed how
advanced data analytics and machine learning techniques can be leveraged to optimize
data center operations, making way for highly efficient and sustainable high-performance
computing environments.
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