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Abstract
Motivation: Recent RNA-centric experimental methods have significantly expanded our knowledge of proteins with known RNA-binding 
functions. However, the complete regulatory network and pathways for many of these RNA-binding proteins (RBPs) in different cellular 
contexts remain unknown. Although critical to understanding the role of RBPs in health and disease, experimentally mapping the RBP–RNA 
interactomes in every single context is an impossible task due the cost and manpower required. Additionally, identifying relevant RNAs bound 
by RBPs is challenging due to their diverse binding modes and function.
Results: To address these challenges, we developed RBP interaction mapper RBPInper an integrative framework that discovers global RBP inter-
actome using statistical data fusion. Experiments on splicing factor proline and glutamine rich (SFPQ) datasets revealed cogent global SFPQ inter-
actome. Several biological processes associated with this interactome were previously linked with SFPQ function. Furthermore, we conducted 
tests using independent dataset to assess the transferability of the SFPQ interactome to another context. The results demonstrated robust utility 
in generating interactomes that transfers to unseen cellular context. Overall, RBPInper is a fast and user-friendly method that enables a systems- 
level understanding of RBP functions by integrating multiple molecular datasets. The tool is designed with a focus on simplicity, minimal depen-
dencies, and straightforward input requirements. This intentional design aims to empower everyday biologists, making it easy for them to incor-
porate the tool into their research.
Availability and implementation: The source code, documentation, and installation instructions as well as results for use case are freely 
available at https://github.com/AneneLab/RBPInper. A user can easily compile similar datasets for a target RBP.

1 Introduction
RNA-binding proteins (RBPs) ubiquitously regulate the fate 
and function of transcripts across all cellular processes (Hentze 
et al. 2018). RBP–RNA binding can occur through sequence- 
specific, structure-specific, and nonspecific mechanisms (Cook 
et al. 2010), and most RBPs function through transient recruit-
ment of other components or formation of stable complexes. 
However, the nature of these interactions in different cell/tissue 
context is not fully characterized. The determination of the 
‘RBP-interactome’, the transcriptome-wide set of transcripts 
bound by RBPs, is necessary to determine the processes that are 
regulated by those RBPs in different contexts. RBP–RNA im-
munoprecipitation coupled with sequencing, (RIP-Seq, eCLIP, 
PAR-CLIP) (Hafner et al. 2021) and knockdown/knockout of 
target RBP followed by RNA-sequencing (perturbation RNA- 
Seq) (Sternburg and Karginov 2020) have become popular 
methods to identify RBP-interactome. Tremendous progress 
has been achieved in the last decade in the profiling of hundreds 
of RBP interactions. Tens of hundreds of RIP-Seq, eCLIP-Seq, 
PAR-CLIP-Seq, and perturbation RNA-Seq has been performed 

on most RBPs and deposited on public repositories, suitable for 
mining to generate new insights into RBP functions.

While mining of existing RBP–RNA interaction datasets 
allows for cost effective generation of new biological insights 
and hypothesis, the analytical process is none trivial and 
poses challenges. First, individual profiles represent sample 
specific interactions, instead of global interactome. Although 
structural and sequence features of RBPs are conserved 
(Beckmann et al. 2015), the same RBP can have different 
interactomes in different cell states (Bi et al. 2021). Second, 
the experimental methods profile different aspects of the 
same interactome, leading to a strong correlation structure 
and dependence among the profiles (Chadeau-Hyam et al. 
2013). These challenges could be resolved if sample metadata 
are used to inform an integrative analysis. However, existing 
methods focus on visualization of input gene list rather than 
systematic data integration (Reimand et al. 2019). Moreover, 
no methods are available for metadata-directed integration of 
multi-omics datasets to account for unique features of RBP– 
RNA interactions profiles.
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Here, we present RBPInper (https://github.com/AneneLab/ 
RBPInper), which addresses these issues and generates robust 
global RBP interactomes. We demonstrate the utility of 
RBPInper through a use case on the integration of splicing 
factor proline and glutamine rich (SFPQ)–RNA interaction 
profiles. It generates a validated and robust global SFPQ 
interactome, revealing both novel and known components of 
SFPQ function.

2 Methods
2.1 RBPInper framework
RBPInper is an R tool that flexibly integrates the activities of 
an RBP from multiple experimental strategies (e.g. RNA-IP, 
eCLIP, and RNA-Seq) (Fig. 1). It takes two inputs: (i) a ma-
trix of P-values with genes in rows and dataset evidence in 
columns, and (ii) a matrix of dataset information with ID in 
rows and annotations in columns (at least experimental strat-
egy and the cell type). To integrate multiple sources of evi-
dence, a combined P-value is computed for each gene using a 
twostep meta-analysis approach, resulting in a robust RBP– 
mRNA interaction gene list. First, the cell group-specific gene 
list is computed by merging all P-values of a given gene for 
each cell type into a combined P-value using the Bonferroni 
method (Goeman and Solari 2014, Cinar and Viechtbauer 
2022). The assumption behind this approach is that P-values 
for the same cell type for the same RBP is correlated across 
the experimental strategies, thus, dependent. Ignoring this 
type of dependence when combining P-values can inflate the 
type I error rates (Alves and Yu 2014). Second, the global 
gene list is computed by combining all cell group-specific 
gene P-values using the Fisher’s combined probability test 
that accounts for the independence across the different cell 
types (Fisher 1970). The integrated list of Bonferroni P-values 

(cell group-specific) or Fisher P-values (global) are then indi-
vidually corrected (using BH method) for multiple testing and 
filtered using a standard threshold (adjusted P< .05 default) 
to reflect current practices. However, the user can change the 
significance threshold at run time using the ‘P’ optional argu-
ment. Note, we set missing values such as the absence of a 
peak to P-value¼1.

We also include optional arguments in the function call to 
specify whether the P-values should be integrated with alter-
native methods [i.e. cell group-specific—dependence as-
sumed: Bonferroni (default) or Harmonic mean (Wilson 
2019), and global—independence assumed: Fisher (default) 
or Binomial (Wilkinson 1951)]. Furthermore, two outputs 
are provided; (i) global gene list, the default using all P-val-
ues, and (ii) cell type-specific gene list, which is derived by 
limiting the P-values to specific cell types. The RBPInper R 
package can be obtained through GitHub (https://github. 
com/AneneLab/RBPInper).

Depending on the experimental question, a user may wish 
to restrict the contribution of specific methods in the global 
gene list. Thus, we implement an optional penalty argument 
whereby all the data points for a restricted method are com-
bined into one evidence (First step) and directly added to the 
second step with the rest of the data as described above. This 
argument ensures that the indicated method has marginal 
contribution to the final interactor call.

2.2 Pre-processing of bed peak files
To derive gene level P-value evidence for RNA-IP, eCLIP, 
and PAR-CLIP datasets we implemented an addon module 
‘prebed()’ to prepare peak evidence. Given a standard bed file 
and a genome annotation file (gff), it assigns gene names to 
each peak based on gene coordinates. Then, we summarize 
the peak P-values by gene using the Bonferroni correction 

Figure 1. Overview of the RBPInper framework. RBPInper uses a meta-analysis approach to provide insight of RBP function. Evidence from multiple 
experimental datasets is directed through a P-value combination pipeline comprising two steps: (Step 1) Cell group-specific P-value combination and 
(Step 2) global P-value combination, to produce a single gene-wise P-value, and deduce the global RBP interactome.
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method (Goeman and Solari 2014). We include optional pa-
rameter to use other feature types (e.g. exon, transcript, 
CDS). Note, other standard bioinformatics analysis were 
conducted using our established pipeline (Anene et al. 2021) 
and described in the supplementary file.

2.3 Systematic mining of dataset and known SFPQ 
interactors
To demonstrate the use of RBPInper and evaluate its perfor-
mance, we compiled a wide range of dataset on SFPQ RNA and 
DNA binding activity and function from Feingold et al. (2004), 
Yamazaki et al. (2018), Bi et al. (2021), Klotz-Noack et al. 
(2020), and Stagsted et al. (2021) (Supplementary Table S1).

For known interactors of SFPQ in existing literature, the 
RISMed R package was used to retrieve PubMed articles 
with cooccurring instances of SFPQ or aliases and other genes 
in titles and abstracts. The retrieved gene symbols were then 
mapped to their corresponding Ensembl IDs using the 
‘mapIds()’ function from the ‘org.Hs.eg.db’ R package. The 
data mining approach is automated and included in the 
RBPInper package for user to apply on their own datasets.

2.4 RNA-Seq analysis
Raw reads were filtered to remove the adaptors and the low- 
quality reads (Q<20) using Trimmomatic (Bolger et al. 
2014). Filtered reads were aligned to the human reference ge-
nome GRCh38/hg38 assembly using HISAT2 (v2.1.0) in de-
fault settings (Kim et al. 2015). For SFPQ knockdown 
datasets, the counts in different genomic features were gener-
ated using HTSeq (v0.11.1) (Anders et al. 2015) on human 
GRCh38 reference annotation (GENCODE Release 32). 
Differential expression analyses between two groups were 
performed using the limma R package.

2.5 Simulation studies
To evaluate how well RBPInper estimates specific RBP inter-
actome and its comparison to interactors derived indepen-
dently from each dataset (herein called Union), we created 
pseudo-simulated table of P-value evidence, like previously 
reported approach (Chen 2011, Yoon et al. 2021). We based 
our simulations on real datasets to ensure it reflects the 
expected performance in real use cases. Using our compiled 
SFPQ dataset (n¼9) we randomly shuffled (10%, 20%, 
30%, 40% and 50%) of the P-values of data sources to cre-
ate random associations (technical noise). For each percent-
age, all combinations of the data sources were independently 
shuffled creating a large dataset for evaluation. Next, we de-
rived SFPQ interactors using either RBPInper or Union. 
Then, we calculated the specificity of the calls in the shuffled 
data using the genes derived from the original unshuffled 
data as the expected interactome [Equation (1)]. 

Specificity ¼
True Negative

True NegativeþFalse Positives
(1) 

3 Application
3.1 Transcriptome-wide discovery of the 
SFPQ–RNA interactome
To demonstrate the utility of RBPInper and evaluate its perfor-
mance, we focused on a multi-functional RBP. Specifically, 
SFPQ interacts with a spectrum of RNAs partners to regulate 

many cellular processes such as transcription, DNA damage re-
pair, and paraspeckle formation (Emili et al. 2002, Bladen et al. 
2005, de Silva et al. 2019). Dysregulation of SFPQ interactions 
has been implicated in the aetiology of neurodegenerative dis-
eases and a range of cancers. However, much of the interactions 
underpinning its physiological and pathological functions 
remains unknown. Thus, integrated analysis of its RNA activity 
profiles should enrich for both known and novel global interac-
tors and biological processes. Note that existing SFPQ studies fo-
cused on single cell type or disease context, thus could not fully 
map the interactome. To this end, we collected two RIP-Seq, five 
perturbation RNA-Seq, and two eCLIP profiles from publicly 
available datasets (Supplementary Table S1) and applied our 
framework to derive global SFPQ interactome. We derived a 
9884 gene interactome that was strongly enriched across the cell 
groups (Fig. 2A, Supplementary Table S2). To validate the genes, 
we obtained an independent pre-processed dataset of SFPQ 
PAR-CLIP of two cell lines (U2OS and HeLa) that were not cov-
ered in the integrated set (GSE113349) (Yamazaki et al. 2018). 
We extracted the genes associated with peaks and evaluated the 
overlap with the RBPInper derived interactome. We found that 
60% (4575/7665, in U2OS) and 62% (3759/6097, in HeLa) of 
PAR-CLIP associated genes overlap with the integrated interac-
tome, which is significantly higher than random chance (chi- 
squared P 1.576e-64: HeLa and P 5.302e-74: U2OS, Fig. 2B).

To further assess whether the RBPInper output captured 
known SFPQ interactors, we first defined known SFPQ inter-
actions as genes previously associated with SFPQ in the litera-
ture (see Supplementary Methods). The known interactors 
also had significant overlap with RBPInper derived interac-
tome (chi-squared P<2.2e-16). These observations show 
that RBPInper extracts cognate RBP interactome by leverag-
ing the combined power of the integrated experimen-
tal methods.

We next evaluated the biological processes associated with 
the interactors using gene ontology analysis. We observed 
that SFPQ interactors are associated with a wide range of bi-
ological processes, including cell cycle, chromatin organiza-
tion, cell-cell communication, biomolecule transport (Fig. 3, 
Supplementary Table S3), consistent with the multifunctional 
role of SFPQ signalling. Several of the enriched ontologies, 
such as heterochromatin formation and WNT signalling has 
not been previously linked to SFPQ (Supplementary Table 
S3), confirming that RBPInper provide new biological insight 
for understanding the function of RBPs.

To assess the performance of the global integration ap-
proach against the individual samples, we called interactors 
for each profile individually using adjusted P<0.05. 
Interrogating the overlap between interactors across the 
profiles and the independent PAR-CLIP data revealed 
surprisingly high overlap compared to using individual 
samples (Fig. 4A). RBPInper had the highest average overlap 
percentage (61%) compared to Omera (45%), Omera1 
(40%), ENCFF417EZT (21%), ENCFF960OTE (17%), 
and GSE157622 (5%) (Fig. 4A). Although samples 
ENCSR535YPK, ENCSR782MXN, GSE149370, and 
GSE157622.1 had an average overlap of <1%, this is poten-
tially due to fewer interactor calls (Fig. 4A). The high overlap 
of RBPInper is due to the robustness of the two-step meta- 
analysis integration (see Section 2).

Finally, to assess the performance of the RBPInper calls 
against different levels of technical noise and to compare it 
with union of the independently derived genes from above, 
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we simulated random P-values with specific noise signals 
(10%–50% noise level), as described in the simulation stud-
ies. Then, for each simulated table of P-values (RBPInper or 
Union, see Section 2), we calculated the specificity of the de-
rived genes overlapping the expected signals. Our results 
revealed that RBPInper has better specificity across all the 

noise levels compared to the union of the independently de-
rived genes (Fig. 4B). The robust specificity of RBPInper 
results is due to the two-step meta-analysis core that com-
bines the individual P-value evidence into a single consensus 
P-value (see Section 2). As expected, RBPInper’s ability to ex-
tract highly specific interactome is negatively associated with 
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the level of technical noise (Fig. 4B). These results suggest 
that the quality of the interactome is dependent on the level 
of technical noise (e.g. incorrect peak identification due low 
quality of RNA) in the P-value estimations. On average, 
RBPInper has >93% and 85% specificity at 10% and 20% 
noise, respectively (Fig. 4B, Supplementary Table S6). 
Previous studies indicated that RNA-Seq datasets have tech-
nical noise <10%, while the rest of the differences is 
explained by biology and experimental conditions (SEQC 
Consortium 2014, Robinson et al. 2015). Thus, we believe 
that RBPInper retains its estimation power when analysing 
current real sequencing datasets across various RBPs. 
Note that the P-value input of RBPInper is derived from 
well-established tools for peak calling or differential gene 
expression analysis that have very low levels of errors in their 
estimations (Rapaport et al. 2013, Jeon et al. 2020).

Previous studies show that some mis-regulated genes in 
RBP perturbation data are downstream effects rather than 
direct interactors. Thus, we analysed our compiled datasets 
using the optional penalty argument (pen ¼ perturbation) to 
investigate this utility. We found no major differences com-
pared to the default unpenalized integration. 95.38% (9512 
out of 9972) of the total genes derived were shared by the 
two approaches (unpenalized versus perturbation RNA-Seq 
penalized), suggesting that our meta-analysis integration can 
control for data specific bias. Although the unpenalized ap-
proach derived more unique genes (372) compared to the pe-
nalized (n¼88), both sets of unique genes were found to 
have good overlap with the independent validation sets 
(21.5% in U20S and 19.6% in HeLa cells) compared to the 
penalized version (37.5% in U20S and 34.1% in HeLa cells). 
These observations suggest that RBPInper can effectively re-
duce the limitations of individual datasets using either active 
or passive techniques.

3.2 Genome-wide discovery of the SFPQ–DNA 
interactome
Several RBPs have been shown to function through DNA 
binding of target genes. RBPInper can integrate DNA binding 

profiles with knockdown RNA-Seq data to provide informa-
tion about the DNA level interactomes. As an example, here 
we focus on the DNA interactome of SFPQ, which is critical 
in its function in DNA repair (Ha et al. 2011). We integrated 
6 SFPQ ChIP-Seq dataset with five perturbation RNA-Seq 
data (Supplementary Table S1), as the effect of RBP–DNA 
interactions should be present in SFPQ perturbation RNA- 
Seq data. We derived 2073 gene DNA interactome of SFPQ 
(Supplementary Table S4), which is less than the number of 
RNA interactors and consistent with the mainly RNA- 
binding function of SFPQ (Knott et al. 2016). Interestingly, 
2036 out of 2073 (98%) of the DNA interactors were also 
found in the RNA interactome, indicating that SFPQ regulate 
some genes at both RNA and DNA levels.

4 Discussion
Characterizing RBP regulatory networks in different cellular 
contexts is of great interest to many research groups. 
However, experimentally performing this task for every sin-
gle context and RBP is prohibitively expensive. Mining exist-
ing RBP interaction datasets has become a popular approach 
to remedy this issue. Unfortunately, there are no existing 
tools that provide gene-level integration of these datasets to 
identify reliable interactomes of RBP that can transfer to un-
seen contexts. First, interpreting multiple gene lists has been 
addressed by various algorithms and web-based methods. 
These approaches primarily focus on visualization of a single 
source of data, rather than empirical data integration of mul-
tiple evidence (Reimand et al. 2019). Second, existing tools 
for multiple multi-omics data integration lack the options to 
integrate RNA-IP, eCLIP, or PAR-CLIP, extensively reviewed 
in Bersanelli et al. (2016) and Subramanian et al. (2020). 
Thus, deriving robust global RBP interactomes is challenging. 
The RBPInper framework addressed this gap by providing 
systematic meta-analysis of gene-level evidence that exhibits 
consistent performance across various validation analyses 
and has further invaluable features not found in existing 
tools. The core utilities of RBPInper are that it (i) leverages 
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the combined strengths of the individual experimental strate-
gies for profiling RBP–RNA interactions while minimizing 
their weakness, and (ii) provides a global RBP interactome 
that extends beyond the immediate cell types and context 
profiled. Moreover, our framework is inherently versatile, 
allowing users to add new cell types and data groups at run 
time. We demonstrated this function by integrating ChIP-Seq 
and perturbation RNA-Seq data to enable the discovery of 
SFPQ’s DNA interactome. This flexible approach is critical 
for robustly estimating RBP interactomes that extend to new 
cellular contexts and represents an important advance com-
pared to current approaches that exclusively focus on a single 
sample or context. RBPs have a wide range of roles in regula-
tion of RNA and their dysregulation is involved in the devel-
opment and progression of many diseases including 
cardiovascular diseases, autoimmune diseases, neurodegener-
ative diseases and cancers (de Bruin et al. 2017, Gebauer 
et al. 2021, Schieweck et al. 2021). However, detailed 
mechanisms of their role in these diseases are still lacking. As 
such, RBPInper provides a robust platform for mechanistic 
characterization of RBP interactions and functions, which 
can facilitate the development of new biomarkers and thera-
peutic targets.

Though using an imbalanced number of profiles per cell 
type may inadvertently bias the global interactome, multiple 
sources per RBP can better capture the diversity in RBP inter-
actomes across different cell states. Unlike one cell type or 
sample approach, we solved this problem by first calculating 
the meta values individually for each cell group (see Section 
2) before generating the global meta value for the same gene 
in each cell group. Here, a future update may include addi-
tional techniques to correct cell type bias such as two-tier 
group integration, particularly as interaction profiles in other 
cells become available. We also incorporated the option to 
extract and use group estimates, which is crucial for applica-
tions requiring interactomes in specific cell types.

Benchmarking on the individual samples showed that al-
though each sample-specific calls retained some overlap with 
the independent dataset, we saw high levels of none overlap 
genes in those. This performance issue is expected but impos-
sible to track in actual use cases because of the known 
cell-type specific interactions of RBP and experimental noise 
present in each sample. Our systematic meta-analysis reduces 
this sample bias by averaging out the sample-specific signals. 
Indeed, we adequately identified the novel WNT signalling 
and/or heterochromatin functions of SFPQ. Here, RBPInper 
identified EZH2, the catalytic subunit of PRC2 as a global 
interactor of SFPQ (adjusted P< 4.1e-16, see Supplementary 
Table S2). This finding is intriguing because previous re-
search has shown that reducing SFPQ levels promotes EZH2 
exon 14 skipping in a non-cell-type specific manner (Chen 
et al. 2017). Functionally, this shorter isoform lacks histone 
methyltransferase activity, but functions as an inhibitor of 
full-length EZH2. Since PCR2-mediated methylation of his-
tone H3 on lysine 9, 27, or 37 is crucial for both constitutive 
and facultative heterochromatin formation (Chantalat et al. 
2011), SFPQ may regulate heterochromatin formation 
through EZH2 alternative splicing.

Moreover, in zebrafish model, the depletion of the cyto-
plasmic pool of SFPQ (i.e. the SFPQ–RNA interactions) in a 
zebrafish model hindered motoneuron differentiation partly 
by autonomously reducing Wnt signalling (Thomas-Jinu 
et al. 2017). Interestingly, reintroducing cytosolic SFPQ 

restored Wnt signalling-related transcripts, revealing a 
context-specific function in motor axons. It is worth noting 
that single sample or cell type analysis could not resolve such 
a function due to their sample-specific noise, further 
highlighting the utility of our method. Future work will allow 
for a more specific characterization of other functions and 
mechanisms through which SFPQ contributes to vari-
ous diseases.

An important limitation of RBPInper framework is that it 
represents the aggregate evidence of the contributing profiles. 
Thus, if they have universally high levels of technical noise for 
a given RBP, then RBPInper will have a corresponding spuri-
ous global interactome estimation. However, RBPInper 
should be robust for most cases compared to the individual 
samples or using the union of the interactors derived indepen-
dently from the datasets. Indeed, our simulation studies show 
that RBPInper integration retains good specificity even at high 
technical noise. This observation is consistent with previous 
studies showing that meta-analysis enables the detection of 
small effects that might be false negatives in the individual 
datasets (Choi et al. 2003). It also has better reproducibility 
and reliability compared with individual datasets (Hong et al. 
2006). Therefore, RBPInper is an indispensable tool to inter-
rogate multiple datasets for global RBAP interactomes.

To enable easy incorporation of RBPInper into new and 
existing pipelines for analysing RBP interactions, we imple-
mented an object-oriented system in R, allowing the user to 
add, run and retrieve individual elements of the analysis 
(https://github.com/AneneLab/RBPInper).
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