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A B S T R A C T

During the COVID-19 pandemic, the analysis of patient data has become a cornerstone for developing effective 
public health strategies. This study leverages a dataset comprising over 10,000 anonymized patient records from 
various leading medical institutions to predict COVID-19 patient age groups using a suite of statistical and 
machine learning techniques. Initially, extensive statistical tests including ANOVA and t-tests were utilized to 
assess relationships among demographic and symptomatic variables. The study then employed machine learning 
models such as Decision Tree, Naïve Bayes, KNN, Gradient Boosted Trees, Support Vector Machine, and Random 
Forest, with rigorous data preprocessing to enhance model accuracy. Further improvements were sought through 
ensemble methods; bagging, boosting, and stacking. Our findings indicate strong associations between key 
symptoms and patient age groups, with ensemble methods significantly enhancing model accuracy. Specifically, 
stacking applied with random forest as a meta leaner exhibited the highest accuracy (0.7054). In addition, the 
implementation of stacking techniques notably improved the performance of K-Nearest Neighbors (from 0.529 to 
0.63) and Naïve Bayes (from 0.554 to 0.622) and demonstrated the most successful prediction method. The study 
aimed to understand the number of symptoms identified in COVID-19 patients and their association with 
different age groups. The results can assist doctors and higher authorities in improving treatment strategies. 
Additionally, several decision-making techniques can be applied during pandemic, tailored to specific age 
groups, such as resource allocation, medicine availability, vaccine development, and treatment strategies. The 
integration of these predictive models into clinical settings could support real-time public health responses and 
targeted intervention strategies.

1. Introduction

The COVID-19 pandemic, caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, 
China, in December 2019 and later declared a global pandemic by the 
World Health Organization (WHO) [1]. As of February 17, 2023, it has 
infected approximately 756 million individuals and resulted in nearly 
6.85 million deaths worldwide [2]. The rapid development and distri-
bution of vaccines have significantly decreased the number of new cases, 
with over 13 billion doses administered globally. This advancement is 
gradually restoring economic activities to pre-pandemic levels [3].

Throughout the pandemic, the collaborative efforts of the scientific 
community, including paramedics, have been pivotal. Researchers have 
contributed through diverse means, from enhancing educational tools 
[4] and supporting national economies [5]to boosting corporate and 

healthcare responses [6]. Significant advancements have also been 
made by the artificial intelligence (AI) and machine learning (ML) 
communities. They have developed digital tools for reducing the pan-
demic’s impact, such as smart applications for future case prediction [7], 
contact tracing systems [8], enhanced testing capabilities [9], and 
advanced diagnostic systems [10]. These communities are a helpful 
source for researchers to analyze, evaluate, and generate new patterns 
and recommendations to authorities to respond efficiently during this 
crisis.

This study aims to develop a statistical and ML model to assist 
healthcare professionals in managing COVID-19 across different patient 
age groups. The primary research question addresses predicting COVID- 
19 patient age groups using various attributes through statistical and ML 
techniques. Our approach involves analyzing two datasets: one previ-
ously published [11] and another newly collected from several Pakistani 
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hospitals post-identification of the Delta variant [12]. This comparative 
analysis across different datasets aims to identify the best dataset for ML 
implementation and understand the impact of COVID-19 mutations on 
symptom presentation. The specific symptoms analyzed include cough, 
fever, sore throat, shortness of breath, and headache [13,14].

Contributions of this research include.

• Curating a dataset from Pakistani medical institutions for current 
and future research.

• Publishing this dataset on prominent research platforms for global 
accessibility.

• Employing statistical and ML methods to delineate the relationship 
between COVID-19 symptoms and patient age groups.

• Analyzing the significance of each symptom in the infected popula-
tion through ANOVA, Chi-Square Test of Independence, and t-tests.

• Implementing and comparing various ML algorithms to determine 
the most effective method for age group prediction.

• The use of ensemble approaches and cross validation techniques to 
avoid overfitting issues.

• To provide a better understanding of the different symptoms and 
their association with age group.

Machine learning has been widely used for predicting disease out-
comes or diagnosis, while applying it to predict a patient’s age group 
based on symptoms is a novel approach. The idea presented in this study 
can lead to customized and age-specific treatment strategies, which is 
critical in managing during a pandemic like COVID-19. The findings of 
this study will help decision-makers develop specific strategies tailored 
to particular age groups, including resources allocation, medicine 
availability, vaccine development, and treatment strategies. The meth-
odology applied in this study focused on symptoms-based modeling for 
predicting age group, which is not commonly explored in previous 
COVID-19 epidemiological studies. Overall, age-specific impacts of 
COVID-19 explored in this research, which can be useful for adopting 
preventive measures in future.

The remainder of the paper is organized as follows: Section 2 outlines 
the research context, Section 3 details the methodological approach, 
Section 4 presents the statistical analysis, Section 5 discusses the ML 
implementations, and the final section concludes the study.

2. Research background

The academic response to the COVID-19 pandemic has been exten-
sive, exploring a wide array of topics that range from clinical to societal 
impacts. Key areas of study include symptoms [15], testing methodol-
ogies [16], diagnostic tools [17], treatment protocols [18,19], preven-
tative measures [20], virus transmission [21,22], vaccine development 
[23,24], and forecasting future trends [25,26]. Each of these topics is 
crucial for comprehensive pandemic management and has been exten-
sively documented in the literature. The pandemic’s reach has extended 
beyond healthcare, affecting various sectors such as education [27,28], 
medicine more broadly [29,30], corporate operations [31,32], social 
interactions [33,34], and even human psychology [35,36].

Previous research has also identified several other elements that 
have significant impact on the virus’s transmission. For example, the 
regression method was used in the Australian context to estimate virus 
propagation over the road network system. In addition, socio- 
demographic factors used to enhance the effectiveness of the proposed 
model [37]. Furthermore, suburban road network investigated in 
research and identified as one of the common vulnerabilities in 
spreading the COVID-19 virus. For the investigation, authors used a 
dataset collected from Greater Sydney of New South Wales [38,39]. This 
breadth of research demonstrates the virus’s pervasive impact and the 
multidisciplinary approach required to address it.

Given the scope of these studies, significant attention has been paid 
to developing and refining diagnostic tools, and predicting the 

relationship between common symptoms, age groups, and prevention 
measures. Decision making techniques are further enhanced the idea of 
proposing treatment strategies during this pandemic situation [40]. 
These tools have been pivotal in detecting and monitoring the disease, 
offering critical insights into its progression and treatment efficacy. As 
such, this research contributes to the ongoing discussion by focusing on 
advanced machine learning techniques to enhance diagnostic accuracy, 
and patient management system. Specifically, this research used the 
data for analysis and ML implementation, collected while performing 
laboratory test in diagnosing COVID-19.

2.1. COVID-19 symptoms

This study explores common and clinical symptoms of COVID-19, 
emphasizing their correlation with findings of the test report, which 
are crucial for the identification of suspected cases. According to the 
World Health Organization, key symptoms such as fever, cough, and 
shortness of breath may appear singly or in combination and are often 
the first indicators of the disease [41]. Using similar findings, a study 
proposed a model to understand the prominent and expected cases of 
COVID-19 using five basic symptoms. The idea presented in that 
research is to provide a clear understanding of infected persons using 
basic clinical findings. The goal is to develop a predictive framework to 
identify potential COVID-19 cases using clinical symptom [11].

Another research highlighted the common signs and symptoms of 
COVID-19 for predicting infected people in Jordan. The dataset used in 
that study, originating from Jordan, enables the validation of these 
models across diverse populations, ensuring robustness and applica-
bility [42]. Furthermore, the study in Geneva that focused on tracking 
the evolution of COVID-19 symptoms and to monitor disease progres-
sion, ensuring continuous patient care [43]. This integrated approach 
highlights the value of continuous data collection in managing patient 
outcomes. Similarly, several machine learning models were used to 
identify early-stage symptoms such as fever, cough, lung infection, and 
runny nose in order to predict COVID-19 infection in different age 
groups, with XGBoost recorded the highest accuracy [44].

Additionally, Wang, H. Y. et al. (2020) highlighted the occurrence of 
neurological symptoms such as instability in walking, headaches, and 
dizziness in COVID-19 patients [45]. These findings suggest the impor-
tance of including neuroimaging studies to identify early markers of 
COVID-related neurological complications, further complicating the 
diagnostic process. The absence of traditional respiratory symptoms in 
cases presenting with primary neurological signs underscores the need 
for a multi-modal diagnostic approach that combines symptom assess-
ments using different laboratory tests. This section underscores the 
integration of clinical findings collected through laboratory tests, uti-
lizing advanced machine learning techniques to enhance the predictive 
accuracy of COVID-19 diagnostics. This approach is vital for analyzing, 
identifying, and predicting COVID-19 positive cases, where detailed 
laboratory data can significantly contribute to comprehensive patient 
management and cure strategies.

2.2. Statistical analysis

During the COVID-19 pandemic, the integration of statistical anal-
ysis on different datasets has played a crucial role in supporting the 
prevention and control strategies implemented by government and 
health agencies. Therefore, this study also provided a detailed statistical 
analysis of real-world data collected from hospitals and medical 
agencies. Statistical tools such as ANOVA, T-Test, and Gaussian 
modeling have been employed to analyze recovery and mortality rates 
across various European and Asian countries, revealing that infection 
rates correlate strongly with population density and testing rates [46]. 
The main purpose of the research was to determine recovery and mor-
tality rates. The results of this study suggested that the COVID-19 
infection rate largely depends on the population of the country and 
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the number of tests conducted. Therefore, it is evident from the study 
that identifying valuable predictive results using statistical analysis can 
provide potential evidence for government agencies to develop future 
control and prevention strategies.

Furthermore, another research leverages the Auto-Regressive Inte-
grated Moving Average Model (ARIMA) applied to Pakistani health data 
[47]. ARIMA’s capability in time series analysis allowing for a more 
nuanced analysis of how symptoms and disease markers evolve over 
time. Despite challenges such as limited data samples, the use of sta-
tistical analysis on medical dataset offers comprehensive insights, 
leading to robust public health strategies. The interdisciplinary 
approach includes collaboration between statisticians, medical experts, 
and machine learning specialist to develop models that interpret com-
plex data sets effectively. This collaborative effort is essential for 
advancing diagnostic and prognostic tools that are capable of handling 
diverse and large-scale data sets.

Ethical considerations, particularly regarding data privacy, are 
paramount. The study adheres to strict data protection measures to 
ensure confidentiality and integrity in the handling of sensitive patient 
data. Additionally, it addresses potential biases by ensuring de-
mographic diversity within the datasets, thus enhancing the fairness and 
applicability of the models across different populations.

In conclusion, the integration of statistical models with medical data 
not only provides a deeper understanding of the COVID-19 pandemic 
but also significantly impacts the development of data-driven public 
health policies. The subsequent section will detail the methodologies 
used in this study, emphasizing how these integrated models are 
implemented to refine management strategies for COVID-19.

2.3. ML approaches for COVID-19: enhancing predictive models

The integration of machine learning, with healthcare data has 
transformed how medical authorities manage and respond to COVID-19. 
ML techniques have been pivotal in developing predictive models that 
not only forecast the disease progression but also assist in analyzing 
medical data to provide deeper insights into the infection mechanisms. 
The implementation of ML algorithm using supervised and ensemble 
approaches has achieved remarkable success in the medical industry 
[48,49]. These traditional and ensemble methods offer a comprehensive 
understating of problems, optimize model performance, and provide 
reliable solutions [50].

Studies using ML to manage COVID-19 data have shown significant 
advancements. For example, optimized regression models were applied 
to predict mortality rates in countries like France, Spain, Turkey, Swe-
den, and Pakistan. Notably, even without a lockdown, Sweden’s mor-
tality rates were lower than those in the studied countries [51]. These 
models, when integrated with clinical dataset, can enhance the under-
standing of underlying factors that influence mortality rates. Addition-
ally, studies have highlighted other clinical findings in data sets using 
ML algorithms. By analyzing historical numbers of positive cases, re-
searchers proposed an improved model to predict the growth rate and 
future trends of COVID-19.

ML algorithms have also improved the accuracy of predicting 
COVID-19 trends. The Weibull model, known for its robustness, has 
outperformed baseline models in forecasting the virus’s growth rates 
[52]. Ultimately, sharing of these results with medical agencies, could 
provide a more comprehensive approach in creating future strategies. 
Moreover, epidemiological models have identified the exponential na-
ture of the virus spread [53] and demonstrated that multilayer percep-
tron have better predictive accuracy than traditional linear regression 
[54]. These findings could be further enriched by correlating them with 
dynamic changes observed in the new collected data, providing a 
multidimensional view of the pandemic’s progression.

The implementation of machine learning algorithms on medical data 
has demonstrated a wide range of predictive models, including super-
vised models and ensemble approaches. While supervised learning 

approaches are fundamental to many ML tasks and can offer strong 
performance [55,56], this study further explores the use of ensemble 
algorithms to reduce bias and variance by combining multiple predictive 
models. Ensemble algorithms typically provide better generalization of 
the data and help mitigate overfitting issues [57]. By incorporating both 
supervised and ensemble approaches, the diversity of the models in this 
study is enhanced. This comparative study is beneficial for under-
standing the strength and weaknesses of each technique when applied to 
similar dataset.

The wide range of ML algorithms applied to different applications 
highlights the variety of optimization methods discussed in previous 
studies. A review analysis on the applicability of ML algorithms for 
disease prediction found that Support Vector Machine (SVM) is the most 
frequently used, while Random Forest (RF) showed the highest accuracy 
comparatively [55]. Additionally, ensemble approaches such as stacking 
have the potential to combine multiple models, known as base learners, 
to create a final prediction model (i.e. meta model). Stacking has proven 
to be a successful ensemble method, demonstrating the highest predic-
tion accuracy compared to other ensemble methods, particularly when 
applied to medical datasets [58].

The main goal of ML in this context is to equip computers with the 
ability to simulate human decision-making processes based on training 
data, which then can be applied to new datasets for predictive purposes. 
For instance, an XGBoost model used to predict respiratory failure in 
COVID-19 patients showed a 91 % accuracy rate [59]. Recently, ML and 
statistical analysis techniques have been widely applied to data from 
various countries to predict infection rates, mortality rates, and the 
potential spread of the COVID-19 virus. One analysis aimed to forecast 
the death ratio trend in India over the coming weeks [60]. Additionally, 
using historical data, a model was proposed to estimate future trends 
and the potential number of infections in China [61].

3. Methodology

This section delineates the comprehensive methodology employed to 
address the research problem stated earlier. The methodology is struc-
tured into four distinct phases, each integral to the research process, as 
illustrated in Fig. 1. Detailed descriptions of each phase are provided in 
the following subsections to elucidate the steps and techniques utilized. 
This structure not only facilitates a clear understanding of the research 
approach but also aligns with the rigorous analytical frameworks typical 
in medical studies.

3.1. Phase 1: data collection

In this study, our data collection strategy was meticulously designed 
to source datasets pertinent to our research objectives. We explored a 
variety of online resources such as Kaggle, GitHub, HDX, and data. 
world to secure appropriate data. An initial dataset was chosen based on 
its mention in a relevant academic publication and available on GitHub 
[62], as referenced in an influential study [11]. However, subsequent 
analysis indicated that this dataset was insufficient for our research 
needs, leading us to augment our data collection efforts.

Given the necessity for more specific data, particularly in the context 
of the recent COVID-19 variants, we opted to collect additional data 
through a quantitative survey. Initial plans to gather data directly from 
medical institutions were adjusted due to stringent requirements for 
permissions and ethical consent. The Delta variant, first identified in 
India on June 21, 2021, significantly influenced our data collection 
strategy. Although we initially planned to collaborate with local re-
searchers in India, logistical challenges, including a critical shortage of 
specific protective equipment, necessitated a shift to Pakistan. From 
August 1 to August 15, 2021, we successfully conducted the survey in 
Pakistan, where it was feasible to deploy temporary staff for this 
purpose.

The datasets collected—both the initial and the newly acquired—are 
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extensively analyzed in later phases of this research. Preliminary find-
ings and a comprehensive statistical evaluation of these datasets are 
presented in Section 4, whereas the main attributes of collected dataset 
and their description is shown in Table 1. We collected our own dataset 
using various attributes from previously published datasets. The main 
purpose of collecting a new dataset is to introduce novelty in the find-
ings applied to different geographical regions and groups of people (i.e. 
Pakistan). Table 1 highlights the main factors considered for data 
collection. In addition to demographic data, the major attributes define 
the association between several symptoms and a COVID-19 positive 
result.

3.2. Phase 2: data exploration and cleaning

The objective of this phase is to thoroughly explore the dataset to 
ascertain its essential attributes, setting the stage for advanced statistical 
analysis and machine learning implementation. The initial step involves 
a detailed assessment of data quality and adherence to ethical standards 
as outlined in the Declaration of Helsinki, which emphasizes the mini-
mization of harm and protection of participant privacy. To this end, all 
identifiable participant information was meticulously removed.

Data cleaning was particularly focused on ensuring the integrity and 
uniformity of the dataset. This included employing advanced techniques 
to manage missing values and normalize data columns, which are crit-
ical for maintaining the reliability of subsequent analyses. The ‘Age’ 
attribute was discretized into categorical groups to aid in nuanced 
analysis, where age-related variations can significantly influence diag-
nostic outcomes.

The number of preprocessing steps used before ML model develop-
ment. For example, to convert all data denoting the presence of symp-
toms (yes/no) to binary values, “1” and “0”. Similarly, the “infected” 
column values were transformed to binary values. After carefully 
examining the obtained data, several transactions were eliminated due 
to missing information, such as presence of infection, age, and unex-
plained symptoms.

Data values from various sources were standardized to create a 
consistent dataset, essential for accurate statistical analysis and 
modeling. This standardization process included the use of specialized 
software tools designed for data discretization and feature extraction, 
ensuring that the dataset is suitable for rigorous analysis.

The comprehensive methods and results of this data preparation 
phase are elaborated upon in the results section, detailing how these 
processes have influenced the study’s findings and the implications for 
statistical and machine learning implementation.

3.3. Phase 3: descriptive data summarization

This crucial phase addresses the primary research questions through 
comprehensive descriptive statistical analysis. Each dataset attribute 
was meticulously analyzed for value counts, category diversity, and 
frequency distribution. Findings from this analysis are presented in 
Section 4 through detailed tables and figures, facilitating an under-
standing of the associations between different attributes. This phase is 
especially important for analyzing a complex medical data, as statistical 
insights can inform the development of algorithms that enhance di-
agnostics prediction, such as extracting positive cases based on detected 
patterns linked to clinical outcomes.

3.4. Phase 4: statistical analysis

Statistical analysis was conducted to uncover the relationships and 
features within the datasets. This involved the use of multiple ANOVA 

Fig. 1. Stepwise implementation of methodology.

Table 1 
Dataset attributes.

Attribute Description Categories

Corona 
Result

The test findings obtained to identify 
the patient were either positive or 
negative.

0 = non-infected 
1 = infected

Age Describe the age of the patients. Numerical values 
denoting age of the 
patient

Gender Explain the gender of the patients. 0 = Female 
1 = Male

Sore Throat The first symptom to identify its 
relationship with COVID-19.

0 = No 
1 = Yes

Shortness of 
Breath

To analyze whether a patient suffered 
shortness of breath.

0 = No 
1 = Yes

Headache Third symptoms to know the condition 
of the patients.

0 = No 
1 = Yes

Cough To determine whether a patient 
experienced cough or not.

0 = No 
1 = Yes

Fever Last investigated symptom before 
COVID-19 test.

0 = No 
1 = Yes
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tests, which helped determine the significance and correlations between 
variables, focusing on those attributes most relevant to medical data, 
such as features correlated with disease markers. The F-values, p-values, 
and t-tests offered detailed insights into the reliability and relevance of 
these attributes, which are essential for predictive modeling. Results are 
thoroughly detailed in Section 4, underscoring their implications for 
predicting disease progression and treatment efficacy using symptoms 
data.

3.5. Phase 5: machine learning implementation

The final phase involved selecting the optimal dataset for imple-
menting various machine learning algorithms, including advanced 
ensemble methods to improve prediction accuracy. This stage was 
crucial for evaluating the applicability of machine learning models for 
predicting positive cases using multiple attributes, where precision, 
recall, F-measure, and accuracy are paramount. These metrics, discussed 
in detail in Section 4, validate the efficacy of the models in clinical 
settings, particularly in their ability to enhance diagnostic accuracy and 
reliability.

4. Descriptive and statistical analysis – results

4.1. First dataset - statistical analysis

The objective of this phase was to evaluate the first dataset obtained 
from an open data repository [62] for its potential to develop an intel-
ligent computing model for predicting COVID-19 infection based on five 
symptoms. The dataset, encompassing 278,848 records from March 11, 
2020, to April 30, 2020, underwent rigorous statistical analysis, orga-
nized into three stages: data exploration and cleaning, descriptive sta-
tistical analysis, and significance testing using ANOVA to determine the 
predictive power of the symptoms for COVID-19.

4.1.1. Exploring and cleaning
In this dataset, critical attributes include test date, symptoms (cough, 

fever, sore throat, shortness of breath, headache), corona test result, age 
(60 and above), gender, and test indication. The initial cleaning targeted 
the ‘gender’ and ‘corona result’ attributes, where inconsistencies and 
missing values were prevalent. Specifically, the dataset contained 
19,563 records with unspecified or blank gender values and 3892 re-
cords with indeterminate corona test results, as detailed in Table 2. 
These records were excluded to ensure the integrity of the data used in 
the analysis, which is crucial for maintaining the accuracy of statistical 
and, subsequently, symptoms-based predictive models.

The cleaned dataset ensures reliable input for further statistical 
evaluation, which is particularly important when these methodologies 
are paralleled with machine learning implementation. For example, the 
application of ANOVA in this context helps identify significant features 
or patterns that might correlate with major findings in medical studies, 
where similar attributes can influence diagnostic outcomes.

4.1.1.1. Attributes and values summary. During the data exploration and 
cleaning phase, a significant issue was identified with the ‘age 60 and 
above’ attribute, where approximately half of the records were 

unspecified. These records were retained in the analysis due to the bi-
nary nature of the available age categorization (under or over 60). This 
simplistic age grouping limits the depth of analysis that can be con-
ducted. For instance, younger age groups may show different physio-
logical responses compared to older groups.

4.1.1.2. Enhanced data collection recommendations. To align better with 
the rigorous standards expected in related research, future data collec-
tion should consider more detailed age stratifications. Suggested age 
categories could include under 18, 18–25, 26–30, and so forth, which 
would allow for more precise correlation between age-related changes 
in clinical outcomes. This nuanced approach is essential for developing 
predictive models and diagnostic tools, as it enhances the capability to 
tailor interventions and understand disease impacts across different life 
stages.

4.1.2. Descriptive data summarization
Following the data cleaning process, our analysis was refined to 

255,911 valid entries after removing 22,937 records due to unspecified 
information regarding gender and corona test results. The refined 
dataset indicates a balanced gender distribution with 127,370 males and 
128,541 females as shown in Table 3. Of these, 13,560 entries, repre-
senting 5.3 % of the total, were confirmed as COVID-19 infections, with 
a higher incidence in males (7,519) compared to females (6,041).

Cough was identified as the most prevalent symptom, reported by 
15.3 % of the participants, followed by fever at 7.8 %. This data is crucial 
for subsequent analyses that explore correlations between these symp-
toms and diagnostic findings.

4.1.3. Statistical analysis
This section evaluates the significance of specific symptoms and 

gender in predicting COVID-19 infections using an ANOVA test as 
illustrated in Table 4. The analysis focuses on the relationship between 
these variables and the likelihood of infection.

Despite the significant associations indicated by the ANOVA results 
for all symptoms, a deeper examination reveals challenges due to 
insufficient sample sizes for certain symptoms like shortness of breath, 
which appeared in only 0.4 % of cases. This rarity impacts the robustness 
of statistical conclusions, as indicated by the near-zero P values. Further 
analysis shows that a significant portion of the infected cohort (36.3 % 
or 4929 out of 13,560) exhibited none of the primary symptoms. This 
finding suggests the presence of asymptomatic carriers and highlights 
the potential for other undetected symptoms or markers of infection.

This result suggests that researchers may encounter challenges in 
developing a machine learning model with the current data, due to the 
lack of significant findings among the explored factors. The next phase 
of this study will focus on analyzing a different dataset.4.2.

Table 2 
Data exploration – an overview.

Attributes/Values

Gender
Value Male Female Unspecified Total
Total 129127 130158 19563 278848
Corona Result
Value Infected Not infected Other Total
Total 14729 260227 3892 278848

Table 3 
Descriptive statistics overview (N = 255,911).

Attribute Entry Frequency n (%)

Gender Male 127370 49.8 %
 Female 128541 50.2 %
Infections Infected 13560 5.3 %

Not Infected 242351 94.7 %
Gender-based Infections Infected Males 7519 5.9 %

Infected Females 6041 4.7 %
Age Under 60 112788 44.1 %

60 and above 23749 9.3 %
None 119374 46.6 %

Symptoms Cough 39054 15.3 %
Fever 19855 7.8 %
Sore throat 1498 0.6 %
Shortness of breath 1080 0.4 %
Headache 2108 0.8 %

B. Fakieh and F. Saleem                                                                                                                                                                                                                       Computers in Biology and Medicine 182 (2024) 109211 

5 



4.2. Second dataset - statistical analysis

Upon encountering validation challenges with the first dataset, we 
turned our focus to a second dataset specifically collected for this study 
from Pakistan, comprising 516 participants primarily infected with 
COVID-19.

4.2.1. Exploring and cleaning
Initial preprocessing involved the removal of six non-infected entries 

to ensure the dataset focused exclusively on infected cases. Additional 
cleaning addressed inconsistencies in the age attribute, standardizing 
various representations into a numerical format to maintain data con-
sistency and reliability, essential for subsequent analyses, including 
potential imaging studies.

4.2.2. Descriptive data summarization
After cleaning, the dataset’s gender distribution was balanced, with 

58 % males (297) and 42 % females (219). Detailed age stratification 
facilitated the categorization of participants into several age groups, 
enhancing the granularity of the analysis. Since the data collection 
process was planned and monitored by the authors of this study, clas-
sifying participants into various age groups was more straightforward. 
As shown in Table 5 and Fig. 2, 48 % of participants were in the 18–30 
age group. This group was followed by three relatively balanced groups: 
51–60 (16 %, 84 participants), 31–40 (14 %, 72 participants), and 41–50 
(11 %, 56 participants). The prevalence of symptoms and demographic 
distributions are summarized as follows:

The descriptive analysis provides a foundation for further investi-
gation into the correlations between reported symptoms and infections, 
if available. For instance, the high incidence of cough and headache 
might be linked with specific critical features observed in clinical 
findings.

As detailed in Table 5 and Fig. 3, a significant majority of the infected 
participants reported experiencing symptoms, with headache being the 
most common at 82 % (418 individuals). Close behind were cough and 
fever, reported by 77 % (391) and 76 % (388) of participants, respec-
tively. Sore throat and shortness of breath were also reported, albeit at 
lower frequencies of 44 % (224) and 21 % (109), respectively. Unlike the 
findings from the first dataset, this dataset indicates that nearly all 
infected individuals experienced at least one of the five investigated 
symptoms, with only 6 cases presenting as asymptomatic.

Given the high prevalence of these symptoms, it is crucial to delve 
deeper into understanding their interrelationships and potential diag-
nostic significance. This insight could be particularly useful for 
enhancing predictive models, where symptoms might correlate with 
specific features such as age group and gender, indicative of COVID-19 
infection.

4.2.3. Statistical analysis
The aim of this analysis was to assess the relationship between spe-

cific symptoms of COVID-19 and the likelihood of infection. For this 
purpose, the predominance of infected individuals in the dataset 
necessitated a shift in focus to ANOVA tests to determine the influence of 
demographic factors (age and gender) on symptom prevalence. Prior to 
conducting the ANOVA tests, age was categorized into six distinct 
groups based on the descriptive statistics outlined in Table 5. This 

Table 4 
ANOVA test of significance based on gender.

Males & Females Males Females

F value (df) 14778.89 
(1,255908)

7293.83 
(1,127368)

7560.72 
(1,128539)

P value of all 
symptoms

0 0 0

P value of Cough 1.913 x 10-246 5.543 x 10-117 3.681 x 10-132
P value of Fever 0 0 0
P value of Sore throat 0 0 0
P value of Shortness of 

breath
0 0 0

P value of Headache 0 0 0

Table 5 
Descriptive statistics (N = 516).

Attribute Entry Frequency Percentage (%)

Gender Male 297 58 %
Female 219 42 %

Infections Infected 510 99 %
Not Infected 6 1 %

Gender-based Infections Infected Males 295 58 %
Infected Females 215 42 %

Age Groups Less than 18 12 2 %
18–30 244 48 %
31–40 72 14 %
41–50 56 11 %
51–60 84 16 %
61 and above 42 8 %

Symptoms Cough 391 77 %
Fever 388 76 %
Sore throat 224 44 %
Shortness of breath 109 21 %
Headache 418 82 %

Asymptomatic Infections Without Symptoms 6 1.18 %

Fig. 2. Frequency distribution based on the age groups.

Fig. 3. Frequency distribution based on the symptoms.
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structured approach facilitated a nuanced examination of symptom 
distribution across various age demographics, enhancing the specificity 
of our findings. Therefore, six age groups were included in this test. The 
ANOVA test presented in Table 6 examines the relationship between age 
and gender groups, with a significance level of α = 0.05. Consequently, 
any P values lower than 0.05 would indicate statistical significance for 
the investigation group.

The ANOVA test result in Table 6 shows a significant relationship 
between the combination of the five symptoms and the age groups, with 
a P value of 6.151 x 10^-9, which is less than the selected α value. 
However, these symptoms do not reliably indicate patient gender, as the 
P value is 0.106, which is greater than α.

Moreover, to analyze frequency-based data, contingency table 
showing the relationship between gender and age group as depicted in 
Table 7. As per the collected data, age group (2) has the highest number 
of individuals for both genders, with 118 females and 131 males. Age 
group (6) has relatively fewer individuals, particularly among females. 
The table is showing an understanding of frequency distribution of in-
dividuals in different age groups categorized by gender.

To statistically test the relationship between gender and age group, a 
Chi-Square Test of Independence was conducted. The results are illus-
trated in Table 8. This test helps identify significant association between 
the variables. The table shows the expected frequencies for each cate-
gory in the contingency table to determine if gender and age group are 
independent. according to the p-value (0.0358), which is less than 0.05, 
there is a statistically significant association between gender and age 
group in this dataset. This indicates that the distribution of age group is 
not independent of gender.

The next step in th7e analysis is using a t-test to examine the sig-
nificance of each symptom, as shown in Table 9.

Table 9 shows that the most significant symptoms indicating age 
groups were sore throat and trouble breathing, with P values of 
0.000240693 and 1.93033 x 10^-5, respectively. Conversely, dry cough, 
fever or chills, and headache showed low significance in the investigated 
sample based on the resulting P values. The ANOVA test supported our 
research problem, allowing us to predict age groups based on different 
symptoms.

4.3. Discussion – descriptive and statistical analysis

This study conducted a comparative analysis across two diverse 
datasets to investigate the manifestation of COVID-19 symptoms, 
collected from different geographic regions. This approach not only 
broadens the empirical base of the research but also enriches the un-
derstanding of symptomatic variations across populations. This research 
contributed in the following ways:

Dual-Dataset Analysis: By evaluating two distinct datasets, this 
research underscores the variability and commonality in COVID-19 
symptom presentation across international cohorts. Such comprehen-
sive data analysis enhances the reliability of the findings, providing a 
robust basis for subsequent predictive modeling.

Statistical Methodologies: The application of advanced statistical 
techniques allowed for the detailed exploration of relationships between 
COVID-19 symptoms and other patient characteristics, such as age and 
gender. This methodological rigor helps in identifying statistically sig-
nificant symptom patterns that could be vital for early disease detection 
and management.

Significance of Symptoms in Demographic Segmentation: The study 
identified “Sore throat” and “Trouble breathing” as particularly 

significant symptoms for determining age-related differences in COVID- 
19 infection rates. These symptoms’ prominence suggests potential 
diagnostic markers that could be targeted in imaging studies. The above 
conclusion was based on the data samples presented in the second 
dataset. A deeper examination of the first dataset reveals challenges due 
to insufficient sample sizes for certain symptoms, such as shortness of 
breath. Further analysis shows that a significant portion of the infected 
cohort (36.3 %) exhibited none of the primary symptoms. The reason 
could be the null values, or presence of asymptomatic carriers. Since the 
first dataset was not used in the development phase of the predictive 
models, no claims are made regarding the importance of symptoms in 
this dataset. Foundation for Machine Learning Models: The second data-
set’s analysis demonstrated potential for constructing machine learning 
models capable of predicting patient demographics based on symptom 
presentation. This indicates a promising direction for integrating sta-
tistical findings with machine learning to enhance diagnostic accuracy.

5. Machine learning implementation and results

Following the insights from previous statistical analyses, particularly 
the ANOVA test indicating ‘Age Group’ as a significant factor, this study 
embarked on developing a machine learning-based model to predict an 
individual’s age group using various COVID-19 symptoms. This model, 
aimed at integrating with an intelligent system, could enhance our un-
derstanding of COVID-19 outcomes across different age demographics. 
Therefore, a prediction models developed using the most significant 
factor (age group) as a class variable. This model will be useful for 
predicting a person’s age group based on the symptoms described in 
Table 9. Additionally, the prediction model can be integrated with an 
intelligent system to help identify COVID-19 outcomes based on 
different age groups.

The study conducted several machine learning (ML) experiments to 
find the optimal solution. Initially, the authors evaluated different age 
groups as highlighted in Fig. 2. However, due to the dataset’s bias to-
wards the 18–30 age group, the results were unsatisfactory. To improve 
prediction accuracy and avoid dataset bias, the class variable divided 
into two classes: Class_1 (<30) and Class_2 (≥30). This division balanced 
the number of transactions in each class and resolved the bias issue.

For the prediction model, the following classification ML algorithms 

Table 6 
Second dataset ANOVA test of significance based on age and gender.

Variable F value (df) P value

Age Group 9.7798 (5, 504) 6.151 x 10^-09
Gender 1.8244 (1, 508) 0.10

Table 7 
Contingency Table showing the relationship between Gender and Age Group.

Age Group 1 2 3 4 5 6

Female 7 118 30 25 29 10
Male 5 131 42 32 55 32

Table 8 
Chi-Square test of independence.

Age Group 1 2 3 4 5 6

Female 5.09 105.68 30.56 24.19 35.65 17.83
Male 6.91 143.32 41.44 32.81 48.35 24.17

p-value: 0.0358.
Degree of freedom: 5.

Table 9 
T-tests on the five investigated symptoms by age group.

Symptom t-Test P value

A dry cough 1.560683073 0.11
Fever or chills 0.015488516 0.98
Sore throat 3.698201119 0.0002
Trouble breathing 4.313471746 1.93033 x 10^-05
Headache − 0.245418305 0.80

B. Fakieh and F. Saleem                                                                                                                                                                                                                       Computers in Biology and Medicine 182 (2024) 109211 

7 



and approaches were selected, which frequently implemented and 
provide a better understanding applied on COVID-19 datasets: Decision 
Tree (DT) [63], Naïve Bayes (NB) [64], K-Nearest Neighbors (KNN) 
[65], Gradient Boosted Trees (GBT) [63], Random Forest (RF) [66], 
SVM [55] Bagging [67], Bagging [68], Stacking [69]. The predictive 
models developed offer promising avenues for integration with medical 
data. By correlating predicted age groups and symptom data, these 
models could potentially enhance diagnostic accuracy and provide 
deeper insights into the pathophysiological variations of COVID-19 
across different patient demographics. This could lead to improved pa-
tient management strategies, tailored treatment plans, and ultimately, 
better clinical outcomes.

This study used several machine learning models for prediction. The 
number of preprocessing steps used before ML model development. For 
example, to convert all data denoting the presence of symptoms (yes/no) 
to binary values, “1” and “0”. Similarly, the “infected” column values 
were transformed to binary values. After carefully examining the ob-
tained data, several transactions were eliminated due to missing infor-
mation, such as presence of infection, age, and unexplained symptoms. 
Furthermore, throughout the ML implementation, different features 
were chosen to improve the model’s performance. For example, the 
number of trees (100), maximal depth (10), and number of bins (10) 
were identified as optimal features for applying the GBT algorithm. To 
enhance overall performance of the model, different parameters were 
tested, and Table 10 highlights the optimal features selected for each 
algorithm.

5.1. Experiment 1 [all selected algorithms]

5.1.1. Model implementation and setup
The initial phase of our machine learning exploration involved 

deploying various algorithms using Rapid Miner, an open-source tool 
favored by the research community for its robust ML capabilities 
[70–72]. The setup avoided ensemble techniques initially to isolate the 
performance of each algorithm. Although RF and GBT inherently 
employ ensemble strategies, their integration was managed distinctly to 

evaluate their standalone capabilities.
For comprehensive evaluation, the “Cross Validation” operator was 

used, which is standard for assessing model accuracy through repetitive 
testing and training cycles. This dual-phase process allows each ML 
model to be assessed independently, ensuring the integrity and reli-
ability of the performance metrics. All algorithms were executed in a 
single process described in Fig. 4. In this figure, the operator repre-
senting the ML classifier is known as ‘Cross Validation,’ which is pri-
marily used to estimate the accuracy of the learning model through 
multiple iterations (i.e., 10). This operator, also called a nested operator, 
is divided into two sub-processes: training and testing. During the 
training phase, each ML classifier was used separately, where the model 
was validated and various evaluation metrics were measured, as dis-
cussed below.

5.1.2. Performance metrics and analysis
The experiment’s outcomes, detailed in Table 11, showcase the 

comparative effectiveness of each classifier based on precision, recall, F- 
measure, and accuracy, across the two predefined age groups: Class 1 
(age_group <30) and Class 2 (age_group ≥30). These results highlight 
potential relationships between varying COVID-19 symptoms and age 
demographics, which are critical for refining public health strategies 
tailored to specific age groups. The performance was measured using the 
prediction values for the two classes. The experiment suggested a rela-
tionship between COVID-19 symptoms and different age groups. The 
model can be used to predict age groups and to design new strategies, 
such as vaccination and testing, for people in each age group.

The analysis confirmed that tree-based classifier such as GBT 
(0.6607) typically outperform others due to their robust nature in 
handling complex datasets, which is also identified in the previous work 
[73], followed by the SVM (0.6531) The other two tree-based models 
like DT, and RF showed better performance with respective accuracies of 
0.6332, and 0.6357 respectively. Conversely, NB and KNN exhibited 
limitations, possibly due to inadequate transaction volumes, which 
negatively impacted their predictive accuracy. Specifically, KNN strug-
gled with false positives, leading to lower recall and F-measure scores. 
The primary reason for the low accuracy of the KNN model is the high 
number of false positive transactions in Class_2. Additionally, the recall 
and f-measure for this classifier are notably low. It appears that the 
learning process requires further parameter adjustments or the inte-
gration of classifiers with other techniques. Therefore, to explore po-
tential enhancements in model performance, this study conducted 
additional experiments using various ensemble approaches.

5.2. Experiment 2 [with ensemble approach – bagging]

5.2.1. Implementation details
The bagging technique, known for stabilizing predictions and miti-

gating overfitting, was applied using the “Bagging Operator” in Rapid 
Miner. This operator allows for any classifier to be used as a sub-process, 
thereby creating a robust ensemble by aggregating predictions through a 
voting mechanism. For this experiment, ten iterations were conducted to 
establish a series of models, enhancing the reliability of the predictions. 
Although bagging is typically more advantageous for tree-based algo-
rithms, it was effectively adapted for both tree-based and non-tree-based 
algorithms in this study.

The models, integrated with the bagging approach, were executed as 
detailed in Fig. 5. This figure illustrates the setup within Rapid Miner, 
where each classifier operates as a sub-process under the “Bagging 
Operator".

5.2.2. Performance evaluation
The outcomes of this experiment are summarized in Table 12, which 

displays the evaluation metrics for the machine learning algorithms 
post-bagging implementation. The results indicated varying degrees of 
performance enhancements across the models. Notably, while KNN 

Table 10 
The Optimal Features selected for different ML Model Implementation.

Decision Tree Random Forest Gradient Boosted Tree

Criterion Gain 
Ratio

No. of trees 100 No. of trees 100

Maximal depth 10 Criterion Gain Ratio Maximal 
depth

10

Apply pre- 
pruning

Yes Apply pre- 
pruning

Yes Min rows 10

Number of pre- 
pruning 
alternatives

3 Random 
Splits

Yes No. of bins 10

Confidence 
Level

0.1 Voting 
strategy

Majority 
vote

Early 
Stopping

Yes

Minimal size of 
split

3 Parallel 
execution

Yes Distribution Auto

    
Naïve Bayes KNN SVM
  Number of 

K
5 Kernel Type Radial

  Weighted 
Vote

Yes Kernel 
Gamma

1.0

  Measure 
Type

Mixed 
Measures

 

    
Bagging Boosting Stacking
Sample Ratio 0.9 Cross 

Validation
10 Cross 

Validation
10

Iterations 10 Iterations 10 Attributes All
Average 

Confidence
Yes    
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maintained a consistent performance (0.529), Decision Tree, SVM and 
Gradient Boosted Trees showed improvements in accuracy to 0.6377, 
0.6783, and 0.6628, respectively. In contrast, Naïve Bayes and Random 
Forest displayed slight declines in performance compared to Experiment 
1. The observed improvements in recall for Decision Tree and Naïve 
Bayes underscore the efficacy of the bagging approach in enhancing 
model accuracy.

The experiment aimed to reassess model learning performance using 
a bagging approach. The results indicated that bagging can effectively 
enhance learning performance and improve model accuracy.

5.3. Experiment 3 [with ensemble approach – boosting]

5.3.1. Overview of boosting implementation
In this phase of the study, the AdaBoost algorithm was utilized to 

enhance the ensemble’s predictive performance. Employed over 10 it-
erations, AdaBoost focuses on misclassified instances from previous it-
erations, adjusting the model progressively to improve accuracy. 
AdaBoost is a common boosting algorithm, also known as a meta- 
algorithm in RapidMiner. The implementation scenario is as follows: 
Cross Validation (10-fold) → AdaBoost → ML Algorithm (each) → Apply 
Model → Measure Performance. This scenario allowed researchers to 
measure the performance of each model by integrating boosting with all 
classifiers. Fig. 6 depicts the implemented model.

Fig. 4. ML Models Implementation using Rapid Miner.

Table 11 
Evaluation metrics for all selected ML Models.

Decision Tree Actual Precision Recall F-measure Accuracy

Predicted Class 1 2 0.6433 0.5878 0.6106 0.6332
1 177 105
2 84 150

Naïve Bayes
Predicted Class 1 2 0.5367 0.7732 0.6299 0.5541

1 89 58
2 172 197

KNN
Predicted Class 1 2 0.6729 0.106 0.1808 0.529

1 246 228
2 15 27

GBT
Predicted Class 1 2 0.6399 0.7371 0.6802 0.6607

1 153 67
2 108 188

Random Forest
Predicted Class 1 2 0.6433 0.6037 0.6168 0.6357

1 174 101
2 87 154

SVM
Predicted Class 1 2 0.683 0.5862 0.6309 0.6531

1 153 71
2 108 184
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5.3.2. Performance analysis using boosting
Boosting was shown to be particularly effective for tree-based models 

such as Decision Tree (DT), Gradient Boosting Trees (GBT), and Random 
Forest (RF). Table 13 displays the improved accuracy metrics obtained 
through this approach, underscoring the potential of boosting to 
enhance weaker models significantly, as evidenced by the performance 
gains in Naïve Bayes (NB). In this study, the boosting experiment proved 
to be a powerful technique for generating stronger ensembles compared 
to bagging, as shown in the results in Table 13. Previous studies have 
also noted the superior performance of boosting over bagging [74]. 
When compared to single model performance, creating ensembles using 
boosting resulted in better prediction performance for DT (0.6377), GBT 
(0.661), and RF (0.6376). In contrast, SVM displayed slight declines in 
performance compared to bagging ensemble method.

In this experiment, 10 iterations of AdaBoost were used, with the 
learning process based on the misclassified transactions identified in the 
previous model/iteration. This approach significantly improved accu-
racy by reassessing the errors found in previous models. Additionally, 

boosting increased the number of correct predictions for each class. For 
example, as shown in Table 13, NB, which had the second lowest pre-
diction ratio in the first experiment, improved its accuracy by 6 % with 
boosting.

5.4. Experiment 4 [with ensemble approach – stacking]

5.4.1. Stacking Implementation details
In the culmination of our model development series, the stacking 

technique was applied to generate ensembles that potentially offer su-
perior predictive performance. Stacking, distinct from bagging and 
boosting, combines various model types through a meta-learner that 
learns how to best integrate the predictions of base models. This method 
is particularly advantageous in settings where diverse approaches need 
to be synthesized to enhance prediction accuracy.

The implementation involved two primary phases visualized in 
Figs. 7 and 8. Initially, multiple base learners were trained; their pre-
dictions were then used as inputs for a second-level model, the stacking 

Fig. 5. ML Models Implementation with Bagging using Rapid Miner.

Table 12 
Evaluation metrics for all selected ML models with Bagging.

Decision Tree Actual Precision Recall F-measure Accuracy

Predicted Class 1 2 0.6351 0.6466 0.6388 0.6377
1 164 90
2 97 165

Naïve Bayes
Predicted Class 1 2 0.5309 0.8009 0.6354 0.5503

1 80 51
2 181 204

KNN
Predicted Class 1 2 0.6729 0.106 0.1808 0.529

1 246 228
2 15 27

GBT
Predicted Class 1 2 0.6515 0.69 0.6693 0.6628

1 166 79
2 95 176

Random Forest
Predicted Class 1 2 0.619 0.6274 0.6214 0.6222

1 161 95
2 100 160

SVM
Predicted Class 1 2 0.6951 0.6126 0.6513 0.6783

1 155 68
2 98 195
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model, to finalize predictions.
This figure displays the stacking operator configured within a cross- 

validation framework in Rapid Miner, ensuring robust evaluation by 
simulating multiple training and testing scenarios. The subsequent 
figure details how the base learners’ outputs are combined and pro-
cessed by the stacking model. This dual-phase approach enhances the 
robustness of the final predictions by refining them through an addi-
tional layer of learning.

5.4.2. Performance outcomes and analysis
The stacking method was evaluated across various configurations of 

base and stacking learners, as shown in Table 14. This experimentation 
aimed to identify the most effective combinations for maximizing pre-
diction accuracy, especially in complex diagnostic settings. Table 14
identifies the stacking model learners used in this experiment known as 
GBT, RF, NB, and KNN. The results show significantly better perfor-
mance for two algorithms (NB and KNN), but the prediction ratio for 
GBT decreased compared to bagging and boosting. Finally, multiple 
base learners (the combination of SVM, DT, and GBT), with RF as a meta 
learner demonstrated greater accuracy of 70 %.

Overall, stacking ensemble method has improved the performance of 
different classifiers as identified in previous work [58]. The performance 
of NB and KNN was outstanding, showing an improvement from their 
low performance in previous experiments. Specifically, for KNN as a 
stacking model learner, the recall (0.106), F-measure (0.1808), and 
accuracy (0.529) improved remarkably by 0.6115, 0.6214, and 0.63, 
respectively. A possible reason behind this performance is the stacking 
approach, which combines the performance of base learner models, 
reducing the bias and variation. Additionally, as a stacking learner 
model, NB also improved prediction accuracy, achieved 0.622, which is 
much better than with bagging (0.5503) and as a individual perfor-
mance of NB (0.5541).

This emphasizes the importance and predictive capabilities of the 
stacked generalization method, which can facilitate multiple kinds of 
ML algorithms and provide a better learning process, ultimately 
enhancing accuracy [57]. Finally, the subsequent section emphasizes 
the major findings and the overall comparison of all ML experiments 
conducted in this study with previous work.

Fig. 6. ML Models Implementation with Boosting using Rapid Miner.

Table 13 
Evaluation metrics for all selected ML Models with Boosting.

Decision Tree Actual Precision Recall F-measure Accuracy

Predicted Class 1 2 0.6347 0.6505 0.6399 0.6377
1 163 89
2 98 166

Naïve Bayes
Predicted Class 1 2 0.5898 0.7223 0.6446 0.6105

1 131 71
2 130 184

KNN
Predicted Class 1 2 0.6729 0.106 0.1808 0.529

1 246 228
2 15 27

GBT
Predicted Class 1 2 0.6368 0.7495 0.6871 0.661

1 150 64
2 111 191

Random Forest
Predicted Class 1 2 0.6335 0.6428 0.6369 0.6376

1 165 91
2 96 164

SVM
Predicted Class 1 2 0.6939 0.6415 0.6667 0.6705

1 170 75
2 95 176
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5.5. Comparison of machine learning approaches

This study systematically applied a comprehensive machine learning 
(ML) strategy to develop an intelligent system for predicting the age 
groups of COVID-19-infected patients. Across four main experimental 
phases, various ML models and ensemble techniques were evaluated to 

determine the most effective configurations for accurate predictions.

5.5.1. Overview of experiments
The research was structured into four distinct phases, each utilizing 

different combinations of ML models and techniques. These phases were 
designed to explore the potential of ensemble methods in enhancing 

Fig. 7. Initial Setup for Stacking Implementation using Rapid Miner.

Fig. 8. Sub-processes of stacking [base and stacking model learners].

Table 14 
Evaluation metrics for all selected ML Models with Stacking.

Base Learners Stacking Model Actual Precision Recall F-measure Accuracy

(i) DT 
(ii) RF 
(iii) GBT

GBT Predicted Class 1 2 0.6314 0.7335 0.6792 0.6552
1 151 68
2 110 187

(i) KNN 
(ii) RF 
(iii) GBT

NB Class 1 2 0.6092 0.7185 0.6541 0.622
1 138 72
2 123 183

(i) SVM 
(ii) DT 
(iii) GBT

RF Class 1 2 0.7126 0.6848 0.6984 0.7054
1 176 71
2 81 188

(i) DT 
(ii) RF 
(iii) GBT

KNN Class 1 2 0.6372 0.6115 0.6214 0.63
1 169 99
2 92 156
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prediction accuracy over single-model approaches. Fig. 9 provides a 
visual comparison of the performance outcomes across these phases, 
illustrating the advantages of ensemble approaches.

5.5.2. Detailed performance analysis

- Single Model Implementation: Gradient Boosted Trees (GBT) 
exhibited superior performance among the individual algorithms, 
achieving an accuracy of 66 %, followed by the SVM (65 %). This 
demonstrates the applicability of GBT, and SVM in handling complex 
datasets and predictive tasks.

- Ensemble Techniques - Boosting and Bagging: The boosting tech-
nique significantly improved the accuracies of Decision Tree (DT), 
Naive Bayes (NB), SVM, and Random Forest (RF), with respective 
accuracies of 0.6377, 0.6105, 0.0.6705, and 0.6376. Bagging also 
showed strong performance, particularly enhancing DT, SVM and 
GBT, with SVM reaching an accuracy of 0.6783. These results 
highlight the effectiveness of ensemble methods in stabilizing and 
enhancing model predictions.

- Stacking Approach: Stacking provided a notable improvement, and 
showed the superior overall performance, especially for K-Nearest 
Neighbors (KNN), which saw the highest accuracy increase of 10 % 
across all experiments. Naive Bayes, used as a stacking model, also 
improved substantially, achieving an accuracy of 62 %. Specifically, 
the implementation of multiple base learners (the combination of 
SVM, DT, and GBT), with RF as a meta learner demonstrated greater 
accuracy of 70 %. These outcomes emphasize the stacking 
approach’s capability to leverage multiple model strengths, thereby 
optimizing the predictive performance.

Comparatively, several models’ performances highlighted and 
confirmed findings from previous studies, which discussed the superior 
performance of SVM and RF as supervised models [55], and stacking as 
an ensemble method when applied on medical data [58]. Ensemble 
methods helped improve disease prediction accuracy by reducing bias 
and variance. This study utilized multiple variations of ensemble ap-
proaches, such as bagging, boosting, and stacking, which demonstrated 
improvements in prediction accuracy [57]. During the experiments, 
different statistical features for each class were identified and presented 
in the dataset section. The aim was to understand how statistical analysis 
can help elucidate the effect of meta-level ratio features on different ML 
algorithms [75]. Overall, tree-based machine learning algorithms have 
demonstrated superior performance both as individual models and 
when applied with ensemble approaches, as identified in the previous 
work [73].

- Finally, the study proposed an intelligent system using ML algo-
rithms to predict the age groups of people infected by COVID-19. The 
implementation of ML algorithms with ensemble approaches has 
yielded valuable results and can be considered a vital component of 
the intelligent system. It can offer several benefits to the healthcare 
industry as follows:

• By finding the association between multiple symptoms with different 
age groups, healthcare providers can identify treatment and medi-
cation effectively based on different age groups.

• Proactive measures can be taken using multiple demographic fea-
tures, enabling rapid and effective response system.

• Proper resource allocation strategies can be applied in the hospitals 
and other caring facilities according to the predicted needs of mul-
tiple age groups.

Fig. 9. Comparative analysis of ML experiments.

B. Fakieh and F. Saleem                                                                                                                                                                                                                       Computers in Biology and Medicine 182 (2024) 109211 

13 



• Further preventive measure can be implemented utilizing trend 
analysis to identify which types of symptoms can affect which age 
group.

• Age-specific symptoms presentation is a novel approach presented in 
this study for developing targeted strategies in future.

6. Conclusion

This study demonstrates that statistical methods and machine 
learning (ML) algorithms can effectively predict and prioritize COVID- 
19 symptoms across different age groups. We analyzed two distinct 
datasets sourced from varied locations to detect common patterns and 
assess data utility for addressing specific research questions. The anal-
ysis revealed that the first dataset was unsuitable for our objectives due 
to inadequate age categorization. In contrast, the second dataset proved 
valuable, enabling effective prediction and stratification of COVID-19 
symptoms by age. Statistical tests identified key symptoms indicative 
of different age groups, bolstering our research approach. Subsequently, 
we applied ML algorithms with an emphasis on ensemble methods to 
enhance prediction accuracy. While stacking applied with random forest 
as a meta leaner exhibited the highest accuracy (0.7054), other tech-
niques such as Gradient Boosted Trees with a bagging approach showed 
notable performance (accuracy of 0.6628) as well. Overall, ensemble 
approaches helped to improve the model’s performance effectively. 
Notably, K-Nearest Neighbors (KNN) and Naive Bayes (NB) initially 
recorded lower accuracies of 0.529 and 0.554, respectively. However, 
these algorithms significantly improved under the stacking model, 
achieving accuracies of 0.63 and 0.622. This study explored the asso-
ciation of COVID-19 symptoms across different age groups, highlighting 
the novelty of the proposed methodology. This unique approach can 
assist healthcare providers in preparing future strategies, such as 
customized age-specific treatments, vaccine development, and under-
standing age-dependent symptom profiles. Future research should 
extend to analyzing multiple datasets including medical images of 
COVID-19 patients. This will further refine and validate the findings and 
applicability of proposed idea-. The insights gained from this study 
could assist medical and public health authorities in developing targeted 
COVID-19 strategies based on age-specific symptom presentation.
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