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Abstract—[none]hyphenat Deepfake images are causing an
increasing negative impact on the day to day life and pose
significant challenges for the society. There are various categories
of deepfake images as the technology evolves and becomes
more accessible. In parallel, deepfake detection methods are
also improving, from basic features analysis to pairwise analysis
and deep learning; nevertheless, to date, there is no consistent
method able to fully detect such images. This study aims to
provide an overview of existing methods of deepfake detection
in the literature and investigate the accuracy of models based on
Vision Transformer (VIT) when analysing and detecting deepfake
images. We implement a VIT model-based deepfake detection
technique, which is trained and tasted on a mixed real and
deepfake images dataset from Kaggle, containing 40000 images.

The results show that The VIT model scores relatively high,
89.9125%, which demonstrates its potential but also highlights
there is significant room for improvement. Preliminary tests also
highlight the importance of a large dataset for training and
the fast convergence of the model. When compared with other
deepfake machine learning and deep learning detection methods,
the performance of the ViT model is in line with prior research
and warrants further investigation in order to evaluate its full
potential.

Index Terms—deepfake images, deepfake detection, Vision
Transformer model

I. INTRODUCTION

The recent advancements in artificial neural network (ANN)
technologies have had a significant impact on multimedia
content manipulation. AI-based software tools, allowing users
to modify facial appearance, hairstyle, gender, age, and other
personal attributes, have facilitated the creation of realistic
fake images, videos, and audios. The widespread availability
of these tools and the manipulated content they produced were
coined in 2017 with the term ”Deepfake”, derived from “Deep
Learning (DL)” and “fake”, and it encompasses applying
deep learning methods to generate very realistic appearing
(fake) content. The advent of deepfakes was facilitated by the
increased complexity and capabilities of computer vision and
deep learning techniques. While it can be employed towards
legitimate, creative use, it has been typically misused by users

to create fake news or fake images. [1] Its misuse was also
followed by significant effort from the research community
both to establish more realistic images as well as developing
techniques to detect them. Deepfake images can be catalogued
based on the focus and degree of change into entire face
synthesis, identity swap, attribute manipulation, and expression
swap. Deepfakes use unsupervised ANNs named autoencoders
for both image manipulation as well as facial recognition, as
they are able to both synthesise the facial features into a set
of characteristics as well as modify images based on their
defining features; the process can be further improved through
a generative adversarial network (GAN). From a detection
perspective, the early efforts were based on image features
analysis, such as pixel similarity and noise, to identify artifacts
of the modification process. Such approaches were effective
towards early instances but were surpassed by Autoencoders
and GANs to replicate the modification process. In parallel,
a number of classification models may also be employed for
deepfake detection purposes. One obvious example of such a
model are Visual Transformers (ViT), a classification approach
derived from natural language processing which allows inter-
pretation of images as an analysis array. Although initially
used for image classification, ViT can also be applied for
deepfake detection, particularly given its algorithm-agnostic
approach and ability to handle very large inputs. This study
expands the work so far in ViT by applying the model for
classifying an image dataset into real and deepfake images.
We evaluate the model against a Kaggle dataset and discuss
its classification performance, as well as identify its limitations
and potential for future work.

II. DEEPFAKE GENERATION AND DETECTION

A. Deepfake generation techniques

Since its inception, the generation of deepfake content has
had a negative effect across all levels of society [2], from
its prevalence into everyday social media [3] to its ability
to disrupt international politics [1]. Although there is a wide



variety of approaches for generating deepfakes, they revolve
around the concept of image (typically face) features extrac-
tion and reconstruction. The process, implemented through
an autoencoder-decoder, uses multiple images for training to
extract and recompose these features. As part of the process,
the deepfake model is trained to parse a set of images, extract
their salient features, then reconstruct each image as accurately
as possible using the extracted features. Once the model is
trained for extraction and reconstruction, it can be applied to
cross-convert images. For example, in order to replace the face
of a subject, it can extract the image features of subject X
and then reconstruct the image using features from a different
subject Y.

While autoencoder-based models will produce very good
results, they are designed with efficiency in mind rather than
performance and will therefore allow for either pixelation
defects or blurriness, both detectable by users or automated
methods. Generative Adversarial Networks (GANs) [4] have
better intrinsic capabilities to identify and remove artifacts
and were therefore proven to significantly reduce noise and
improve the quality of the resulting deepfake images. [5].

More recently, newer deepfake approaches applied existing
techniques for more efficient and realistic results. Variational
Autoencoders (VAEs), proposed in [6] and [7], allow the
inclusion of more complex models built from larger datasets.
VAEs include a reconstruction loss monitoring component,
which aims to minimise the loss value resulting from the
process, and a regulariser component, that ensures diversity in
the outcome. Similarly, an Adversarial Autoencoder (AAE) [8]
draws in the benefits of GANs but relies on the autoencoder
training to extract the distribution of the data rather than
impose it on the output layer. As shown in the study that
introduced the concept, AAE is net superior to VAE and
incrementally better than GAN in terms of the error rate
applied to standard evaluation images datasets.

B. Deepfake detection techniques

As pointed out in the previous subsection, deepfake gener-
ation has been through an evolutionary process; similarly, de-
tection techniques followed that trajectory. The early methods
were based on machine learning and aimed to detect artifacts
and defects in the generation process. A typical such example
is [9], where the authors aimed to identify the convolutional
lines produced by a deepfake autoencoder and achieved a high
accuracy of 93%. Similarly, [10] looked at artifacts introduced
in the process such as global consistency, illumination, and
geometry, focusing on the particular characteristics of face,
such as iris and teeth characteristics, and delivering an AUC-
ROC of 0.83 when combining all observed features. The main
challenge in both studies is the nature and availability of the
images used, as the database is sufficient to train the detection
models and capture all the artifact variances.

As content became more realistic and more effective at
eliminating image artifacts, the detection methods also moved
towards deep learning-based approach, such as AutoGAN

[11], which is essentially a GAN that replicates the deepfake
process. AutoGAN takes the image used as input and a GAN-
based generator to produce an image following the same
principles as deepfake; the image is then compared to the
original to detect spectral artifacts. The method relies on the
GAN requiring a variant of upsampling, either transposed
convolution or nearest neighbour interpolation, that do produce
spectral artifacts that can be l̈earned.̈ The method delivers a
tangible improvement to cycleGAN, reaching accuracy of over
95% for both transposed and nearest neighbour interpolation.

C. Conclusion

As highlighted by the results of the studies in the previous
subsection, detection techniques mimic the deepfake genera-
tion models in order to expose artifacts, defects, or other types
of data errors in the input images and successfully segregate
real and fake images. The results are very good, with methods
achieving accuracy of over 85-90% across the datasets tests.

One common point to the detection methods is their need
and awareness of the model used for generating the fake
images, as they are somewhat geared towards specific deepfake
models behaviour. This issue is made clearer by some of the
papers by highlighting that deepfake images generated through
other or unknown methods may perform worse when analysed
and, implicitly, the proposed methods may become obsolete
with future variants of deepfake models. It is therefore worth
exploring the wider field of image recognition techniques and
investigate their potential for usage as a deepfake method-
agnostic detection alternative.

III. VT-BASED DEEPFAKE DETECTION

A. Text and image classification

Vision Transformer (ViT) is an image analysis approach
proposed in [12], based on the concept of Transformer in-
troduced by [13]. Transformers consist of alternative self-
attention and multilayer perceptron blocks; they were initially
aimed at natural language processing and relatively small mod-
els, but subsequent research demonstrated that it can be scaled
to very large models of 1011 parameters [14]. An early attempt
by [15] saw self-Transformers applied to resized images on a
pixel-by-pixel basis. In an NLP scenario, the information is
provided as a 1D sequence; for ViT the image is converted
into a linear projection vector. The papers acknowledged the
ability of the technology to go beyond image recognition to
identifying generated images as a possible application, with
[15] also providing some preliminary results.

The ViT model, inspired by the the standard Transformer
from [13], has self-attention at its core, a multilayered stack
of feed forward and multi-head attention blocks. Both the
encoder and the decoder use a stack of 6 identical layers, each
composed of a multi-head self-attention mechanism, specifi-
cally Scaled Dot-Product Attention due to its more efficient
computation, and connected to a feed-forward network. The
authors exploited its ability to be scaled in a Multi-Head
attention architecture, whereby the queries and results are



parallelised and producing vectored values. As tested by the
authors, Transformer models work very well with text, being
able to outperform previous models in English-to-German
translation.

While effective at processing text-based input, Transformers
are not designed to handle 2D content; [15] extended the
model with position embedding information and named the
architecture Image Transformer. The authors proposed a pixel-
by-pixel approach, whereby the representation q’ of a channel
for a pixel q is derived based on self-attention to the memory
of the previously generated pixels. Unlike text-based input,
scaling for Image Transformers was unattainable for a larger
image, hence the authors biased the model with a level of
locality, whereby pixel values were derived mostly from their
vicinity rather than the entire picture, property termed Local
Self-Attention. In their paper, Dosovitskiy et al. revisited the
concept of image transformer by dividing the image into
patches. [12]. The Transformer itself follows the [13] design,
with a slight adjustment to allow for position embedding.
The overall image x of resolution (H,W ) and C channels
can be reshaped from x ∈ RH×W×C to an array xp of
N = HW/P 2 patches, with xp ∈ RN×(P 2·C). It is interesting
to note that ViT does not heavily rely on locality. Instead, the
two components are adjusted to exploit their characteristics
as follows: the multilayer peceptron layers are local and the
self-attention layers are global. As a result, locality is shared
between the two types of layers.

This aim of this research is to determine the efficiency of
ViT-based algorithms when classifying real vs fake images. In
order to observe their performance, we used the image classi-
fication work described in [12] and evaluated its performance
on the [16] image dataset from Kaggle.

B. ViT implementation and dataset

We implemented the ViT model in python, following the
ViT specification from [12]. The implementation takes a
dataset as input, including a mix of real and fake images, then
it applies patching to each image and encodes the positioning
of each patch. The model includes the multi-head attention,
normalisation, and MLP layers that take in the inputs.

The ViT model requires a set of parameters for training,
testing, and speed optimisation. At the core of the model
performance are the its parallelism level, dictated by the
batchsize, the learning rate, with smaller values typically
leading to slower but more accurate convergence, and the
weight decay, which is the penalty for the loss function; the
last two parameters also influence the number of epochs for
training the model.

IV. MODEL PERFORMANCE

The model was trained and tested on subsets of images,
including a mix of fake and real samples, from a Kaggle image
dataset containing 190,345 images. [16] The preprocessing
was the same as in the earlier tests. The model was trained
and tested on a Google Colab L4 cloud instance, equipped

Fig. 1. Evolution of accuracy (left) and residual loss (right) during training
of the preliminary dataset

with 64GB of RAM and 24GB of GPU RAM, [17]. Each
processed dataset was split 80/20 for training and testing. The
model learningrate was set to 0.001, with a weightdecay
of 0.0001 and the batchsize was set to 256. After several
preliminary tests, the image size was set at 72 pixels and
patch size was set at 6 pixels.

A. Preliminary test

The preliminary evaluation aimed to determine the learning
speed of the model, to avoid excessive training and optimise
the use of computational resources. For this, we used a subset
that included 5850 images (2531 deepfakes and 3319 real)
from the Kaggle image dataset. The subset aimed to evaluate
the model on a manageable subset from an accuracy and
training perspective. The preprocessing takes each sample,
converts it to 72x72 pixels, then splits it using the patch size,
as per the ViT model, into 6x6 pixels patches, which are fed
to the model with their positional information. The training
was set to 800 epochs and took just under 1 hour, with just
over 4s per epoch.

The evolution of both accuracy and residual loss through
the testing process is shown in Fig. 1. As it can be seen, the
model performs very well, with accuracy close to 1, for the
training dataset but, for the validation dataset, the accuracy
remained rather low, 0.75. Looking at the loss values, the
training and validation sets behave similarly for the first 100
epochs, then their evolution changes. The fit of the model to
the training set is monotonously improving, reaching residual
loss close to 0, while for the validation set the residual loss is
increasing; as a result, while the loss stabilises for training, it
becomes increasingly oscillating for validation. Coming back
to the accuracy diagram, there is no tangible improvement in
the accuracy for the validation dataset beyond 100 epochs,
despite the better results for the training dataset.

The results confirm the behaviour of ViT models if we take
into consideration the size of the dataset. ViT models require
large datasets for training, followed by fine-tuning on smaller
datasets. Compared to ILSVRC-2012 ImageNet, the smallest
dataset [18] used by [12] which included 1.3 million samples
and over 1000 classes, despite the decrease in the number
of classes from 1000 to just two (real and deepfake), the ViT
model still requires a larger training dataset for better accuracy.



Fig. 2. Evolution of accuracy (left) and residual loss (right) during training
of the complete dataset

TABLE I
VIT FULL TESTING RESULTS

class precision recall f1-score support

real 0.87 0.93 0.90 4015
fake 0.93 0.87 0.90 3985
avg accuracy 0.90 0.90 0.90 8000

B. Model evaluation

A larger subset of 40000 images, 20000 deepfakes and
20000 real, was used to fully train the implemented ViT
model on an L4 Google Colab instance (the instance could
not handle the full Kaggle dataset). Given the results from the
preliminary tests, we set the training to 200 epochs, which
required 95 minutes of processing. Accuracy and residual loss
had a similar evolution to the preliminary test, as shown in
Fig. 2. The overall full results are shown in Table I.

The model performs very well with an overall accuracy
of 89.9125%. There are some minimal variations between
the real and fake classes detection, but nothing significant.
Overall, the model is slightly biased towards deepfakes, with
a higher percentage of both accurate detection of deepfakes
as well as identifying real images as deepfakes. Looking at
the other studies in the area, we can compare our model
with the summary provided by [19] which looked at the
results from 62 studies aiming to detect deepfake images.
According to the overall figures, deep learning models deliver
an average accuracy of 89.73% and machine learning provide
an average accuracy of 86.86%. Our accuracy therefore does
match closely the deep learning category, despite the dataset
limitations we encountered and therefore the likely possibility
to reach better results with a larger dataset.

V. CONCLUSION AND FUTURE WORK

Transformer models are a combination of self-attention and
multilayer perceptron blocks, notable for their ability to handle
Natural Language Processing tasks. Vision Transformer mod-
els are an expansion of Transformer models, whereby the input
is a serialised patches carrying locality information. This paper
provides a practical evaluation of a Vision Transformer model
applied to the task of detecting deepfake images. We used an
implementation that followed strictly the design of the ViT and

was tested on a small dataset consisting of a combination of
deepfake amd real images. The model delivered a 89.9125%
accuracy, with slightly better results for the deepfake images.

The results showed that the model is significantly affected
by the size of the dataset used. For future work, we aim to use
larger datasets for evaluating the model, which are likely to
deliver significantly better results, as well as further investigate
the performance of the model when using different training
parameters.
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