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Optimal electric vehicle charge 
scheduling algorithm using war 
strategy optimization approach
Vikramgoud Madaram 1, Pabitra Kumar Biswas 1, Chiranjit Sain 2, 
Sudhakar Babu Thanikanti 3 & Shitharth Selvarajan 4*

In this work, a new kind of charge scheduling algorithm is proposed by utilizing the War Strategy 
Optimization (WSO) algorithm. The strategies used in the war such as attack, defense, assigning 
soldiers to take positions are the inspiration to this algorithm. The proposed WSO algorithm is 
validated in a constructed geographic area which consists of Six starting/destination points, sixteen 
nodes, and twelve charging stations. In terms of waiting time and charging cost, the experimental 
results show that the WSO method much improves over current methods. The average waiting time 
and average charging cost of EVs are validated in MATLAB, with different considerations such as 
different number of EVs varied from 25 to 100, and different number of charging piles varied from 1 
to 4. The WSO algorithm specifically lowered charging costs by up to 13.67% compared to the same 
and waiting time by up to 83.25% relative to the First Come First Serve algorithm. Comparatively to 
the Chaotic Harris Hawk Optimization and Harris Hawk Optimization algorithms, the WSO method 
demonstrated declines in waiting time by 11.17% and 39.09%, respectively, and declines in charging 
costs by 3.61% and 12.45%, respectively. Especially in situations with limited charging infrastructure, 
these findings show that the WSO algorithm may improve the efficiency and cost-effectiveness of 
EV charging management systems. For real-world EV charging management systems, the method’s 
capacity to efficiently allocate EVs among charging stations, lower waiting times, and lower charging 
costs makes it a potential solution.

Keywords Electric vehicle, Charge scheduling, War strategy algorithm, Harris Hawk optimization

Greenhouse gas emissions are being reduced by electric vehicles (EVs). Recent laws in developed nations promote 
electric vehicles and reduce emissions for sustainable  mobility1. Urban areas have high combustion vehicle CO2 
emissions. EVs are best, but they emit CO2 without renewable power. Smart grids encourage distributed renew-
able energy. Renewable charging stations are best now. In 2018, the world had 5.1 million electric cars (EVs), 
and the International Energy Agency predicts 250 million by  20302. By 2016, when 750,000 electric cars were 
sold worldwide, the Electric Vehicles Initiative aims to reach 30% market share for EVs in commercial vehicles, 
trucks, and passenger cars. The number of EV purchases should rise. As EVs gain popularity, range and battery 
capacity limit their efficiency and feasibility. Lack of charging infrastructure hurts EV sales. Time, geographical 
uncertainty, and insufficient electricity for efficient charging are power system "problems". Government and 
industry install charging stations (CS) for the public like gas stations to reduce these impacts. These are used in 
cities, highways, and densely populated areas like shopping malls, theaters, beaches, and more to charge vehicles 
while parking, saving time and  money3. When charging stations are plentiful, the vehicle must choose a CS. The 
CS can separate into fast and slow charging stations. Along with this, the CS may be crowded, increasing vehicle 
charging  time4. Even at fast charging, the vehicle must be plugged in for 30 min, which increases peak-hour 
queues. This will increase waiting and charging times and cause electric grid instability like voltage fluctuation, 
higher harmonics, grid unbalance, etc. VANET architecture communicates with all EVs in an environment to 
address these issues. This VANET system provides vehicle data like live location, SoC, average speed, and nearby 
charging stations. When the vehicle needs charging, this network suggests nearby charging stations with details 
like slow or fast charging, number of charging piles, distance to CS, nearby CS, etc.5,6.
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This system provides the optimum solution for the EVs to select an optimum path and suitable charging 
 station7. Researchers developed several optimization algorithms to improve VANET charge scheduling. VANET 
uses a Novel Hybrid Multi Population Algorithm to address these issues. Along with this, the artificial ecosystem-
based optimization algorithm is feud for improving/finetuning system performance. Harris Hawk Optimization 
is integrated to improve performance even more than other  algorithms8. Later, a hybrid optimization algorithm 
was developed by combining tree seed and atom search algorithms. The tree seed algorithm finds the optimizing 
path, while the atom search algorithm efficiently fine-tunes the path and CS  allocation9Chaos theory is integrated 
into this hybrid approach, reducing operation costs. In all 83 benchmarked functions, this method outperforms 
the results. These algorithms minimize electric grid operating costs, battery health, charge scheduling, optimal 
path selection, etc. Besides these methods, many algorithms have been developed to schedule charges in nearby 
CS with less waiting  time10,11. The charging station model and dynamic CS pricing were modeled to optimize the 
problems. Charging station prices are fixed and vary based on comfort, power demand, grid peak operating time, 
etc.12,13. Traffic and vehicle location also affect charge scheduling and  cost14. Scheduling takes power grid stability 
and operating points into account to direct users to the right charging  station15,where the smart vehicle model 
and CS model are modeled to validate charge management. A model with the CS model, vehicle model, charging 
piles model, traffic conditions, grid conditions, and fast-charging consideration has been built to reduce charging 
 time16. Developed charging management systems (EMS) for electric vehicles enable pre-empted  charging3. The 
EMS must be charged to charge and band electric vehicles. EMS improvements improved billing and communica-
tion. Lack of opportunistic vehicle communication causes system inefficiency and slowness. Low-energy electric 
vehicles were used for travel planning and charge  warning17, so electric vehicle passengers may benefit from this 
strategy. The strategy ignores additional energy issues, which is a drawback. Another charge management and CS 
selection system for energy-intensive electric vehicles has been  developed18. The CS selection method used traffic 
lights, route mileage, and road speed to estimate electric car travel time. No consolidation occurred in electric 
vehicle charging station management. An algorithm-based distributed platform for charging electric  cars19.

Plugged-in EVs for V2G services increased power and reduced power loss. Success was measured by incre-
mental cost. A shared and electric bike selection system was  created20. This method initially improved electric 
vehicle  charging21. Drivers found charging and transferring battery life easier this way. It is also planned to 
operate many electric  vehicles2, by solving hierarchical mixed-variable optimization problems with CS selection. 
Compared to analytical methods, the procedure solved problems faster. This method considered the electric 
car charging point (ECP) site’s size and location to find the best  one22. With a realistic model and optimal site 
model for electric car charging models, significant concerns and scheduling requirements were  investigated23. 
This model was based on charge queuing and constant queue length. The method improved battery charging and 
position sensing. This decision banned car-sharing. One hundred forty people built a forward–backward com-
putational graph MCDODE  model24. Tree-based cumulative curves help them build multi-class DAR matrices. 
The form works for small, medium, and large networks. Conventional vehicle charging schedules have some 
 drawbacks25,26: For charging, Spark-based route planning and electric car charging systems were  developed4. 
This technique, which favored later-scheduled vehicles, caused serious issues. We must wait in line because of 
this issue. Safety is another issue. Electric vehicle messaging is safe with EMMS. This scenario protects sensitive 
data from unauthorized access with integrity, confidentiality, and privacy services. The teaching learning-based 
optimization (TLBO) JAYA system was created to select and optimize intrusion detection system parameters. 
SVM, C, and gamma were changed due to the enhanced JAYA statistical  technique27. Safety is prioritized in 
electric vehicle charging systems. Recently, some JAYA metaheuristics have been optimized. JAYA does not 
require parameter changes, unlike other optimization strategies. A large plug-in electric car was controlled by 
a group using consensus. Sharing massive amounts of data could cause data security issues, so cybersecurity 
must be strengthened. Additionally, the data may be redundant. Since all EVs communicate, cloud databases 
can store the final data. Mining depends on predicted large amounts of data. As data quantity increases, Naïve 
Bayes Grid parameters become more precise. Fuzzy Generalized Hebbian Algorithm is a revolutionary data 
reduction method that can solve this problem. This technology eliminates redundant IDS  data28. Computa-
tion error reduction can improve a decision support model’s electric vehicle charging location prediction. The 
computation and refinement of the solution, which offers massive optimal ECPs to meet customer needs, takes 
longer than expected. The mixed variable differential evolution approach makes performance improvement 
difficult to measure. The MVDE makes the fewest concessions possible to improve other measures through 
scheduled EV coordination.A large-scale statistical analysis of EVs’ access to dispersed has been  done29. Few 
works present connected mobility (CM), a communication concept for vehicles, roadside base stations, pas-
sengers, traffic signals, and the power  grid30,31. The car communicates via V2I, V2V, V2C, V2P, and V2X. V2X 
links car networks and infrastructure. VANET monitors traffic and road congestion with a multiagent system 
that links cars, communication channels, and roadside base  stations32. To simplify charge scheduling, a Chaotic 
Harris Hawk Optimization algorithm was  developed33. Table 1 provides the summary of different algorithms 
for the charge scheduling problem.

The War Strategy Optimization (WSO) method has been utilized in the development of a novel charge sched-
uling algorithm, which has been proposed in this work. owing to the fact that the war is entirely predicated on 
tactical decisions in a complicated environment, which necessitates immediate actions in response to changes 
in the environment. The kings and commanders are currently deliberating over whether they should employ an 
offensive or defensive strategy. Additionally, they attempted to check the health of each army and its soldiers at 
each stage, and when it was necessary, they provided replacements for the soldiers in each army. The behavior 
in concern can be utilized to solve a wide variety of real-time problems, such as charge scheduling. The objec-
tive function of the charge scheduling algorithm and its constraints have been framed with the help of the WSO 
algorithm so that it can be used. Each of the electric vehicles (EVs) is a soldier, and in order to get charge of 
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the objective function, each EV is attempting to follow either an attack or defense strategy. Figure 1 depicts the 
functional hierarchy of the work that is being proposed.

The structure of the manuscript is as follows: the WSO algorithm is discussed in Section "War strategy opti-
mization (WSO) algorithm", and the charge scheduling method derived from the WSO algorithm is presented 
with a step-by-step formulation in Section "War strategy optimization (WSO) algorithm", respectively. Using 
the WSO method, the necessary expression for the charge scheduling process has been defined with a fitness 
function, and the relevant constraints have been constructed and addressed in Section "WSO based charge 
scheduling algorithm". In Section "Experimental analysis", both the construction of the geographic region and 
the validation of the WSO method for the charge scheduling have been completed and the work has been con-
cluded in Section “Conclusion”.

War strategy optimization (WSO) algorithm
The War Strategy Optimization (WSO) algorithm, as proposed  in34 is a metaheuristic optimization algorithm 
inspired by ancient war strategies. This algorithm is used in the mathematical model for electric vehicle (EV) 
charge scheduling to solve the problems of effective EV charging in metropolitan environments. Focusing on four 
fundamental parameters like total travel time, total waiting time, total charging cost, and grid stability, the model 
is developed as a multi-objective optimization problem. Three main limitations like charging station capacity 
constraint, EV battery constraint, and time window constraint are included into the model. Inspired by military 
strategy, the WSO algorithm allows effective exploration of the solution space considering both individual EV 
needs and system-wide optimization. The model’s strength is in its all-encompassing approach that addresses 
power grid stability, user convenience, and economic concerns. Its adaptability makes it a strong instrument for 
long-term planning and optimization of EV charging networks in smart cities since it lets simple integration of 
extra constraints or goals possible. This model marks a breakthrough in EV charge scheduling, so facilitating the 
acceptance of EVs and helping to support the change to sustainable urban transportation systems. The objec-
tive function and constraints for a problem optimized using the WSO algorithm would depend on the specific 
application or problem being addressed. The general formulation of WSO is as follows:

Objective Function:

Subject to Constraints as in Eqs. (2) and (3)

where:

• f (x) is the objective function specific to the problem being optimized (e.g., cost, distance, energy consump-
tion).

• x = (x1, x2, . . . , xn) is the vector of decision variables.

(1)Minimize (or Maximize) f (x)

(2)gi(x) ≤ 0, for (i = 1, 2, . . . ,m)

(3)hj(x) = 0, for (j = 1, 2, . . . , p)

Table 1.  Summary of different charge scheduling algorithms.

[Ref] Algorithm Objective function Advantage Disadvantage

6 First come first serve (FCFS) Minimize waiting time by serving EVs in 
the order they arrive Simple and easy to implement Can lead to long waiting times during 

peak hours

6 Round robin (RR) Distribute charging time equally among 
all EVs Fair distribution of resources May not optimize for individual EV needs

6 Earliest deadline first (EDF) Minimize the time to the earliest deadline Prioritizes urgent charging needs Can lead to starvation of non-urgent EVs

15 Shortest job first (SJF) Minimize the total charging time by serv-
ing the shortest jobs first Efficient for short charging tasks Long charging tasks may be delayed

20 Priority scheduling Minimize waiting time based on priority 
levels Allows prioritization of critical EVs Lower priority EVs may experience long 

waits
6 Genetic algorithm (GA) Minimize waiting time, and charging cost Can find near-optimal solutions Computationally intensive
6 Particle swarm optimization (PSO) Minimize waiting time, and charging cost Good convergence properties May get stuck in local optima
32 Ant colony optimization (ACO) Minimize waiting time, and charging cost Effective for routing problems Computationally intensive
32 Simulated annealing (SA) Minimize waiting time, and charging cost Can escape local optima Slow convergence
22 Tabu search (TS) Minimize waiting time, and charging cost Avoids cycling and local optima Requires careful parameter tuning

33 Chaotic Harris Hawk optimization 
(CHHO) Minimize waiting time, and charging cost Good exploration capabilities May require fine-tuning of chaotic maps

33 Harris Hawk optimization (HHO) Minimize waiting time, and charging cost Effective for diverse optimization 
problems May get stuck in local optima

33 Proposed WSO Minimize total travel time, waiting time, 
charging cost, and maximize grid stability

Effective for complex optimization 
problems Requires detailed parameter setting
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• gi(x) are inequality constraints that must be satisfied by the solution.
• hj(x) are equality constraints that must be satisfied by the solution.
• m is the number of inequality constraints.
• p is the number of equality constraints.

The WSO algorithm would then be used to find the values of the decision variables (x) that optimize the 
objective function while satisfying all the constraints. The algorithm uses concepts from ancient war strategies, 
such as attack and defence strategies, to explore the solution space and converge to an optimal solution and the 
algorithm has been represented in Fig. 2. The position of King, Commander and their decides the moment of 
soldier. After the successful moment of soldiers, the commander relies on his strategy or reframe the strategy 
to achieve the target. The.

Various parameters of WSA algorithm
Soldier size (S)
The number of search agents are considered as the number of soldiers in this algorithm as per the expression (4)

Dimension of the war space (dimension of the problem)
The number of decision variables used in the search space has been considered as the dimension of war space 
as in expression (5)

(4)S = Numberofsoldiers

(5)D = Numberofdecisionvariables

Fig. 1.  Pictorial representation of the charge scheduling procedure using WSO algorithm.
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Lower and upper bounds of the search space
The decision variable are bounded between the upper bound to lower bound which may vary with respect to the 
moment in war space as expressed in Eqs. (6) and (7)

Positions of the king (K) and army commander (C)
In the war space (search space) the King and commander are selected based on the best and second best solutions 
among the position and movement of each soldiers and it can be expressed as Eqs. (8) and (9).

Attack forces of the king and the army commander
The attacking force of the King and the commander can be expressed with the fitness values of them in the search 
space as express in Eqs. (10) and (11).

These values are varied with respect to the movement and iteration count. In each iteration the forces of kind 
and commander may varied with respect to the movement of soldiers.

(6)Lower bound, Lb = (lb1, lb2, . . . , lbD)

(7)Upper Bound,Ub = (ub1, ub2, . . . , ubD)

(8)Position of Kind,K = (k1, k2, . . . , kD)

(9)Position of Commander,C = (c1, c2, . . . , cD)

(10)Attack Forces of the Kind, FK = f (K)

(11)Attack Forces of the Commander, FC = f (C)

Xi(t)

Xi(t+1)

Xi(t+2)

Xi(t+3) Xi(t+n)

Random spread
over King and
Commander
commands

Wi < 1

KING

Soldier

Commander

Wi > 1

Fig. 2.  War strategy optimization model.
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Max‑iterations
The maximum number of iterations is a crucial parameter for tuning the accuracy and effectiveness of the algo-
rithm and it can be expressed as Eq. (12)

ρr (rho)
Rho is a control parameter which is lies between 0 to 1 for opting the soldier movement to follow either the 
attack strategy or the defence strategy.

Rank (R) and weight (W) of each soldier
These two parameters are updated with respect to each iteration, fitness values and the movement of each soldier. 
Based on the soldier’s success on their attack/defence strategy and the improvements of their positions in the 
search space. Based on these the rank and weight of each soldier has been defined at the end of iteration. The 
rank and weight of each soldier can be defined using the Eqs. (13) and (14) These parameters are dynamically 
updated based on the soldier’s success in improving its position. The rank reflects how close a soldier is to the 
target, and the weight influences the step size of the soldier’s movement.

where (α) is a constant that controls the nonlinearity of the weight update.

Weak soldier replacement/relocation strategy
This parameter replaces or relocates each soldier based on the fitness value and its rank, weight. This update on 
the end of each iteration improves the efficiency of current fitness and the next iteration. The replacement lies 
between the upper bound and lower bound and it can be expressed as Eqs. (15) and (16).

where Xw(t) is the position of the weak soldier at iteration (t), rand and randn are random numbers, and median 
is the median position of all soldiers. These are the parameters considered in WSO algorithm for properly tuning 
and improving the performance of its efficiency for any kind of described problems.

Implementation of charge scheduling algorithm from WSO algorithm
The WSO algorithm can be integrated to the charge scheduling problem by defining the objectives. There are 
few considerations for incorporating charge scheduling using WSO is by defining objectives, and its constraints 
as follows:

Objective function
Minimization of total trave time
The "attack strategy" of WSO dynamically moves soldiers (electric vehicles) to the destination while taking into 
consideration the amount of time required for charging. This helps to reduce the total amount of time that is 
spent traveling.

Minimization of waiting time
Soldiers, which are electric vehicles, are strategically positioned in order to avoid congestion and reduce the 
amount of time spent waiting at charging stations. This is accomplished through the "defense strategy" of WSO.

Minimization of cost for charging
It is possible to reduce charging costs by incorporating it into the fitness value of each WSO soldier (EV). This 
would enable charging costs to be reduced.

Maximization of grid stability
In order to prevent the power grid from becoming unstable as a result of charging schedules for electric vehicles, 
the WSO algorithm ought to be modified to include a grid constraint.

Constraints

• When it comes to updating their positions in WSO, it is essential for soldiers (EVs) to take into account the 
capacity and availability of charging stations as battlefield constraints.

(12)Max_iter = Maximumnumberofiterations

(13)Rank,Ri = Rankoftheithsoldierbasedonitsfitness

(14)Weight,Wi = Wi ×

(

1−
Ri

Max_iter

)α

(15)Replacement,Xw(t + 1) = Lb+ rand× (Ub− Lb)

(16)Relocation,Xw(t + 1) = −(1− randn)× (Xw(t)−median(X))+ K
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• The ability to perform fitness evaluations and position updates is made possible by WSO’s utilization of 
electric vehicle State of Charge (SoC) and charging rate limits.

Implementation of charge scheduling

• The WSO soldiers are representing electric vehicles that have charging schedules in a war field.
• There is a correlation between the positions of the soldiers and the beginning and duration of the charging 

process at stations.
• When determining each charging schedule, fitness takes into account the amount of time spent traveling and 

waiting, as well as the cost of charging and the reliability of the grid.
• With the assistance of WSO attack and defense strategies, electric vehicles are able to determine the charging 

schedule that is most suitable by taking into account all of their constraints and objectives.

By mapping the WSO algorithm to the charge scheduling problem, it is possible to optimize charging sched-
ules for electric vehicles while taking into account multiple objectives and constraints. The algorithm’s dynamic 
and strategic nature makes it possible to optimize the processes involved. It takes environmental data, user 
preferences, real-time data on availability of charging stations into account, and driver-specific information. The 
system changes with traffic flow and possible congestion at charging stations. Inspired by war strategies, it man-
ages resources and responds to dynamic conditions using advanced calculations and strategic decision-making 
procedures. The system modulates current positions to improve efficiency and shows charging stations, charging 
requests, and vehicle locations. This advanced method shows the possibilities of intelligent, responsive systems in 
handling EV infrastructure needs.The functional flow diagram of the proposed WSO algorithm is shown in Fig. 3.

WSO based charge scheduling algorithm
The charges scheduling algorithm for EVs are derived from the WSO algorithm, where the objective is the 
minimization of total travel time, waiting time and charging cost. The flowchart of the proposed WSO algorithm 
has shown in Fig. 4. The objective function and the constraints of the charge scheduling using WSO algorithm 
is given as follows;

Objective function
The ultimate objective of the charge scheduling algorithm is to minimize the weighted sum of the total travel 
time, waiting time of EVs, charging cost, and to maximize the grid stability. The objective function (F) can be 
expressed as Eq. (17)

where Ttotal =

N
∑

i=1
Ti is the total travel time for all (N) EVs, including charging time, Wtotal =

N
∑

i=1
Wi is the total 

waiting time for all EVs at charging stations, Ctotal =

N
∑

i=1
Ci is the total charging cost for all EVs, 

(17)F = w1 · Ttotal + w2 ·Wtotal + w3 · Ctotal − w4 · Gstability

Environmental
Conditions

Road Traffic
Condition

Weather
Conditions

EV Information

User Preference

CS1

CS2

CS3

CSn

Charging Station
Details

No of Charging Station
Free Slots

WSO Algorithm for
Charge Scheduling

Geographic Data

Road
Condition Traffic Data

Number of Charging Stations
(including charging piles at each

charging stations)

No of Requests and vehicle
information including location

No of Requests and vehicle
information including location

Exploring new paths/ Moving 
current position towards best

Relocate Weak soldiers and
evaluate fitness function

Update Charging Schedule

Driver Data

Drive Profile

Drive Behavior

Public Data

Diversion Ahead

Public Gathering

WSO Algorithm on Charge
Scheduling

Fig. 3.  Functional flow diagram of the proposed WSO charge scheduling algorithm.
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START

Initialize parameters (number of EVs, CS, 
nodes, weights, path, CS info, traffic info)

Initialize EV population

Evaluate initial Fitness of the Charge
Scheduling

Moving the
current position

towards best

Initialize/update the WSO loop
iter = 1:Max_iter

Attack

Defence

Update new position

Exploring New
paths

Update rank and weight based on the Fitness
values

YES NO

Manage Charging Station Queue

Relocate Weak soldiers and evaluate fitness
function

Is iter < Max_iter

If solution_new
better than

solution

Solution_new =
solution

solution =
solution

Move to the next iteration Iteration ++

YES

NOYES

STOP
NO

Fig. 4.  Flowchart of the proposed WSO algorithm for charge scheduling.
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Gstability =
1
T

N
�

i=1






1−

N
�

i=1
Pcharging ,i(t)

Pgrid,max(t)






 is the grid stability metric, w1,w2,w3, and w4 are the weights for each 

component.

Constraints
Charging station capacity

where xijt is a binary variable indicating whether EV (i) is charging at station (j) at time (t).

EV battery constraints

where SoCi(t) is the state of charge of EV (i) at time (t), normalized between 0 and 1.

Time windows

where tstarti  and i ≤ tendi  are the earliest and latest charging start times for EV(i).
The WSO algorithm is responsible for assigning a charging schedule spot to each soldier (EV), which includes 

the charging behaviors like time charging, charging duration and selected charging station. Fitness of the soldier 
is determined by the objective function. After that, the WSO algorithm determines the most effective charging 
schedules in order to minimize (F) and satisfy the constraints.

Pseudocode of the proposed algorithm

The pseudocode of the proposed WSO algorithm based charge scheduling is gives as follows;

(18)For each charging station j, at any time t :

N
∑

i=1

xijt ≤ Capacityj

(19)0 ≤ SoCi(t) ≤ 1 for all i and t

(20)tstarti ≤ ChargingtimeofEVi ≤ tendi foralli
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The pseudocode of the proposed WSO algorithm based charge scheduling is gives as follows; 

1: Initialize Parameters 

2:    S (Number of EVs or soldiers) 

3:    N (Number of Nodes) 

4:    CS (Number of Charging Stations) 

5:    P (Number of Start/Destination Points) 

6:    Max_iter (Maximum number of iterations) 

7:    ChargingStationInfo (Information of all charging stations) 

8:    PathsInfo (Information of all shortest paths and distances) 

9:    SoCInfo (State of Charge information for each EV) 

10:    TrafficInfo (Traffic condition data) 

11:    w1, w2, w3, w4 (Weights for travel time, waiting time, charge cost, and grid stability) 

12: Initialize Population 

13: for i = 1 to S do 

14:    Assign initial random paths and charging stations within SoC range to X_i 

15: end for 

16: Evaluate Fitness 

17: for i = 1 to S do 

18:    F_i = w1  T_travel(X_i) + w2  T_wait(X_i) + w3  C_charge(X_i) - w4  G_stability(X_i) 

19: end for 

20: Main WSO Loop 

21: for iter = 1 to Max_iter do 

22:    for i = 1 to S do 

23:        ρ = Random value between 0 and 1 

24:        if ρ < 0.5 then 

25:            Apply attack strategy for position update of X_i 

26:        else 

27:            Apply defense strategy for position update of X_i 

28:        end if 

29:        Rank and weight update for EVs based on fitness F_i 

30:    end for 

31:   Check Charging Station Capacity 

32:    for each CS_j in ChargingStationInfo do 

33:        for t = CurrentTime to EndOfDay do 

34:            if Queue at CS_j(t) > Capacity(CS_j) then 

35:                Manage queue and waiting times 
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36:            end if 

37:        end for 

38:    end for 

39:    Relocate Weak Soldiers 

40:    for i = 1 to S do 

41:        if F_i exceeds a certain threshold then 

42:            Find new feasible path and charging station for X_i 

43:        end if 

44:    end for 

45:    Evaluate Fitness of New Population 

46:    for i = 1 to S do 

47:        Update F_i based on the new positions X_i 

48:    end for 

49:    Update Best Solution if Found 

50:    for i = 1 to S do 

51:        if F_i < F_best then 

52:            Update F_best and X_best with F_i and X_i respectively 

53:        end if 

54:    end for 

55: end for  

56: Output the Best Paths and Charging Schedules for All EVs 

Experimental analysis
The proposed WSO algorithm has been validated in a constructed geographic area in order to evaluate its effec-
tiveness under a variety of different scenarios. This section has examined WSO algorithm and also compares 
with three different algorithms, each of which has been analyzed in the assumed geographic network. The 
geographical area has been constructed on the basis of the actual geographical characteristics of the location in 
Chennai. The traffic conditions and the populations of the roads are taken into consideration during the creation 
process; however, a small intersecting road and narrow paths have been neglected in this work. There are six 
distinct points, namely A, B, C, D, E, and F, that have been taken into consideration as the starting and destination 
points. In addition to the sixteen nodes that connect all of these points to one another, there are twelve charging 
stations that are available. There are sixteen different ways to travel from any one of the starting points to the 
destination point, and the nodes are the means by which the six starting and destination points are connected 
to one another. Using Dijkstra’s algorithm, it is able to determine the path that was the shortest between the two 
points. Table 2 contains information regarding the number of charging stations, the number of nodes, and the 
details of the shortest path and the geographical region has been depicted in Fig. 5.

Depending on the type of vehicle, the construction of the vehicle as well as the specifications of the motors, 
batteries, and other components are different. For the purposes of this work and analysis, the capacity of the 
battery has been assumed to be 100 kWh, and the Table 3 provides a detailed description of its specifications. 
When it comes to the procedures for scheduling electric vehicles, all electric vehicles are taken into consideration 
depending on how long it takes to travel from the starting point to the destination via the charging stations in 
the shortest path. It has been taken into consideration that the traffic situation at the location varies depending 
on the time of day. Every single vehicle possesses an adequate amount of power to reach the charging station. 
The charging stations operate properly and are free of any defects, which allows them to supply electric vehicles 
whenever it is required. The charging procedure is carried out in accordance with the principle of first come, 
first served in the conventional method. It is possible to charge the vehicle as soon as it arrives at the charging 
station when the charging piles are not occupied by other vehicles. However, when other vehicles are already 
charging and there are a few more vehicles waiting in queue, then this vehicle needs to wait in queue until the 
vehicles that have already been reached finish charging. When the number of people who use, vehicles is kept to 
a minimum, this method is effective in the environment. Nevertheless, this method is not effective in a densely 
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populated area that has a greater number of people who use electric vehicles. As a result of the wait time, the 
overall charging time spent at the charging station will increase.

The distance between each starting point and destination is listed in Table 4, which contains the charging 
station distances. In order to train the proposed algorithm, the details of the shortest path as well as the distance 
between each charging station and each point are utilized. The algorithm is able to assign the vehicle to the 
charging station that requires the least amount of waiting time possible based on these data. One of the most 
important considerations in the process of allocating vehicles is the State of Charge (SoC). Using the SoC, the 
algorithm is able to make an estimate of the maximum distance that each vehicle is capable of traveling, and it 
is also able to locate charging stations that are accessible based on the starting point and the destination. This 
means that the algorithm does not have the ability to execute scheduling procedures if the vehicle can only access 
a single charging station with the available SoC. In spite of this, it assigns the vehicle to the charging station that 
it is able to access using the SoC that is available. The amount of time spent waiting might lengthen as a result 
of this. However, the algorithm may be able to assist the user in reducing the amount of time spent waiting by 
charging the user’s device from a charging station that is easily accessible at an additional cost, while the user is 
traveling to their destination. This may shorten the amount of time that the user has to wait, but it will result in 
an increase in the cost function.

The available charging stations in the shortest path has been obtained and fed to the algorithm for training. 
This always prefers the charging stations within this limit, whenever the vehicles raising the charging request. 
Simultaneously, there are numerous vehicles may rise the charging request. During this request, the algorithm 
collects the data like, starting point, destination point, available SoC, shortest path between two points, available 
charging stations in the shortest path. Based on these, the algorithm initializes the charge scheduling process. 
There are some charging stations which is mutually placed in the shortest path between two or more starting 
and destination points. This will increase the demand in that charging stations that directly increases the waiting 
time. It is one of the issues that can resolved using the proposed algorithm. As the property of opposition-based 
reinforcement learning, the proposed algorithm takes this scenario to as opposition and it learns to act effectively 
and efficiently to allocate the charging station with minimum waiting time. Also, it can shift the charging station 
recommendation in the shortest path to the next shortest path. For that it provides this option to the user when 
the user selects the second shortest path to get charged earlier and with less travel time. The mutually connected 
charging stations are given in Table 4 and the number of mutual connections with each other is shown in Fig. 5.

For the purpose of training, the algorithm has been provided with the information regarding the charging 
stations that are located along the shortest path. Whenever the vehicles make a request for charging, this always 
gives preference to the charging stations that are within this limit. Concurrently, there are a great number of 
vehicles that could potentially increase the charging request. While this request is being processed, the algo-
rithm gathers information such as the starting point, the destination point, the available SoC, the shortest path 
between two points, and the charging stations that are available along the shortest path. When these are taken 
into consideration, the algorithm begins the process of charge scheduling. Some charging stations are strategi-
cally located in the shortest path between two or more starting and destination points. These stations are mutu-
ally placed in the shortest path. Because of this, there will be a greater demand for charging stations, which will 
significantly lengthen the amount total waiting time. This is one of the possible problems that can be solved by 
utilizing the algorithm that WSO algorithm. EVs are considered as the soldier in the war space (environment). 
With the available SoC, the algorithm make a schedule, when the schedule is not optimum, then it follows the 

Table 2.  Basic Information of the Defined Geographic Area.

Number of charging stations : 12

Number of start/destination points : 6

Number of junction nodes : 16

From To Shortest path Distance (meters)

A/B B/A A-1-12-13-11-14-15-B 4600

A/C C/A A-1-4-6-8-C 4800

A/D D/A A-2-E 3600

A/E E/A A-1-12-13-D 2900

A/F F/A A-1-12-9-16-F 4500

B/C C/B B-15-14-9-7-8-C 4100

B/D D/B B-15-14-9-12-1-2-D 5900

B/E E/B B-14-11-13-E 2800

B/F F/B B-15-14-10-16-F 3700

C/D D/C C-8-5-D 4100

C/E E/C C-8-16-10-14-11-13-E 4300

C/F F/C C-8-F 1900

D/E E/D E-13-12-1-2-D 5100

D/F F/D D-5-6-7-16-F 4800

E/F F/E E-13-11-14-10-16-F 3700



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21795  | https://doi.org/10.1038/s41598-024-72428-6

www.nature.com/scientificreports/

attack strategy to improve the schedule, when the scheduling in the consequent iterations are worser than the 
previous one, then it follows the defense strategy for to improvise the schedule. Moreover, it has the capability to 
move the recommendation for the charging station that is located on the shortest path to the next shortest path. 
Because of this, it gives the user the opportunity to select this option whenever they choose the second shortest 
path, which allows them to be charged earlier and with less time spent traveling. An list of the charging stations 
that are connected to one another is presented in Table 5, and Fig. 6 illustrates the total number of charging 
stations that are connected to one another.

By scheduling the vehicle at the mutually connected charging stations, the FCFS algorithm ensures that the 
vehicle that arrived to the station first receives the charge. When a vehicle arrives at the very end of the line, 
it must wait for a considerable amount of time. This adds more time to the overall travel time. In contrast, the 
proposed algorithms disperse the charging station in a manner that is uniform for scheduling purposes. An 
algorithm will attempt to relocate to charging stations that are either not scheduled or scheduled with a minimum 
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Table 3.  Specifications of EV battery.

S.No Specification Value Unit

1 Battery capacity 100 kWh

2 Nominal voltage  (Vnominal) 350–400 V

3 Energy density 150–250 Wh/kg

4 Charge time (fast charge) 20–40 (80%) minutes

5 Charge time (slow charge) 6–12 (100%) hours

6 Cycle life 1000–2000 cycles

7 Operating temperature − 20 to 60 °C

8 Weight 400–600 kg
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number of vehicles when a greater number of vehicles are accumulated on a single charging station, also known 
as the charging stations that are mutually connected to one another. Taking the tenth charging station as an 
example, there are no vehicles that are mutually connected with it. Additionally, charging stations 1, 5, and 8 
are connected in a single path that is mutually connected. Charging stations 6, 7, and 12 are connected to each 
other through a total of six mutual paths, while charging stations 3, 4, and 12 are connected through a total of 
four mutual paths. The charging station that was assigned to a greater number of vehicles is rescheduled to be 
used by the unscheduled charging stations when the proposed algorithm is put into action. An example of this 
would be the fact that the six vehicles that arrived at the charging station in accordance with the FCFS algorithm 
have been divided up and rescheduled to stations in the surrounding area. Three of the vehicles will be moved to 
the tenth charging station, which will bring the total count to an even number. Both the charging time and the 
total travel time are significantly cut down as a result of this. For the purpose of arriving at the random destina-
tion points, it is assumed that 200 EVs are randomly started from random points and traveled through random 
nodes. WSO, CHHO, HHO, and FCFS are the four algorithms that are taken into consideration in this analysis. 
In this process, there are two things that need to be taken into consideration: among the vehicles, there are some 
that are not following the path that is the shortest, and all of the charging stations have only one charging pile. 
Waiting time for the vehicle to be charged is lengthened as a result of this.

The duration of the travel is also affected by the path that is chosen. Figure 7 shows the outcome of the simula-
tion. When compared to other optimization algorithms, the WSO algorithm has better performance over others. 
The WSO algorithm has been replaced by the CHHO and HHO algorithms, which are exhibiting improved 
performance. In terms of the charge scheduling performance, the FCFS algorithm represents a more significant 
difference. The performance of all algorithms starts with similar performance from 1st EV to 23rd EV and it is 
start to increase with respect to the number of EVs. The peak waiting time of the proposed WSO algorithm is 
about 197 min, whereas the CHHO algorithm provides the peak waiting time of 219 min. The waiting time of 
vehicle which is scheduled using the HHO algorithm is 274 min which is almost 72% more than the proposed 
WSO algorithm. But the FCFS algorithm provides 361 min of waiting time for the 200th EV which is very high. 
This validation shows the better performance of the proposed WSO charge scheduling algorithm.

Apart from this, the efficiency of the proposed algorithms is validated in different cases with real-time data. 
For that, environmental data has been created with different numbers of vehicles with 12 charging stations with 
different number of charging piles. In the first case, 25 vehicles are considered, and it has been scheduled in the 
created geographic area where 12 charging stations are fixed. However, the number of charging piles varied for 
carrying a effectiveness of the proposed algorithms. In each case, there are four different scenarios considered 
such as 12 charging stations with 1 charging pile, with 2 charging piles, with 3 charging piles and 4 charging piles. 
The algorithm has been simulated in a closed loop with 100 iterations and the average waiting time on every 
single iteration has been captured. There are two considerations has been assumed as, all the vehicles can access 
the charging station with the available SoC, the algorithms not strict to the shortest path, similarly it wont lied 
in the longest path, i.e. the distance more than 30% of shortest path. The average time is not constant in all the 
iterations which shows the scheduling behavior or the algorithm behavior for scheduling the vehicles. The aver-
age waiting time in each iteration is given in Table 5. Comparative analysis of CHHO, HHO, and FCFS with the 
proposed WSO algorithms shows that the normal waiting time for EVs at charging stations, WSO consistently 
performs better. In comparison, the wait time for WSO’s 25 vehicles with one charging lots is 35.26 min, while 
the wait times for CHHO, HHO, and FCFS are 39.9, 53.97, and 51.73 min: Whenever there are more than four 
charging piles, the waiting time for WSO decreases to 0.03 min, indicating that resource allocation efficiency 
increases as demand increases. Under high density of EVs, the algorithm performs reasonably well. When 50 
EVs are considered in the geographic area, WSO has the average waiting time of 51.51 min, 15.80 min, 8.37 min 
and 1.80 min at charging piles count varies from 1 to 4, whereas the CHHO algorithm has the second better 
performance among all four algorithms, which has 6.01 min more than the WSO algorithm with the charging 

Table 4.  Charging station distance from each point.

Charging stations

Distance to charging station from different 
points (meters)

A B C D E F

CS1 5400 2300 2200 5300 3000 1600

CS2 3200 1600 3400 5700 1400 2600

CS3 4700 700 3700 5300 2000 3100

CS4 2100 3700 3800 5400 1000 3000

CS5 3700 2800 1600 3100 2300 2300

CS6 5000 2500 1300 4000 2600 900

CS7 4000 3800 1000 3000 3700 1600

CS8 4200 4900 1400 2300 5400 2900

CS9 2200 5300 3800 1900 3400 4600

CS10 3500 4800 2900 2500 4500 3800

CS11 1500 5100 4000 2900 2600 4600

CS12 600 3900 4800 3700 2700 5400
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pile 1. The HHO algorithm has the 76.37 min of waiting time for the 50 EVs when it served by 12 charging 
stations with one charging pule, similarly the FCFS algorithm has the 81.16 min in this scenario. Similarly, the 
analysis has been carried out for the four considerations of 25 EVs, 50 EVs, 75 EVs and 100 EVs and in all cases 
the charging piles varied from 1 to 4. Among the performance inferred from this validation the proposed WSO 
gives the better performance as compared to all other methods. The performance can be ranked as proposed 
WSO, CHHO, HHO and FCFS from high to low. The detailed results are given in Table 6.

The iteration has been simulated using the python and MATLAB platform. The results in the table shows 
the average values of each 100 iterations in different cases. Whereas the average waiting time at each iteration 
of each algorithm has been plotted using python. Figure 8 shows the average waiting time of at each algorithm 
when 25 EVs are scheduled on 12 charging stations with one to four charging piles. Similarly for the 50 EVs, 75 
EVs and 100 EVs are shown in Figs. 9, 10 and 11.

The proposed WSO algorithm also reduces the charging cost by limiting the cost function of charge schedul-
ing. Generally, the cost function is based on the charging demand, whenever more number of EVs are scheduled 
at a single charging station, the cost function in the charging schedule will be increased. This rise in cost function 
will directly increase the charging cost of that particular schedule. By avoiding the accumulation of EVs in a 
single charging station during the peak time, the cost function can be optimized. The proposed WSO algorithm 
effectively reduces the waiting time, that directly optimizes the charging cost. The average charging cost of each 
scheduling has given in Table 7. The proposed WSO algorithm has the minimum average charging cost as com-
pared to other algorithms. The average charging cost of each iteration has been plotted Figs. 12, 13, 14 and 15.

Table 5.  Accessible charging stations in the shortest path between two points.

From To Charging stations in the shortest path Number of charging stations

A/B B/A CS12, CS4, CS2, CS3 4

A/ C C/A CS12, CS11, CS7 3

A/D D/A CS12, CS9 2

A/E E/A CS12, CS4 2

A/F F/A CS12, CS4, CS6 3

B/C C/B CS3, CS5, CS7 3

B/D D/B CS3, CS4, CS11, CS9 4

B/E E/B CS3, CS2 2

B/F F/B CS3, CS6 2

C/D D/C CS7, CS8 2

C/E E/C CS7, CS6, CS1, CS2 4

C/F F/C CS7, CS6 2

D/E E/D CS4, CS11, CS9 3

D/F F/D CS7, CS6 2

E/F F/E CS2, CS6 2
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When 25 number of EVs are scheduled to 12 charging stations with 1 to 4 charging piles, the WSO shows its 
superior performance of providing the less charging cost. When 25 EVs are scheduled by considering each charg-
ing station had one charging pile, the proposed WSO provides the charging cost of 363.95 INR, and CHHO gives 
the second-best cost and HHO and FCFS methods are trailing behind these two methods. When the number 
of charging piles are increased from 1 to 2,3,4 the average charging cost gets reduced, and all four algorithms 
are operating with more similar charging cost. On the second case of 50EVs with same scenario, the WSO 
algorithm dominates other algorithms in charging stations with one and two charging piles. When the number 
of charging piles are 3 and 4, all the four methods are operating with the same cost function. But in 75 EVs and 
100 EVs in same scenario, the proposed WSO algorithm outperforms the other three methods in all cases. It is 
inferred that the usage of EVs is gaining popularity in recent years, where still there is some lag regarding the 
development of EV infrastructure. In real time, the number of charging infrastructure is limited to very few as 
compared to petrol banks and gas stations. The fueling infrastructure in fuel-based vehicles is always following 
the FCFS progress without any scheduling process. As the development of EV infrastructure is at mid-range, the 
charging stations are very few and, in this scenario, the FCFS is not suitable. The charge scheduling algorithm 
and process can be able to identify the data and coordinate the EVs and charging stations. When the charging 
infrastructure is attained completely, the FCFS algorithm will be applicable as like in fuel stations. Until this, the 
charging infrastructure required an intelligent algorithm for the efficient access and coordination between EVs 
and charging stations. The proposed WSO algorithm effectively schedules the EVs when the number of charging 
stations are limited and also it reduces the waiting time at charging stations and its corresponding charging cost.

Conclusion
This work proposed and validated a new kind of charge scheduling algorithm based on WSO, which is inspired 
from the strategies used in ancient wars. For validating the performance of proposed algorithm, there are differ-
ent scenarios by varying the number of EVs by 25 to 100 and by varying the charging piles from 1 to 4 in all 12 
charging stations. Also, the performance of the proposed WSO has been compared with the other algorithms 
such as CHHO, HHO, FCFS and when the number of charging piles are increased from 1 to 2,3,4 the average 
waiting time and average charging cost gets reduced, and all four algorithms are operating with more similar 
performance. The WSO algorithm achieved significant improvements in both waiting time and charging cost. 
Specifically, the WSO algorithm reduced waiting time by 11.17% compared to the CHHO algorithm, 39.09% 
compared to the HHO algorithm, and 83.25% compared to the FCFS algorithm. In terms of charging cost, the 
WSO algorithm achieved reductions of 3.61% compared to the CHHO algorithm, 12.45% compared to the HHO 
algorithm, and 13.67% compared to the FCFS algorithm. This shows that, the existing algorithms are capable and 
efficient in conditions such as, less number of EVs and more number of charging options and when the number 
of EVs are increased these algorithms are inefficient on scheduling. But the proposed WSO algorithm gives the 
better performance as compared to the other algorithms in all cases of validation.
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Table 6.  Average waiting times of EVs with respect to different number of EVs and charging piles in 100 
iterations.

S. No EVs in geographic area Charging piles in charging stations

Waiting time (average) in minutes

WSO CHHO HHO FCFS

1 25

1 35.26 39.90 53.97 51.73

2 16.69 20.05 24.71 26.15

3 1.05 2.41 2.38 2.66

4 0.03 1.30 0.55 1.42

2 50

1 51.51 57.52 76.37 81.16

2 15.80 18.91 24.38 24.26

3 8.37 10.51 13.97 13.77

4 1.80 3.38 3.49 3.76

3 75

1 76.63 86.89 108.98 114.32

2 32.40 37.17 48.96 50.74

3 15.11 17.82 22.70 23.67

4 2.31 4.01 4.41 4.77

4 100

1 119.93 134.23 177.82 184.75

2 46.68 52.95 72.00 72.01

3 42.50 48.10 62.14 67.59

4 17.10 20.24 26.28 26.63
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Fig. 11.  Average waiting time of 100 EVs vs 12 CS (1 to 4 CP).

Table 7.  Average charging cost of EVs with respect to different number of EVs and charging piles in 100 
iterations.

S.No EVs in geographic area Charging piles in charging stations

Average charging cost in INR

WSO CHHO HHO FCFS

1 25

1 363.95 377.05 409.24 413.63

2 320.46 327.84 342.11 345.89

3 313.39 314.06 314.21 313.64

4 314.21 314.67 314.06 314.33

2 50

1 410.50 426.20 478.95 479.24

2 342.41 351.61 372.08 375.62

3 313.47 313.97 314.11 314.20

4 314.08 313.71 313.99 313.92

3 75

1 474.68 502.27 580.71 583.35

2 361.70 376.32 400.20 405.93

3 322.05 330.37 342.02 344.66

4 313.74 313.62 314.23 313.83

4 100

1 475.48 502.98 580.51 586.21

2 400.21 418.90 460.42 474.62

3 387.21 399.79 443.32 453.25

4 324.40 329.77 347.37 348.37
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Fig. 12.  Average charging cost of 25 EVs vs. 12 CS (1 to 4 CP).
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Fig. 13.  Average charging cost of 50 EVs vs. 12 CS (1 to 4 CP).
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Fig. 14.  Average charging cost of 225 EVs vs. 12 CS (with varies charging piles 2 to 5).
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