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A novel energy‑efficiency 
framework for UAV‑assisted 
networks using adaptive deep 
reinforcement learning
Koteeswaran Seerangan 1, Malarvizhi Nandagopal 2, Tamilmani Govindaraju 3, 
Nalini Manogaran 4, Balamurugan Balusamy 5 & Shitharth Selvarajan 6,7*

In the air‑to‑ground transmissions, the lifespan of the network is based on the “unmanned aerial 
vehicle’s (UAV)” life span because of the limited battery capacity. Thus, the enhancement of energy 
efficiency and the outage of the ground candidate’s minimization are significant factors of the network 
functionality. UAV‑aided transmission can highly enhance the spectrum efficacy and coverage. 
Because of their flexible deployment and the high maneuverability, the UAVs can be the best 
alternative for the situations where the “Internet of Things (IoT)” systems utilize more energy to attain 
the essential information rate, when they are far away from the terrestrial base station. Therefore, 
it is significant to win over the few troubles in the conventional UAV‑aided efficiency approaches. 
Thus, this proposed work is aimed to design an innovative energy efficiency framework in the UAV‑
assisted network using a reinforcement learning mechanism. The energy efficiency optimization in the 
UAV offers better wireless coverage to the static and mobile ground user. Presently, reinforcement 
learning techniques effectively optimize the energy efficiency rate of the system by employing the 
2D trajectory mechanism, which effectively removes the interference rate attained in the nearby UAV 
cells. The main objective of the recommended framework is to maximize the energy efficiency rate 
of the UAV network by performing the joint optimization using UAV 3D trajectory, with the energy 
utilized during interference accounting, and connected user counts. Hence, an efficient Adaptive Deep 
Reinforcement Learning with Novel Loss Function (ADRL‑NLF) framework is designed to provide a 
better energy efficiency rate to the UAV network. Moreover, the parameter of ADRL is tuned using 
the Hybrid Energy Valley and Hermit Crab (HEVHC) algorithm. Various experimental observations are 
performed to observe the effectualness rate of the recommended energy efficiency model for UAV‑
based networks over the classical energy efficiency framework in UAV Networks.

Keywords Unmanned aerial vehicles, Energy efficiency, Deep reinforcement learning, Novel loss function, 
Hybrid energy valley and hermit crab

The motivation for the proposed work is mainly due to the lack of comprehensive approaches in the existing 
systems, which were not multi-dimensional, were either focusing on agent optimization, distance optimization, 
energy optimization, focusing on node detection, distance minimization, or error control. There was no such 
method that dealt with both distance optimization, performance enhancement and energy optimization. The 
proposed method was inspired  from1–3, which were dealing all these factors separately. The proposed method 
uses HEVHC and ADRL-NLF integrated frameworks which reduces the complexity of both the HEV and HCO 
besides, improving the efficiency of the model, enhancing the reward, and reducing the penalty. The innovation 
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of the work is mainly understood in optimization of the framework with HEVHC and ADRL-NLF framework 
that not only increases the performance but also reduces the penalty, which was not addressed in the similar 
research works.The energy efficacy is the utilization of the low power to do the similar work or generate the 
same pattern of service. For instance, the energy-efficient constructions and homes utilize low power to the 
 appliances4. The energy-efficient production facilities utilize less power to generate the products. The energy-
efficient innovations can play an important part in minimizing the emissions and the consumption of the fossil 
fuels in the overall economic factors. For instance, the energy-effective “light emitting diode (LED)” light bulbs 
can generate a similar amount of light as the incandescent bulbs by utilizing less than 80% low  electricity5. The 
families can save more amount of money on the bills by utilizing the energy-efficient appliances. The energy 
efficacy can be estimated by the section of the overall power input to the system or machines that are utilized in 
the essential  task6. The energy efficacy can provide various kinds of merits, including minimizing the price on 
the economic range for the households, minimizing the requirement for the power imports, and minimizing 
the emissions of greenhouse  gases7. The energy can be secured by deploying the “Compact Fluorescent Lamps 
(CFL)” lights, switching off the appliances, utilizing more daylight, handling the air leaks, and minimizing the 
temperature of the room when not in the  utility8.

In the emergency communications, the UAV is a successive innovation due to its high mobility, low cost, 
and flexible deployment. But, because of the restricted power of the onboard battery, the UAV’s service period 
is highly  restricted9. In the UAV-based networks, the energy efficacy is the rate of total efficient ability of the 
downlink candidates to the UAV’s power usage. The power usage of the UAV includes the power utilized by the 
interaction and the power utilized by the  hovering10. In order to enhance the experience of the candidate, the 
UAVs must enhance their power efficacy by tuning their processing capacity in the restricted service period. 
The other difficulty in the UAV-aided networks is designing energy-based trajectories for  UAVs11. The UAVs can 
meet the trouble from the neighbourhood, when UAV access points or other cells distributing a similar frequency 
band. This trouble may affect the energy efficacy of the  device12. One UAV may be charged  both by the charg-
ing stations and the solar energy. This can lead to sustainable interaction services, when preventing the power 
outage. In order to enhance the energy efficacy of the UAV-aided wireless networks, experts can concentrate on 
the trajectory planning of the UAV, UAV’s interaction on resource allocation, computing, UAV’s 3D hovering 
region decision, and  caching13. The protocols that reduce the power usage may support resolving the issue of 
network lifespan. This is done by the two protocols such as Power Efficient Gathering in Sensor Information 
Systems (PEGASIS) and Low-Energy Adaptive Clustering Hierarchy (LEACH)4. The LEACH is the “Time-
Division Multiple Access (TDMA)”-aided protocol that utilizes the clustering approach to enhance the “Wireless 
Sensor Networks (WSN)’s” lifespan. The LEACH is developed by adjusting the clustering task. The approach is 
enhanced by integrating the sink mobility to enhance the energy efficacy. The other protocol named PEGASIS 
that minimizes the amount of information to be sent to the base station. The protocol named PEGASIS works 
better concerning the lifespan of the network contrasted with the  LEACH14.

In the UAV-aided networks, the energy efficacy may be efficiently processed by enhancing both the deep 
learning and the machine learning tasks in the UAV  framework15. When considering the machine learning tasks 
to define the critical multi-UAV deployment issues. Most importantly, the “Multi-Agent Reinforcement Learning 
(MARL)” techniques have been developed in most of the tasks to tune the energy efficacy of the systems. The 
technique called “distributed Q-learning” concentrated on tuning the UAV’s energy usage without concentrat-
ing the energy efficacy of the  systems16. In order to define this issue, the “Deep Reinforcement Learning (DRL)” 
model is suggested to tune the energy efficacy of the constantly winged UAVs, that moves circularly and can’t 
perform the hovering such as the “rotary-winged UAVs”17. The UAVs offer the wireless coverage to the mobile 
and the static places. But, the UAV’s power is constrained and faces trouble from the neighbourhood cells of 
 UAVs18. A “double deep Q-network”-aided structure can enhance the energy efficacy and overall throughput of 
the network in the UAV-aided terrestrial  frameworks19.

The  contributions of the  designed energy efficiency framework for the UAV-assisted network  are 
presented below.

• The proposed work implements the energy efficient framework for the UAV-aided networks by employing 
adaptive deep learning technique that enriches the energy efficiency and minimizes the interference rates.

• Proposed work uses ADRL-NLF technique by utilizing the classical DRL network, that highly increases the 
energy efficiency rate and performs the rapid communication. Here, the HEVHC algorithm is supported to 
optimize the parameters of DRL.

• The proposed work uses HEVHC algorithm by influencing the traditional EVO and HCO algorithms, that 
assists to optimize the DRL network’s parameters.

• Proposed method optimizes the energy efficiency in multi agent environments with maximum reward and 
minimum penalty

• Proposed work provides optimization in distance detection, energy efficiency, and computational complexity 
reduction for ultrareliable and low latency communications.

• Proposed work enhances the stability of the ground station  for multi agent UAV assisted networks.
• Proposed work investigates the presented mechanism’s effectiveness and robustness  with numerous conven-

tional approaches and with several performance metrics.

The structure of the implemented energy efficiency framework for the UAV-assisted networks is provided as 
follows. The classical works for the UAV-assisted networks are illustrated in Division II. Then, the system model 
and problem description for UAV-assisted networks with the description of the proposed model are presented in 
Division III. In addition, the implemented HEVHC algorithm for the presented network is explained in Division 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22188  | https://doi.org/10.1038/s41598-024-71621-x

www.nature.com/scientificreports/

IV. Also, the ADRL network with a novel loss function, utilizing the multi-objective function is demonstrated 
in Division V. The solutions and the explanations of the implemented work are given in Division VI. Lastly, the 
designed work’s summary is given in Division VII.

Existing works
Related works
In 2023, Omoniwa et al.20 have presented a direct collaborative mechanism called “Communication-enabled 
Multi-Agent Decentralized Double deep Q-Network (CMAD–DDQN)”. This was a collaborative approach that 
permits the UAV to distribute their telemetry explicitly through the conventional 3GPP guidelines by interact-
ing with their neighbourhoods. This approach enhanced the energy efficacy of the system, without reducing the 
network’s functionality gain. The presented work outperformed the other conventional baseline tasks.

In 2022, Omoniwa et al.21 have implemented a task for enhancing the energy efficacy of the system by jointly 
tuning every 3D trajectory of the UAV, power utilization, and the amount of linked users when considering 
the interference. Hence, experts recommended a Multi-Agent Decentralized Double deep Q-Network (MAD-
DDQN) mechanism. This mechanism performed better than the conventional tasks concerning the energy 
efficacy.

In 2021, Hu et al.22 have suggested a framework to examine the functionality of the UAV-aided spectrum-
sharing approach. Experts implemented the transmit power of the UAV, normalized sensing threshold, and the 
sensing period to enhance the energy efficacy under the factor that the significant candidate was enough secured. 
The simulation outcomes have resulted in the suggested approach converging to the overall optimal measures 
and the energy-efficacy functionality compared with the other conventional approaches.

In 2020, Jia et al.23 have  presented an approach to raise the energy efficacy, by integrating the “Spatial Modula-
tion (SM)” and “Non-Orthogonal Multiple Access (NOMA)” techniques and named a new scheme called “Spatial 
NOMA (S-NOMA)”. In addition, an energy allocation optimization approach concerning the energy efficacy 
of the S-NOMA approach was suggested. Moreover, the simulation solutions displayed that the recommended 
S-NOMA performed better compared with the classical NOMA.

In 2022, Tang et al.24 have deployed an efficient approach to enhance the energy efficacy of the model by con-
cerning both the propulsion energy of the  UAV and the transmission power of the IoT, where the transmission 
resources of the IoT and the trajectory of the UAV were jointly tuned. The extensive simulation outcomes were 
offered to corroborate the efficacy of the suggested approach.

In 2021, Chen et al. 25 have recommended an energy transmission device utilizing the UAV as a flying base 
station. This work employs the DRL approach, where the experts suggested a DQN mechanism-aided resource 
allocation to enhance the energy efficacy of the model. The numerical experiments displayed that the designed 
approach could highly enhance the energy efficacy of the system, contrasted with the other conventional resource 
allocation tasks.

In 2018, Sikeridis et al.26 have discovered a mechanism that integrated the UAV assistance with the “Wireless 
Powered Communication (WPC)” approaches to enhance the energy efficacy. The IoT systems generate coalitions 
by selecting their part in the framework. At last, a “non-cooperative game-theoretic” task was recommended to 
estimate the transmission energy of every IoT node. The functionality estimation of the recommended work was 
attained and the outcomes demonstrated its scalability, robustness, and energy efficacy.

In 2021, Zhang et al.27 have suggested energy effective path optimization mechanism for UAV-aided IoT 
frameworks. The “action-confined off-policy and on-policy” and the module-free Reinforced Learning (RL) 
tasks were suggested and jointly employed to resolve the optimization issue. Experts had estimated the efficacy 
of the recommended work by contrasting it with the other dynamic mechanisms. The simulation had displayed 
that the presented work performed better than the other traditional approaches.

Research gaps and challenges
The energy efficiency in UAV networks includes challenges such as, the communication between the networks 
getting affected due to the continuous movement of the UAV network. This network has a low battery life that 
limits the payload and range of the network. The energy efficiency in the network depends upon the size of 
the RIS used. Several researches have been performed by the researchers on consuming energy in the UAV 
networks. The merits and disadvantages of a few existing networks are presented in Table 1.  DRL20 is capable 
of processing large data. This method provides better robustness. Still, it does not provide a better convergence 
rate.  DDQN21 improves the system’s optimization capability. This method solves high-dimensional problems 
and this method is aware of the noise. But, this method has high implementation costs and requires huge stor-
age space.  RL22 obtains increased performance in energy efficiency. This method provides high robustness. Yet, 
it is time consuming and expensive. S-NOMA23 provides enhanced performance in low transmission power. 
Still, it is time consuming. This method has a lower error detection rate.  Dinkelbach24 has the ability to solve 
large scale problems. But, it is difficult to execute in multiple-ratio problems.  UDN25 improves the spectrum 
efficiency of the network. This method utilizes less energy. This method is not preferred because, it is expensive. 
This method also has low network capacity.  RL26 utilizes less energy and provides maximum performance. But, 
this method uses large hyperparameters that increase the computational complexity and cause overload issues. 
“off-policy and on-policy” RL  schemes27 improve the data transmission ability of the system and provide stable 
outcomes. Yet, this method has low generalization ability and has low convergence rate. DRL based block-length 
optimization and power control was  proposed1 for UAV based IIoT network. This work needs to be enriched 
with energy optimization with ADRL for multi-agent systems. However, this work is the motivation for the 
proposed work. Low-complexity Coordinate Descent Approximation Algorithm (CDAA) for UAV position-
ing and sub carrier allocation was proposed in the  work2 for ultra reliable and low latency communications for 
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UAV networks. This work inspired the proposed work for the positioning aspects of the agents. Optimization of 
the resource allocation, including power, transmission CPU frequency usage, error rate decoding, block length 
estimation, communication bandwidth, and task partitioning as well as 3-D UAV positioning was  proposed3 
in the work for 6G networks. This work address power issues, task allocation, error handling, positioning and 
optimization of the agents. The proposed work is an enhancement of this work with ADRL with penalty reduc-
tion and reward increase.

So, it is necessary to develop an effective framework to resolve several complications in existing techniques 
and also to strengthen the energy efficiency rate in the UAV network using deep learning approaches.

Materials and Methods
System model
The suggested work considered a group of  mobile21 and the static candidates ξ placed in a certain region. Every 
candidate c ∈ ξ at a specific time s is placed in the coordinate 

(

asc , b
s
c

)

 . This work considered the service unavail-
ability from the traditional terrestrial framework because of the enhanced network load or the disasters. A group 
of quadrotors of the UAVs is  placed in the region to offer wireless coverage to the candidates on the ground. An 
assisting UAV u ∈ N at a specific time s, is placed in the coordinate 

(

asu, b
s
u, d

s
u

)

 . Without the generality loss, it 
is assumed that  a confirmed “line-of-sight (LOS)” channel situation because of the UAV’s aerial places. One of 
the factors of the signal quality is referred as the “Signal to Interferences plus Noise Ratio (SINR)”. It is referred 
as the rate of the power of the specific interest signals plus the power of noise. Every candidate c ∈ ξ at a specific 
time s can be linked to the one UAV u ∈ N  that offers the powerful downlink SINR. Hence, the SINR for the 
specific time s is formulated in Eq. (1).

Here, the variables δ and χ are the “path loss exponent and the attenuation” factor that features the wireless 
channel correspondingly. At the receiver’s “additive white Gaussian noise power" is specified as σ 2 . The distance 
among the variables c and u at the corresponding time s , which is indicated as etc,u . The interfering UAV’s set is 

(1)γ s
c,u =

χQ
(

etc,u
)−δ

∑

x∈�int
χQ

(

etc,u
)−δ

+ σ 2

Table 1.  Features and challenges of traditional energy efficient techniques in UAV networks.

Author [citation] Methodology Features Challenges

Omoniwa et al.20 DRL • This method is capable of processing large data
• This method provides better robustness • It does not provide a better convergence rate

Omoniwa et al.21 DDQN
• This method improves the system’s optimization capabil-
ity
• This method solves high-dimensional problems
• This method is aware of the noise

• This work has more development costs
• This method requires huge storage space

Hu et al. 22 RL
• This method obtains increased performance in energy 
efficiency
• This method provides high robustness

• It is time consuming
• It is expensive

Jia et al.23 S-NOMA • This method provides enhanced performance by con-
suming low transmission power

• It is time consuming
• This method has a lower error detection rate

Tang et al.24 Dinkelbach method • This method has the ability to solve large scale problems • It is difficult to execute in multiple-ratio problems

Chen et al.25 UDN
• This method enhances the spectrum efficiency of the 
network
• This method utilizes less energy

• It is expensive
• This method has low network capacity

Sikeridis et al.26 RL • This method utilizes less energy
• This method offers maximum performance

• This method uses large hyperparameters that increase 
the computational complexity
• It causes overload issues

Zhang et al.27 Off-policy and on-policy RL schemes
• This method improves the data transmission ability of 
the system
• This method provides stable outcomes

• This method has low generalization ability
• It has a low convergence rate

Ranjha, A. et al.1
• Optimization of the block length allocation in IIoT 
networks of UAV
• Power control and allocation

• Uses Deep learning reinforcement model which is the 
inspiration for the proposed work
• Agent based optimization is used in this work. The 
proposed work uses optimization for the energy efficiency 
also
• This uses only DRL for distace optimization

Ranjha, A., et al.2
• Solar powered multi carrier low latency agents for UAV
• low-complexity coordinate descent approximation 
algorithm (CDAA) for UAV positioning and sub carrier 
allocation

• There is only position and sub carrier optimization and 
not addressing energy optimization
• The proposed work uses ADRL based energy optimiza-
tion also

Ranjha, A., et al.3

• This work optimizes mission completion time subject 
to the constraints of resource allocation, including power, 
transmission CPU frequency usage, error rate decoding, 
block length estimation, communication bandwidth, and 
task partitioning as well as 3-D UAV positioning

• No measures for reward enhancement and the penalty 
reduction
• Proposed work uses ADRL-NLF adaptive model for the 
energy efficiency
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denoted as �int ∈ N . The interfering UAV’s index in the group �int is denoted as z . The UAV’s transmit power 
is given as Q . The proposed work developed the mobile candidate’s mobility by employing the “Gauss Markov 
Mobility (GMM)” approach, that permits the candidates to dynamically vary their places. The UAVs should 
tune their flight paths to offer everlasting connectivity to the candidates. With the assumption that the receiv-
ing information rate of the ground candidates and the channel bandwidth WB can be formulated utilizing the 
“Shannon’s” expression represented in the Eq. (2).

In the interference-restricted model, the coverage is troubled by the SINR. Thus, this value is estimated in 
the UAV’s connectivity score u ∈ N at a particular time s in Eq. (3).

In this, the factor Bsu(c) ∈ [0, 1] indicates, whether the candidate c is linked to the UAV u for a particular time 
s . Bsu(c) = 1 if γ s

c = γ s
c,u > γ th , or else Bsu(c) = 0 , here the variable γ th is already defined the threshold of the 

SINR. Similarly, the variable ℜs
c,u = 0 if the candidate c is not linked to the UAV u.

In the flight tasks, the UAV u ∈ N at the corresponding time s consumes the power fsu . The overall energy 
usage of the UAV fT is defined as the total in the communication fC and the propulsion fP energies fT = fP + fC . 
Since the variable fC is much smaller than the factor fP , the model avoided the variable fC . Equation (4) offers 
an enclosed form analytical propulsion energy usage approach for the “rotary wing UAV” at a specific time s.

Here, the variables κ0 and κc are the flight constants of the UAV. The tip speed of the rotor blade is denoted 
as Dtip and the velocity of the mean hovering is pointed as h0 . The rotor solidity and the drag ratio are indicated 
as t and h accordingly. The region of the rotor disc is pointed as B for the specific time s and the density of the 

air is pointed as ρ . Finally, formulated the mean propulsion power against the overall time sequences as 1S
S
∑

s=1
Q(s) , 

and the overall power utilized by the UAV u for the specific time s is expressed in Eq. (5).

Here, the variable αs measured in every time sequence period. The UAV’s u energy efficiency is explained 
as the rate of information throughput and the power utilized in the specific time period s as shown in Eq. (6).

Thus, the system model of the suggested work has been mathematically given.

Problem description
The aim of the proposed task is to strengthen the overall energy efficiency of the system by jointly tuning its 
amount of linked candidates, 3D trajectory, and the power utilized by the UAVs assisting the ground  candidates21, 
within the restricted power budget. Enhancing the amount of linked candidates Lsu raises the overall amount of 
information 

∑

c∈ξ ℜ
s
c,u . The UAV u send the signal in the corresponding time s for a specific amount of utilized 

energy f su , which also enhances the overall energy efficiency ηtot . Thus, the issue of optimization is expressed in 
the below expressions.

(2)ℜs
c,u = WB log2

(

1+ γ t
c,u

)

(3)Vs
u =

∑

∀c∈ξ
Bsu(c)

(4)
Q(s) = κ0

(

1+
3H2

D2
tip

)

+ κc

(
√

1+
H4

2h40
+

H2

2h20

)

1
2

+
ρ

2
htBH3

(5)f su = αs .Q(s)

(6)ηsu =

∑

c=ξ

ℜs
c,u

f su

(7)∀u ∈ N : max
ysu;z

s
u;x

s
u;f

s
u ;L

s
u

ηtot =

S
∑

s=1

∑

u∈N

∑

c∈ξ ℜ
s
c,u

S
∑

s=1

∑

u∈N f su

(8)s.t. γ s
c,u ≥ γ th, ∀Bsu(c) ∈ [0, 1], c, u, s,

(9)f su ≤ fmax, ∀u, s,

(10)ymin ≤ ysu ≤ ymax, ∀u, s,

(11)zmin ≤ zsu ≤ zmax, ∀u, s,
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Here, the UAV’s maximum energy level is  denoted as fmax  .  Further,  the variables 
ymax, zmax, xmax and ymin, zmin, xmin are the maximum and the minimum 3D coordinates of y, z, and x 
accordingly. Various wireless transmitters sending the similar frequency bands are in the enclosed presence to 
one another, resulting in the interference likelihood of the issue, Eq. (7) which  is referred as the “NP-complete”. 
This issue Eq. (7) is a non-convex problem, hence having numerous optimums. For this concern, rectifying 
Eq. (7) with traditional optimization tasks is critical. Most importantly, the issue Eq. (7) will continue very criti-
cal as various UAVs are installed in the distributed wireless platform. Thus it is complex to locate the optimal 
cooperative mechanisms to strengthen the energy efficiency of the model fulfilling the coverage works in the 
dynamic actions. This is frequently due to the UAVs becoming selfish and attaining the aim of enhancing their 
separate energy efficiency, while reducing the transmission outage and the power utilization, opposing the col-
lective aim of  enhancing the energy efficacy of the model. In the certain cases, the cooperative techniques may 
be applicable when collective and the separate UAVs trouble the required interests. The DRL  works well in the 
decision-creating approaches in various platforms. Thus, the suggested work utilized the adaptive DRL technique 
to resolve the energy efficiency optimization issue of the system.

Description of proposed framework
The installation of UAVs to offer the wireless coverage to the ground candidates has attained important experi-
mental attention. The UAVs play an important part in assisting the IoT by offering the connectivity to more 
systems, either mobile or static. Significantly, the UAVs have multiple real-world developments, varying from 
helping the transmission in the disaster-caused regions to the rescue, search, and for the surveillance tasks. Most 
importantly, the UAVs can be installed in the situations of conventional terrestrial framework downtime or 
the congestion of the network. However, to offer omnipresent tasks to the various ground candidates, the UAV 
demands robust mechanisms to tune their flight paths, when offering the coverage. There have been important 
experiments on optimizing the energy efficiency in the UAV frameworks. But, the traditional approaches depend 
on the middle ground controller for the decision-making of the UAV, by making it impractical for installing 
in the critical situations, because of the important amount of transmitted data between the controller and the 
UAV. In addition, it may be complex to locate the user places in certain occurrences. Machine learning is highly 
supportive for defining the complex UAV installation issues. Modern developments concentrate on tuning the 
energy efficacy of the systems by optimally determining the UAV’s trajectory only on the static ground candidates 
and ignoring the mobile candidates. Some other approaches avoid the intrusion impact from the neighbourhood 
cells, considering an intrusion-free network module. In addition, several tasks consider the ground candidate’s 
overall spatial knowledge region through the controller that simultaneously scans the perimeter of the network 
and offers the real-time updates to the UAVs for making the decisions. But, this consideration may be inappro-
priate in the emergency situations, since it demands important data transmission among the controller and the 
UAV. In addition, it is not possible to locate the regions of the candidates in the emergency situations. Thus, it is 
significant to develop the framework by considering these problems. Figure 1 depicts the implemented energy 
efficiency framework for the UAV-aided networks.

The presented work foucses on implementing an innovative energy efficacy approach in the UAV-aided 
framework, utilizing the DRL. The optimization of energy efficiency in the UAV presents good wireless coverage 
to the mobile and the static ground candidates. Nowadays, the RL tasks optimize the rate of energy efficacy of 

(12)xmin ≤ xsu ≤ xmax, ∀u, s,

Fig. 1.  The representation of the suggested energy efficiency framework for the UAV-assisted networks.
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the model by utilizing the 2D trajectory strategy that efficiently prevents the rate of interference obtained in the 
neighbourhood of the UAV cells. The important theme of the suggested task is to strengthen the energy efficiency 
rate of the UAV framework by processing the joint optimization in the overall 3D trajectory of the UAV, energy 
employed during the intrusion accounting, and linking the candidate accounts. Thus, an effective ADRL-NLF 
approach is implemented to offer a better energy efficacy rate for the UAV structure. In addition, the attributes 
of the ADRL are optimally utilizing the HEVHC algorithm. Besides, diverse research is conducted to monitor 
the efficacy rate of the suggested energy efficiency approach of the UAV-aided network against the conventional 
energy efficacy approach in the UAV framework.

The proposed algorithm and the workflow is presented in the Fig. 2. It contains three verticles in which the 
functioning of the propsoed algorithm is illustrated. The right most hybrid model of HCO-EVO algorithm 
solves the opertational delay, computational complexity and optimization problems, this hybrid model works on 
the determination of particle stability ,distance data about the candiates on ground station, the minimum and 
maximum number of iterations, and executes the social search opertaor of the HCO algorithm for identifying 
the best particle positions. This ADRL is integrated with the HEVHC algorithm for the reduction of the loss 
and error rate. These hyper parameters are additionally achieved through the integration of the ADRL with the 
HEVHC algorithms. This intergration reduces the penalty and increases the reward in the estimation of the best 
agents, by reducing the loss, error, search time,  increasing the energy efficiency, better groundstation control, 
reduction of the error rates, loss, optimization of the search process, and power consumption.Thus the proposed 
HEVHC algorithm has loss function accomplishment with optimization enhancement using the hybrid model-
ling of the EVO-HCO.

Fig. 2.  Workflow of the proposed algorithm and process sequencing.
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Hybrid energy valley and hermit crab for energy‑efficient UAV‑assisted network‑Conventional 
EVO
The  EVO28 is motivated by the modern principles concerning the stability and diverse sections of particle colli-
sion. The formulation of the EVO is described here.

In the starting stage, the initialization approach is performed in that the solution members Si , which are 
considered to be the particles with diverse stages of the stability in the search place that is considered to be a 
particular section of the universe.

Here, the particle’s overall count is denoted as m , and the specified issue’s dimension is indicated as x . The 
variable sji specifies the jth decision factor for estimating the starting place of the ith member. The jth factor’s 
“lower and upper” boundaries are considered as sji,min and s

j
i,max . The distributed arbitrary factor is given as 

rdm and it is ranged from 0 to 1.
In the next phase, the particle’s “Enrichment Bound (EB)” is estimated and is employed for taking the varia-

tions among the “neutron-poor and neutron-rich” particles. The objective measure calculation for all the particles 
is carried out and estimated as the particle’s “Neutron Enrichment Level (NEL)”. This is presented in Eq. (15).

Here, the variable neli is the particle’s NEL and the factor eb is the particle’s EB.
In the next stage, the particle’s stability phases are established according to the objective function and that 

is expressed in Eq. (16).

Here, the ith particle’s stability level is denoted as sli . The “worst and best” stability stages of the particle are 
specified as ws and bs accordingly. In the solution member, the emitted rays are taken as the decision factors, 
that are substituted and removed by the rays presented in the member or the particle with the best stability stage 
Sbs . This is shown in Eq. (17).

Here, the currently produced universe particle is indicated as Snew1i  , and the present place vector of the ith 
particle is pointed as Si . The variable Alpha index I is the arbitrary integer with the limit of [1, x]. Then, the 
attribute Alpha index II explains which rays to be discharged with the limit of 

[

1,Alpha index I
]

.
The total distance among the specified particle and the other is determined in Eq. (18).

Here, the factor Xk
i  is the overall length of ith the particle and the kth  nearby particles. Then, the search place 

coordinates are pointed as (s1, r1) and (s2, r2).
Utilizing these situations, the place upgrading approach for creating the second solution member is formu-

lated in Eq. (19).

Here, the currently produced particle is specified as Snew2i  . The nearby particle of the ith particle is pointed 
as Sng.

(13)
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∑

i=1
neli

m
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(
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√
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{

i = 1, 2, ...,m
k = 1, 2, ...,m− 1
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(
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The approach copies the tendency of the particles to attain the stability range. Most of the aware particles 
are placed near the boundary, and several of them have better ranges of stability. This is formulated in Eq. (20) 
and Eq. (21).

Here, Snew1i and Si are future and present place vectors of the ith particles. The variables a1 and a2 are 
the arbitrary integers in the limit of [0, 1] that estimates the number of particle’s motion. The place vector of the 
middle of the particles is denoted as Scp.

To enhance the exploration and the exploitation stages of the approach, another place updation is performed 
as shown in Eq. (22).

Here, the future and present place vectors of the ith particles are denoted as Snew2i and Si . The variables 
a3 and a4 , which are the arbitrary integers, with the limit of [0, 1], estimates the number of particle’s motion.

An arbitrary motion in the search place is estimated for taking these movement’s sorts are given in Eq. (23).

The variable a is the arbitrary integer in the limit of [0, 1], estimates the number of particle’s motion. Algo-
rithm 1 offers the conventional EVO’s pseudo-code.

Represent the itera�on parameters and the popula�on matrix

Formulate the objec�ve func�on

For max1 Ttot =

Determine the stability phases of the par�cles u�lizing Eq. (17)

Es�mate the distance among the certain par�cles employing Eq. (18)

Upgrade the new posi�ons by employing Eq. (21) and Eq. (22)

End

Return the be�er solu�ons

Algorithm 1.  Conventional EVO

Conventional HCO
The classical  HCO29 algorithm is motivated by the hermit crabs that normally live in herms or groups of hundred 
or more. The model of the HCO is mathematically given.

Representation
The search agent’s population matrix Q in every execution presents and is upgraded or subjected to the upcoming 
creation. The matrix Q is generated in Eq. (24).

Here, the overall amount of the search agents are denoted as M , and the overall encoded amount is indicated 
as X . Then, the variable s represents the region of the search member in the dimension x and the search member’s 
feature vector is given as 

→
S .

(20)
Scp =

m
∑

i=1
Si

m
, i = 1, 2, ...,m

(21)Snew1i = Si +

(

a1 × Sbs − a2 × Scp
)

sli
, i = 1, 2, ...,m

(22)Snew2i = Si +

(

a3 × Sbs − a4 × Scng
)

sli
, i = 1, 2, ...,m

(23)Snewi = Si + a, i = 1, 2, ...,m

(24)Q(i) =







s1i1 · · · s1id
...

. . .
...

smi
1 · · · sMi

X







M×X

=







�Sl(i)
...

�SM(i)







M×1
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Initialization
The search member’s starting population is created, which is arbitrarily utilizing the programming language’s 
“pseudo-random number generator”.   This results in  the HCO,  presented in the Eq. (25).

Here, the factors s+x and s−x  stand the “upper and lower” boundaries of every search agent. Further, the 
“pseudo-random” integer is denoted as α with the limit [0, 1].

Pre‑processing
Every search member with the attributes troubling the max/min boundaries is adjusted by allocating their value 
similar to their nearby boundary. Three controlling attributes called distraction indicator d , shell availability’s 
perceived risk c , and the overall shells b , which are set as zero.

Evaluation
Every search member is related to the value and characterized by the vector 

→
S  , is mapped into the answer space. 

In this stage, the population matrix Q is combined with a new attribute denoting the objective values obtained 
by the search members,  and the same  is shown in Eq. (26).

Here, the decoder function is denoted as f  , and the state-reward matrix is indicated as 
∏

 . Then, the reward 
matrix is pointed as Z.

Comparison
Here, the rewards obtained during the new state estimation of the agents are contrasted with the historical 
rewards in the previous stage.

Post‑processing
Here, the shell availability’s perceived risk is estimated in Eq. (27).

Solitary search operator
This phase is only utilized for those search members with the successful label. The solitary search member is 
formulated in Eq. (28).

In this, the variables 
→
S
m
(i + 1) and

→
S
m
(i) denote the successful search member in two simultaneous execu-

tions. The elitism integer’s G perceived place is denoted as 
→
S
g
′(i) . In order to estimate 

→
S
g
′(i) , Eq. (29) is employed.

Here, the utmost distance is denoted as Ag (i) . The arbitrary integer is specified as β with the limit [− 1, 1]. 
Furthermore, the unit matrix is indicated as L1×X.

The utmost travelable length of the molecule in every direction is estimated in Eq. (30).

Here, the factors Xg (i) and �t are measured in Eq. (31) and Eq. (32).

(25)sm0
x = s−x + α

(

s+x − s−x
)

, 1 ≤ x ≤ X, 1 ≤ m ≤ M

(26)
�
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(27)c = 1− α/M
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m
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And: �t = i/I (32).
The rate of distraction for every hermit to forward the Odor’s dominant source is estimated in Eq. (33).

Here,

At last, the variable γ1 displays the wind efficiency in the habitat by Eq. (35).

After utilizing the dominant smell source’s places, the places are upgraded utilizing Eq. (36) and Eq. (37).

In this, the overall α variables are considered as arbitrary integers in the limit [0, 1].

Social search operator
This phase applies to those search members with the label called fail. Here, the transition matrix indicates the 
likelihood of hermit crab shell exchange. This state is expressed in Eq. (38).

In this, the variable I is the 2 × 2 matrix, which relates with absorbing the places of the largest and smallest 
hermit crabs in the chain of vacancy. Further, the factor W is the (Y − 2)× (Y − 2) matrix, which relates to the 
exchanges of shells among the hermit crabs in the chain of vacancy. Then, the variable P is referred as the zero 
matrix, and the transition matrix is indicated as Z . For example, the transition matrix for the hermit crabs in the 
chain of vacancy is formulated in Eq. (39).

This is the same as the “Markov chain” approach.
In the end, to copy the stochastic shell replacement task, the social search member for every hermit crab in 

the chain of vacancy is given in Eq. (40).

Here,
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and

Further, the largest and smallest search member’s update is presented in Eq. (43) and Eq. (44).

and

The traditional HCO’s pseudo-code is displayed in Algorithm 2.

Represent the itera�on parameters and the popula�on matrix

Formulate the objec�ve func�on

For max1 Ttot =

Perform the pre-processing and the post-processing tasks

Execute the solitary search operator phase by u�lizing Eq. (28)

Execute the social search operator phase by applying Eq. (43) and Eq. (44)

Upgrade the current posi�ons

End

Algorithm 2.  Traditional HCO

Recommended HEVHC for parameter tuning
With the conventional EVO and HCO, the recommended HEVHC algorithm is implemented. The traditional 
EVO is motivated by the physics principles based on the distinct parts of particle degradation. This algorithm 
outranks the other optimization algorithms, when analyzing the unconstrained mathematical functions. It offers 
better outcomes with the little rank means and converges to the overall best answer. Moreover, the classical HCO 
utilizes the hermit crab’s swarm intelligence. This algorithm assists the search members privately and performs 
similar to the RL approach. In this method, the failed and the successful agents are handled distinctly. It only 
needs a small amount of parameters, to decide the failed and successful agents, and it is very robust. However, the 
traditional EVO is not producing the better solutions for the complex optimization issues. Also, the conventional 
HCO has more computational burdens. In order to resolve these issues a new HEVHC algorithm is presented. 
This algorithm utilizes the both conventional EVO and HCO approaches and resolves the issues presented in the 
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both approaches. The suggested HEVHC algorithm performs based on the iteration counts. The formulation of 
the suggested HEVHC algorithm is shown in Eq. (45).

If the present iteration value is less than the half of maximum iteration, then the position update on is per-
formed, utilizing the conventional EVO, or  by employing the traditional HCO. Here, the factors t and Tmax 
stand the present and the maximum iterations.

The pseudo-code of the presented HEVHC is given in Algorithm 3. Figure 3 presents the suggested HEVHC 
algorithm for parameter tuning.

(45)

if t <
Tmax

2

Update via EVO

else

Update via HCO

Start

Population Initialization

Fitness value calculation

End

No

maxTt

Return the optimal values

Yes

2

maxT
t

Update EVOUpdate HCO

YesNo

New position updating New position updating

Fig. 3.  The flowchart of the recommended HEVEC for parameter tuning.
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Represent the itera�on parameters and the popula�on matrix

Formulate the objec�ve func�on

For max1 Ttot =

For pNtoj 1=

If 
2
maxTt <

Perform the EVO

Determine the stability phases of the par�cles u�lizing 
Eq. (17)

Es�mate the distance among the certain par�cles 
employing Eq. (18)

Upgrade the new posi�ons by employing Eq. (21) and 
Eq. (22)

Else

Perform the HCO

Perform the pre-processing and the post-processing 
tasks

Execute the solitary search operator phase by u�lizing 
Eq. (28)

Execute the social search operator phase by applying 
Eq. (43) and Eq. (44)

Upgrade the current posi�ons

End If

Find out the best solu�ons

End

End

Do the repe��ve execu�ons

Offer the op�mal solu�ons

Algorithm 3.  Implemented HEVHC

Adaptive deep reinforcement learning with novel loss function using multi‑objective func‑
tion‑Deep reinforcement learning
In the multi-UAV platform, it is complex to attain a high amount of information samples for the training, 
where the task of training is computation-intensive and time consuming. In order to solve these issues the  DRL30 
offers an efficient answer. The DRL is the method, where experts have issues  with numerous amounts of possible 
answers or ways to manage those issues. The aim is to choose an action from the existing options, with the goal 
of attaining the optimal outcome. The objective of the DRL is to generate a connection among the actions and 
situations to attain the better solutions. The DRL employs the “Deep Neural Network (DNN)”, to learn the world 
with the capacity to perform on that learning. The variation of DRL from the other machine learning methods, 
is that the network does not explain the outcome, rather the network understands from the experience. In this 
DRL, there is no human intervention applied, and it is a closed-loop approach. That means the result of the one 
step generates the fundamental input to the upcoming stage. The DRL locates the development in issues, where 
the overall issue is distributed over various steps or stages and linear decision making is required. The “Markov 
Decision Process (MDP)” is employed to design the RL issues. The MDP is normally explained as four-tuples 
(

T ,B, γ , g
)

 where,

T is the group of the overall environment stages, the variable tu ∈ T denotes the agent state at the correspond-
ing time u.
B is the group of processing agent’s actions, the factor bu ∈ B is the action considered by the agent at a certain 
time u
The term γ : T × B → H is referred to as the reward function here the term ρ ∼ γ (t, b) , denotes the instant 
reward value attained by the agent processing action bu at a specific time tu.
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The factor g : T × B×H → [0, 1] is the probability distribution function of the state transition, the attribute 
tu+1 ∼ (tu, bu) denotes the likelihood that the agent does the action bu , from the transition to the upcoming 
stages tu+1 in the phase tu.

In the DRL, the strategy π : T → H , is the link of the stage space to the action place. It is formulated as the 
agent choosing action bu in the phase tu conducting the action.

Consider the instant reward for every time sequence in the future should be multiplied with the support of 
the distance attribute ρ then from the time u to the end time U  , the total reward is formulated in Eq. (46).

Here, the variable γ ∈ [0, 1] , is employed to weigh the future reward impacts. The cumulative return attained 
by the agent is formulated in Eq. (47).

Here, the state action value function is denoted as P(t, b) and the variable π∗ specifies the optimal policy. There 
can be more than one optimal mechanism, yet they distribute a state action value function, as per the Eq. (48).

This is referred to as the “optimal state-action value function” that forwards the “Bellman optimal expression” 
as shown in Eq. (49).

In the conventional RL, the function of Q-value is normally resolved by the iterative “Bellman” expression 
as given in Eq. (50).

In that if the variable is c → ∞ then Pc → P∗ . The structure of the DRL is depicted in Fig. 4.

Adaptive DRL with novel loss function
The DRL resolves the complex issues and handles the uncertainty. However, the involvement of hidden neurons 
and the epochs is high. This results in slow processing and overfitting. Hence, optimization of these attributes is 
necessary. Moreover, the overall iteration of this network needs to be optimized to obtain the rapid outcomes. 
For this purpose, the HEVHC algorithm is recommended in the presented work.

Moreover, by varying the loss functions such as “Advantage Actor-Critic (A2C) loss, policy gradient loss, 
Q-learning loss, novel loss function, and actor-critic loss”, the network is processed.

A2C loss: It is supported to decrease the variance by employing a critical  approach of the policy gradient.
Policy gradient loss: It is an amount of loss, that specifies when everything  has been executed.
Q‑learning loss: It specifies the variation among the expectation and the observation. It contrasts the Q-target 

and the Q-value prediction.
Actor‑critic loss: It is the fault caused by the agent in forecasting the present state value.
Novel loss function: In this operation, the policy gradient loss and Q-learning loss are added with the help of 

HEVHC to regularize the Q-values and the policy gradient.
Hence, the ADRL network with novel loss function is constructed with the support of implemented HEVHC. 

In this network, the input attributes such as node names, topology, distance matrix, node position (x, y), and the 
traversal between nodes are given to produce the optimized network.

(46)Ru =

U
∑

u′=u

γ u′−uγ u′

(47)Pπ (t, b) = F[Ru|tu = t, bu = b,π]

(48)P∗(t, b) = max
π

F[Ru|tu = t, bu = b,π]

(49)P∗(t, b) = Ft′−T

[

s + γ max
b′

P
(

t ′, b′
)

|t, b

]

(50)Pc+1(t, b) = Ft′−T

[

s + γ max
b′

P
(

t ′, b′
)

|t, b

]

Fig. 4.  The structure of the DRL.
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The framework of the ADRL-NLF is presented in Fig. 5.

Objective formulation and its definition
The suggested HEVHC is employed to tune the parameters presented in the DRL. The parameter optimization 
for the task is given in Eq. (51).

Here, the variable hnDRL specifies the DRL model’s hidden neuron count, and the factor epDRL denotes the 
DRL model’s epoch size. Then, the term itDRL stands for the DRL model’s number of iterations. The hidden 
neuron count of DRL is varied from 5 to 255 and the DRL model’s epoch size is varied from 5 to 50. In addi-
tion, the number of iterations for this network is changed from 100 to 10,000. Furthermore, with the aid of the 
recommended HEVEC, the energy-efficient rate eer and the rewards re are maximized. Then, the penalty pe is 
minimized by the designed HEVEC. These attributes are explained as follows.

Energy efficient Rate eer : “It is referred as the ratio of overall transmitted data count to the transmission 
energy’s weighted sum".

Rewards re : The goal of the agent is to understand the policy that enhances the energy efficiency of the system 
and reduces the UAV’s energy consumption and outage of the users. Thus, the reward formulation of every agent 
is introduced in this work for every time step.

Penalty pe : It is the calculation on the present agent, to estimate how far it is from the target monitoring 
node of the UAV.

Figure 6 provides the solution encoding diagram of the presented task.

Results and discussions
Experimental setup
The proposed work was executed in the “MATLAB 2020a” platform and produced the optimal solutions. The 
implemented algorithm has 250 iterations and 10 populations. Also, the task had a chromosome length of 3. 
Moreover, the presented work is analyzed with diverse traditional algorithms such as “Egret Swarm Optimization 
Algorithm (ESOA)31, Coronavirus Mask Protection Algorithm (CMPA)32, Energy Valley Optimizer (EVO)17, 
and Hermit Crab Optimizer (HCO)18” to prove its effectiveness. The experimental setup of the suggested work 
is presented in Table 2.

(51)ob = arg max
{hnDRL ,epDRL ,itDRL}

[

eer + re +
1

pe

]

Fig. 5.  The framework of the ADRL-NLF with the aid of designed HEVEC.
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Convergence examination of the implemented HEVHC algorithm
The presented HEVHC algorithm’s convergence is validated and displayed in Fig. 7, by influencing the iteration 
values. When concentrating on the 125th iteration, the proposed HEVHC’s convergence is strengthened by 
96.16% of ESOA, 96.32% of CMPA, 96.4% of EVO, and 96.36% of HCO accordingly. From the evaluations, it is 
presented that the implemented HEVHC has a better capacity to recognize the optimal outcomes.

Fig. 6.  The solution encoding diagram of the implemented framework.

Table 2.  Parameter setting.

Sl.No Parameters Value

1. UAV step distance [0–20] m

2. Path loss exponent 2

3. Bandwidth 1 MHz

4. SINR threshold/Noise power 5 dB/ − 130 dBms

5. Maximum transmit power 20 dBm

6. Nominal battery capacity 16,000 mAh

7. Weight per UAV/Number of UAVs 16 kg/[2-12]

8. Velocity/Ground user direction [0, 15]m/s / [0, 2π]

9. Model/ Number of Ground Users GMM/400

10. Policy/.maxStep/Episodes ε-greedy/1500/250

11. Batch size/Replay memory size 1024/10,000

12. Activation function/Hidden layers ReLu/2 (128,64)

13. Discount factor/learning rate 0.95/0.0001

14. Loss function/Optimizer MSELoss/RMSprop

Fig. 7.  The implemented HEVHC algorithm’s convergence validation over multiple traditional algorithms.
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Statistical analysis of the HEVHC algorithm
Table 3 presents the statistical information about the proposed HEVHC algorithm by employing various sta-
tistical measures. When considering the median attribute, the  HEVHC is advanced by 5.1% of ESOA, 2.8% of 
CMPA, 0.8% of EVO, and 2.2% of HCO correspondingly. Therefore, it is confirmed that the  HEVHC algorithm 
has better functionality rates to support the designed energy-efficient framework.

Performance analysis of the energy efficiency framework in UAV‑aided networks based on 
multiple loss functions
Figure 8 offers the performance evaluation of the implemented energy efficiency method in the UAV-aided 
networks over multiple conventional optimization tasks by adopting powerful loss functions. In Fig. 8a, when 
considering the novel loss function, the energy efficiency rate of implemented work is enriched by 11.11% of 
ESOA-ADRL-NLF, 8.88% of CMPA-ADRL-NLF, 22.22% of EVO-ADRL-NLF, and 5.55% of HCO-ADRL-NLF 

Table 3.  The statistical analysis of the HEVHC algorithm over distinct conventional algorithms.

“Terms” ESOA 28 CMPA 29 EVO 17 HCO 18 HEVHC

“Best” 4.6514 4.596 4.5117 4.4627 4.4125

“Worst” 7.844 7.9765 4.7691 7.8536 4.4706

“Mean” 4.7625 4.6784 4.5415 4.607 4.4505

“Median” 4.7008 4.6008 4.5117 4.5743 4.4706

“Std” 0.23925 0.4291 0.082603 0.37152 0.02659

Fig. 8.  The performance analysis of the implemented energy efficiency framework in UAV-aided networks over 
diverse classical approaches based on multiple loss functions concerning “(a) energy efficiency rate, (b) penalty, 
and (c) reward”.



19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22188  | https://doi.org/10.1038/s41598-024-71621-x

www.nature.com/scientificreports/

appropriately. Thus, it is guaranteed that the designed process has higher energy efficiency than the other con-
ventional mechanisms.

Performance analysis of the energy efficiency framework in UAV‑aided networks based on the 
number of nodes
With the change in the number of nodes, the functionality of the implemented energy efficiency framework in 
UAV-aided networks is carried out over numerous classical approaches. This is presented in Fig. 9. The reward of 
the constructed work is enhanced by 47% of ESOA-ADRL-NLF, 36% of CMPA-ADRL-NLF, 22% of EVO-ADRL-
NLF, and 58% of HCO-ADRL-NLF correspondingly when the node value is 100, as shown in Fig. 9b. Therefore, 
it is proved that the suggested model has higher robustness than the conventional approaches.

Performance analysis of the energy efficiency framework in UAV‑aided networks based on the 
mobility models
According to numerous mobility models such as RWP, RW, GMM, and static, the performance of the frame-
work is determined and shown in Fig. 10. The fairness index of the designed framework is escalated by 12% 
of ESOA-ADRL-NLF, 5.1% of CMPA-ADRL-NLF, 10.3% of EVO-ADRL-NLF, and 6.8% of HCO-ADRL-NLF 
correspondingly, when considering the mobility model as static in Fig. 10a. This finalizes that the implemented 
framework has higher scalability than the other models.

Performance analysis of the energy efficiency framework in UAV‑aided networks based on the 
number of UAVs
Figure 11 offers the performance investigation of the implemented framework according to the number of UAVs 
against numerous classical tasks. The overall energy consumed in the presented framework is decreased by 41.5% 
of ESOA-ADRL-NLF, 91.5% of CMPA-ADRL-NLF, 49.9% of EVO-ADRL-NLF, and 93% of HCO-ADRL-NLF 
accordingly when the number of UAV is 6 in Fig. 11d. Therefore, it is highlighted that the designed framework 
has higher efficacy than others.

Fig. 9.  The performance analysis of the implemented energy efficiency framework in UAV-aided networks over 
diverse classical approaches based on the number of nodes concerning “(a) Penalty, and (b) Reward”.
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Conclusion
The proposed work has been focussed on developing a powerful energy efficiency approach in the UAV-aided 
framework utilizing the DRL. The optimization of energy efficiency in the UAV provided the superior wireless 
coverage to the mobile and the static ground candidate. Currently, the DRL tasks were exceptionally optimized 
for the model’s energy efficacy rate by adopting the 2D trajectory strategy that avoided the rate of intrusion 
obtained in the neighbourhood UAV cells. The crucial concept of the designed approach was to enhance the 
rate of energy efficiency in the UAV framework by conducting the joint optimization, overall UAV 3D trajectory 
power employed during the intrusion accounting, and the mapped candidate counts. Thus, an effective ADRL-
NLF task was developed to offer a better energy efficacy rate to the network of UAV. In addition, the attributes 
of  the ADRL were optimally tuned utilizing the HEVHC algorithm. In addition, diverse validation was carried 
out to validate the supremacy of the implemented energy efficiency approach for the UAV-aided network against 
the conventional energy efficiency approach for the UAV networks. When focussing on the  150th node, the pro-
posed energy efficiency framework in UAV-aided network’s penalty was reduced by 99.74% of ESOA-ADRL-NLF, 
99.48% of CMPA-ADRL-NLF, 99.47% of EVO-ADRL-NLF, and 99.86% of HCO-ADRL-NLF accordingly. Thus, 
the proposed energy efficiency framework in UAV-aided networks has achieved its supremacy over the other 
classical mechanisms. These enhancements can be aided to support drones in futuristic mission critical systems 
such  as33, for handling emergency situations for medical and other applications.

Fig. 10.  The performance analysis of the implemented energy efficiency framework in UAV-aided networks 
over diverse classical approaches based on the mobility models concerning “(a) fairness index, (b) number of 
connected users, (c) normalized energy efficiency, and (d) total energy consumed”.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
request.
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Fig. 11.  The performance analysis of the implemented energy efficiency framework in UAV-aided networks 
over diverse classical approaches based on the number of UAVs concerning “(a) fairness index, (b) number of 
connected users, (c) normalized energy efficiency, (d) total energy consumed, and (e) total bits.
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