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Abstract. Our previous work focuses on how the nine tiles in the 2-D
projection-based model for cardinal directions can be partitioned into sets based
on horizontal and vertical constraints (called Horizontal and Vertical Constraints
Model). In this paper, the 2-D Horizontal and Vertical Constraints model is
adapted and extended into a 3-D Horizontal and Vertical Constraints Block
model so that it facilitates easy reasoning with 3-D volumetric regions (i.e.
without holes and single-pieced) in the real physical world (e.g. intelligent
robotics, building construction, etc…). This model partitions a 3-D Euclidean
space of a 3-D reference region into 9 blocks, namely, left, middlex, right, above,
middley, below, left, middlez, right. The additional central block (or the Mini-
mum Bounding Box of the 3-D reference region) is an intersection of the three
blocks, namely, middlex, middley, and middlez. The added value of the 3-D
Horizontal and Vertical Constraints Block model is the use of intuitive (i.e.
commonsense) knowledge representation for 3-D orientation relations. How-
ever, the underlying formal representation of the model is facilitated through the
use of the 3-D Cartesian Coordinate system, first order logic, and boolean
algebraic expressions. The novel contribution of this research work is fostering
reasoning with partial orientation relation related knowledge (note: these are
called weak relations) and also integrating mereology into the 3-D model in
order to render the representation of the model more expressive. Finally, com-
position of relations is the technique employed in this research to general new
knowledge. Mereology is integrated into the model in order to render the model
more expressively. Finally, several examples will demonstrate how the model
could be used to make inferences about 3-D orientation relations.

Keywords: Orientation � composition table � reasoning � mereology
qualitative spatial reasoning

1 Introduction

A lot of work has been done on 2-D orientation relations. Orientation directions are
generally used to describe relative positions of objects in large-scale spaces, particularly,
in the geography domain. These relations specify the direction from one region to
another in terms of the familiar compass bearings: north, south, east and west; or typical
intuitive orientation relations (front, back, left, and right). Intermediate directions such as
{north-west, north-east, south-west, and south-east} or {left-front, left-back, right-front,
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and right-back} are also often used. Classical reasoning models for orientation direction
relations are the cone-shaped [7], projection-based models [7, 8] which form the basis of
the 2-D Horizontal and Vertical Constraints Model [13, 14, 15], and direction matrix [9].

Vieu and colleagues [26] have built a logical framework for space. Some research
has been conducted on spatial relations between 3-D regions [e.g. 17]. 3-D reasoning
models have been applied to different context: building construction [6]; volumetric
reasoning about objects and surfaces [16] and scene understanding [12], etc. Existing
research on 3-D orientation models is still limited. Current 3-D orientation models
which extend Freksa and Zimmerman [8] orientation models are: coarse 3-D orienta-
tion model [21]; 3-D cardinal direction models [4, 5, 24, 27]. However, little work has
been conducted on weak orientation relations that facilitate reasoning with partial
knowledge. Consequently, in this paper, the original 2-D Horizontal and Vertical
Constraints model is adapted and extended into a block model.

Papadias and Theorodis [22] describe topological and direction relations between
regions using their minimum bounding rectangles (MBRs). However, the language
used is not sufficiently expressive to describe direction relations. Additionally, the
MBR technique yields erroneous outcome when involving regions that are not rect-
angular in shape [9]. Some work has been done on hybrid direction models. Liu and
colleagues [20] have developed reasoning algorithms which combine RCC-8 [23] for
topological relations and the Cardinal Direction Calculus (CDC, [9]) for direction
relations. Li and colleague’s work [18] focuses on the development and evaluation of
an efficient reasoning mechanism for RCC-8 and RA (Rectangle Algebra), and further
details of RA is found in [2] which is employed to solve the satisfiability problem of
these two joint constraint networks. Zhang and colleagues [28] develop a cubic
algorithm for reasoning with cardinal directions. A review of existing work reveals that
there is limited work on the 3-D hybrid direction relations. This is essential in order to
foster more expressive description of a physical environment involving 3-D orientation
relations. Consequently, in this paper, it is demonstrated how mereology [10] could be
incorporated into a block model in order to facilitate a more expressive description of
3-D orientation relations between regions.

Typically, composition tables are used to infer spatial relations between objects.
One of the advantages of composition tables is that they can lead to tractable com-
putation of inferences [3]. They have been employed to make different inferences about
2-D directions relations [9, 19, 25] and 3-D direction relations [4, 5, 24, 27]. Some
work has been done on the composition of hybrid models.

In summary, in this paper, it involves the partitioning of the Euclidean space of a 3-D
reference region into nine primitive blocks namely: left, middlex, right, above, middley,
below, left, middlez, right. The additional central block (or the Minimum Bounding
Box of the 3-D reference region) is an intersection of the three blocks namely: middlex,
middley, and middlez. The underlying formal representation of the model is facilitated
through the use of first order logic and Boolean algebraic expressions. The reasoning
mechanism to support reasoning with partial orientation related knowledge involving
these nine weak relations will be demonstrated. Finally, mereology is integrated into this
weak 3-D block orientation model in order to enhance its expressiveness and also to
facilitate reasoning about 3-D orientation related phenomena.
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2 Related Work

Typical 3-D direction models approximate spatial regions as a point or as a minimum
bounding box (MBB). However, [24] use the term, MBV Minimum Bounding Volume
(MBV) instead of MBB. Existing work shows a seamless extension of 2-D cardinal
directions into 3-D space [4, 5, 11, 24]. 3-D direction models that have been developed
are: Three-dimensional Cardinal Direction (TCD) model [4]; Objects Interaction Cube
Matrix (OICM) model [5]. Hou, et al. [11] introduce the Block Cardinal Direction
(BCD) calculus for reasoning with block cardinal direction relations between blocks in
3D space.

Every 3-D model reviewed comprises 27 cardinal direction relations. [24] represent
each relation with a set of three elements, (u, v, w) where u, v, and w 2 {1, 0, −1} and
the central voxel cell is labelled (0,0,0). In this representation, u refers to east or west, v
is for north or south while w represents the relation above or below the central voxel
cell. The Objects Interaction Cube Matrix (OICM) uses a 3 � 3 � 3 matrix to rep-
resent all the possible 3-D cardinal direction relations [5]. Other reviewed 3-D cardinal
direction relations-related research still uses the nine 2-D tiles for cardinal directions
{N, S, E, W, O, NE, NW, SE, and SW} as the root representation. Three different
horizontal sets of the nine 2-D cardinal direction tiles are employed to represent the 27
cardinal direction relations. They are the upper, middle, or lower planes [4, 5, 11, 27].
Representations of 3-D cardinal direction relations between two regions are as follows:
upper plane – {NU, SU, EU, WU, OU, NEU, NWU, SEU, and SWU}, middle plane - {NM,
SM, EM, WM, OM, NEM, NWM, SEM, and SWM}, lower plane - {NB, SB, EB, WB, OB,
NEB, NWB, SEB, and SWB} [4], [5]; upper plane – {UN, US, UE, UW, UO, UNE,
UNW, USE, and USW}, middle plane - {RN, RS, RE, RW, RO, RNE, RNW, RSE,
and RSW}, lower plane - {DN, DS, DE, DW, DO, DNE, DNW, DSE, and DSW} [27];
upper plane – {Eu, NEu, SEu, Wu, SWu, NWu, Su, Nu, Cu}, middle plane – {Em,
NEm, SEm, Wm, SWm, NWm, Sm, Nm, Cm}, lower plane – {Ed, NEd, SEd, Wd,
SWd, NWd, Sd, Nd, Cd} [11]. Finally, the number of compositions for the 27 binary
cardinal direction relations is 27 � 27 which is equivalent to 729 relations.

In conclusion, all the work reviewed is confined to cardinal direction relations for
geographical information systems. This paper explores the use of intuitive represen-
tation for 3-D orientation relations. This involves the use of only 9 blocks and Boolean
algebra (see Table 4) to represent all the 27 direction relations represented in the
models reviewed. These 9 blocks are considered weak because they only represent
orientation-related information along a particular axis (i.e. x-, y-, or z axis). A stronger
orientation representation will require a combination of these primitives (see Tables 3
and 4). Let us assume a scene where a drone is on the left, above and front of a robot.
The algebraic representation of the 3-D binary orientation is as follows: left(robot,
drone) ^ above(robot, drone) ^ front(robot, drone). Such a natural-language based
representation will be sufficiently more comprehensible. Additionally, the composition
of these orientation relations (note: 9 x 9 relations as shown in Table 5, is exploited for
the creation of new orientation relation-related knowledge).
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3 Horizontal and Vertical Constrains Block Model

To reiterate, this Horizontal and Vertical Constraints Block (HVCB) model partitions a
3-D Euclidean space of a 3-D reference region into 9 blocks, namely, left, middlex,
right, above, middley, below, left, middlez, right. The additional central block (or the
Minimum Bounding Box (MBB) of the 3-D reference region) is an intersection of the
three blocks namely: middlex, middley, and middlez, see Fig. 1). The added value of the
HVCB model is the use of intuitive (i.e commonsense) knowledge representation for 3-
D orientation relations. However, the underlying formal representation of the model is
facilitated through the use of first order logic and Boolean algebraic expressions (see
Tables 3 and 4). Other novel contributions of this research work are fostering reasoning
with partial orientation relation related knowledge (note: these are called weak rela-
tions) and also integrating mereology into the model in order to render the represen-
tation of the model more expressive.

Fig. 1. 3-D horizontal and vertical constraints block model.
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3.1 Definition and Formalisms for Unary Orientation Relations (in the 3-D
Context)

A combined boolean algebraic method, 3-D Cartesian coordinate system, and first
order logic is used to formalize the meaning of the orientation relations for an arbitrary
single-pieced 3-D region without any hole (/). Primitives used for this research are as
follows:

• Constraints for its 3-D minimum bounding box, MBB (see Fig. 1), are as follows:
x-axis - {Xmin(/), Xmax(/)}; y-axis - {Ymin(/), Ymax(/)}; z-axis - :{Zmin(/),
Zmax(/)}. The implicit sets of constraints are as follows: {Xmin(/) < Xmax(/)};
{Ymin(/) < Ymax(/)}; {Zmin(/) < Zmax(/)};

• Block, R(/), is an orientation block of the extended region, /. The set U =
{middlex(/), middley(/), middlez(/), central(/), left(/), right(/), above(/), below
(/), front(/), back(/)}.

• Set U could be further coded into subsets along the three axes: x-axis – Ux = {left
(/), middlex(/), right(/)}; y-axis – Uy = {below(/), middley(/), above(/)}; Uz =
{back(/), middlez(/), front(/)}.

Definition of all the 9 weak orientation blocks in terms of the boundaries of the
minimal bounding box of the extended region has been tabulated in Table 1.

It is noted that all the blocks in Table 1 are partially bounded except for the central
block which is the result of the three intersecting middle blocks: (middlex(/) ^ mid-
dley(/) ^ middlez(/)). The weak horizontal and vertical constraints block-related
orientation representations above could be further explicated (see Tables 3 and 4) to
derive more expressive orientation relations (including 27 orientation relations that are
similar to the direction relations discussed in [4, 5, 11].

Table 1. Formalism for weak unary orientation relations (in the 3-D Context)

Weak unary orientation relations Constraints

left(/) f x; y; zh ijx\Xminð/Þg
middlex(/) f x; y; zh ijXminð/Þ� x�Xmaxð/Þg
right(/) f x; y; zh ijx[Xmaxð/Þg
below(/) f x; y; zh ijy\Yminð/Þg
middley(/) f x; y; zh ijYminð/Þ� y�Ymaxð/Þg
above(/) f x; y; zh ijy[Ymaxð/Þg
back(/) f x; y; zh ijz\Zminð/Þg
middlez(/) f x; y; zh ijZminð/Þ� z�Zmaxð/Þg
front(/) f x; y; zh ijz[Zmaxð/Þg
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3.2 Definition andFormalisms for BinaryOrientationRelations (in the 3-D
Context)

In this paper, the 3-D HVCB binary orientation relations are coded into three cate-
gories. They are: weak 1-D binary orientation relations of the model (i.e. information of
only one dimension (x-, y-, or z-axis) is known, see Table 2); weak 2-D binary ori-
entation relations of the model (i.e. information of only two of the three dimensions (x,
y, or z) are known, see Table 2); strong 3-D binary orientation relations of the model
(i.e. information of all the three dimensions (x, y, and z) are known, see Table 3). Note
that for all the three tables (Tables 2 to 4), region a is a reference region while b is a
target region.

(1) Weak 1-D Binary Orientation Relations of the 3-D HVCB model
An exhaustive list of weak 1-D binary orientation relations is depicted in Table 2.
The binary relation left(a,b) means that b is left of a where the x-coordinate b, xb,
is always less than the minimum x-coordinate (Xmin(a)) of a’s MBB. It is con-
sidered a weak relation because it contains information of only the x-dimension
(1-D) of the model. Consequently, this means that knowledge on only one-
dimension (x, y, or z) is known (i.e. partial knowledge). An example of this is: in a
physical multi-agent system (i.e. a fleet of drones), drone a merely knows that
drone b is at its back and its representation is back(dronea, droneb).

(2) Weak 2-D Binary Orientation Relations 3-D HVCB model
In Table 3, the binary relation left(a,b)^above(a,b) means that b is left and above
of region a where the x-coordinate of region b, xb, is always less than the min-
imum x-coordinate (Xmin(a)) and its y-coordinate, yb, is always greater than the
maximum y-coordinate (Ymax(a)) of region a’s MBB. It is considered a weak
relation because it only addresses two dimensions (2-D) of the model (note: in this
example, it is the x- and y- dimensions). This means that knowledge on only two
of the three possible dimensions (x, y, or z) is known (i.e. partial knowledge). The
representation for this weak 2-D binary orientation relation is as follows:

R^S, R^T, or S^T, where R2Ux, S2Uy, and T2Uz; based on the Commutative
Law, R^S � S^R

Table 2. Formalism for Weak 1-D binary orientation relations of the 3-D HVCB model

Weak binary orientation relations Constraints

left(a,b) f x; y; zh ijxb\Xmin að Þg
middlex(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þg
right(a,b) f x; y; zh ijxb [Xmax að Þg
below(a,b) f x; y; zh ijyb\Ymin að Þg
middley(a,b) f x; y; zh ijYmin að Þ� yb �Ymax að Þg
above(a,b) f x; y; zh ijyb [Ymax að Þg
back(a,b) f x; y; zh ijzb\Zmin að Þg
middlez(a,b) f x; y; zh ijZmin að Þ� zb �Zmax að Þg
front(a,b) f x; y; zh ijzb [Zmax að Þg
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(3) Strong 3-D Binary Orientation Relations 3-D HVCB model
In Table 4, the binary relation left(a,b)^above(a,b) ^back(a,b) means that b is left,
above, and back of region a where the x-coordinate of region b, xb, is always less
than the minimum x-coordinate (Xmin(a)), its y-coordinate, yb, is always greater
than the maximum y-coordinate (Ymax(a)), and its z-coordinate, zb, is always less
than minimum z-coordinate (Zmin(a)) of region a’s MBB. It is considered a strong
relation because it addresses all the three dimensions (3-D) of the model (note: in
this example, it is the x-, y-, and z- dimensions). This means that knowledge is
considered complete. The representation for these strong 3-D binary orientations is
as follows: R^S^T, where R 2 Ux, S 2 Uy, and T 2 Uz. Once again, the Com-
mutative Law applies to R^S^T.

Table 3. Formalism for weak 2-D binary orientation relations of the 3-D HVCB model

Weak binary orientation
relations

Constraints

left(a,b)^above(a,b) f x; y; zh ijxb\Xmin að Þ ^ yb [Ymax að Þg
left(a,b)^middley(a,b) f x; y; zh ijxb\Xmin að Þ ^ Ymin að Þ� yb �Ymax að Þg
left(a,b)^below(a,b) f x; y; zh ijxb\Xmin að Þ ^ yb\Ymin að Þg
left(a,b)^back(a,b) f x; y; zh ijxb\Xmin að Þ ^ zb\Zmin að Þg
left(a,b)^middlez(a,b) f x; y; zh ijxb\Xmin að Þ ^ Zmin að Þ� zb �Zmax að Þg
left(a,b)^front(a,b) f x; y; zh ijxb\Xmin að Þ ^ zb [Zmax að Þg
middlex(a,b)^above(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þ ^ yb [Ymax að Þg
middlex(a,b)^middley(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þ ^ Ymin að Þ� yb �Ymax að Þg
middlex(a,b)^below(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þ ^ yb\Ymin að Þg
middlex(a,b)^back(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þ ^ zb\Zmin að Þg
middlex(a,b)^middlez(a,b) f x; y; zh ijXmin að Þ\xb\Xmax að Þ ^ Zmin að Þ� zb �Zmax að Þg
middlex(a,b)^front(a,b) f x; y; zh ijXmin að Þ� xb �Xmax að Þ ^ zb [ Zmax að Þg
right(a,b)^above(a,b) f x; y; zh ijxb [Xmax að Þ ^ yb [Ymax að Þg
right(a,b)^middley(a,b) f x; y; zh ijxb [Xmax að Þ ^ Ymin að Þ� yb �Ymax að Þg
right(a,b)^below(a,b) f x; y; zh ijxb [Xmax að Þ ^ yb\Ymin að Þg
right(a,b)^back(a,b) f x; y; zh ijxb [Xmax að Þ ^ zb\Zmin að Þg
right(a,b)^middlez(a,b) f x; y; zh ijxb [Xmax að Þ ^ Zmin að Þ� zb �Zmax að Þg
right(a,b)^front(a,b) f x; y; zh ij xb [Xmax að Þ ^ zb [Zmax að Þg
below(a,b)^back(a,b) f x; y; zh ij yb\Ymin að Þ ^ zb\Zmin að Þg
below(a,b)^middlez(a,b) f x; y; zh ijyb\Ymin að Þ ^ Zmin að Þ� zb �Zmax að Þg
below(a,b)^front(a,b) f x; y; zh ijyb\Ymin að Þ ^ zb [Zmax að Þg
middley(a,b)^back(a,b) f x; y; zh ijYmin að Þ� yb �Ymax að Þ ^ zb\Zmin að Þg
middley(a,b)^middlez(a,b) f x; y; zh ijYmin að Þ� yb �Ymax að Þ ^ Zmin að Þ� zb �Zmax að Þg
middley(a,b)^front(a,b) f x; y; zh ijYmin að Þ� yb �Ymax að Þ ^ zb [Zmax að Þg
above(a,b)^back(a,b) fhx, y, zij yb [Ymax að Þ ^ zb\Zmin að Þg
above(a,b)^middlez(a,b) fhx, y, zijyb [Ymax að ÞÞ ^ Zmin að Þ� zb �Zmax að Þg
above(a,b)^front(a,b) fhx, y, zij yb [Ymax að Þ ^ zb [Zmax að Þg
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4 Composition Table

Composition is a common inference mechanism for a wide range of relations and has
been exploited for automated reasoning. It is employed for reasoning about temporal
descriptions of events based on intervals [1], topological relations [3, 9, 19], and
direction relations [7, 13, 15, 25]. To reiterate, one of the main advantages of using
composition tables is that they can lead to tractable computation of significant classes
of inference.

Given the relation between a and b, the relation between b and c, a composition
table allows for concluding about the relation between a and c. [3] defines the concept
of the composition of two binary relations as follows.

Given a theory H which is used to define a set ß of mutually exhaustive and
pairwise disjoint dyadic relations (i.e. a basis set). The composition, Comp(R1,R2), of
two relations R1, and R2 which are taken from ß is defined to be the disjunction of all
relations R3 in ß, such that, for arbitrary constants a, b, c, the formula R1(a,b) ^ R2(b,
c) ^ R3(a,c) is consistent with H.

4.1 Composition of Orientation Relations

The composition of two relations, R and S, is written as (R;S). It is defined by the
following equivalence:

8p;r½ðR; SÞ p; rð Þ $ 9q½R p; qð Þ ^ S q; rð Þ�

As previously mentioned, in the 3-D HVCB model, there are 9 weak orientation
blocks: set U = {middlex(/), middley(/), middlez(/), central(/), left(/), right(/),
above(/), below(/), front(/), back(/)}. However, the central block is derived from the
intersection of three blocks namely: middlex, middley, and middlez. Thus, composition
is only conducted for the other 9 weak orientation blocks (see Table 5 and these
composition results will be stored in a knowledge base to) (note: due to space con-
straints, abbreviations are used to represent the orientation relations). Examples 1 and 2
depict how the composition results are derived.

Example 1: L(a,b) ^ L(b,c)
Apply the constraints in Table 2 and it will be found that fhx, y, zijxc\

Xmin bð Þ\Xmin að Þg. Thus, the composition outcome � L(a,c)

Example 2: L(a,b) ^ Mx(b,c)
Apply the constraints in Table 2 and it will be found that fhx,y,zijXmin bð Þ\xc\

Xmax bð Þ\Xmin að Þg. Thus, the composition outcome � L(a,c)
This paper demonstrates how composition of weak and strong 3-D orientation

relations in the HVCB model could be generated based on the composition results in
Table 5. They are: 1-Dx1-D (see Table 5), 1-Dx2-D and 1-Dx3-D (see Table 7);
2-Dx1-D, 2-Dx2-D, 2-Dx3-D (note: all these three sets of compositions will not be
shown in this paper due to space constraints); 3-Dx1-D, 3-Dx2-D, 3-Dx3-D (note: all
these sets of composition outcomes will not be shown).
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Composition rules (which could be exploited as inference rules in a knowledge
base) for the composition results are shown in Table 1. To reiterate: set U = {mid-
dlex(/), middley(/), middlez(/), central(/), left(/), right(/), above(/), below(/),
front(/), back(/)}. In Table 6, the following is a set of inverses: {L(or R−1),
R (or L−1)}, {Be(or A−1), A(or Be−1)}, and {Ba(or F−1), F(or Ba−1)}.

Composition rules are as follows:

• Composition of same orientation relation block:

8p;r½ðR;RÞ p; rð Þ $ 9q½R p,qð Þ ^ R q,rð Þ� � R p,rð Þ; where R 2 U;

• Composition of orientation relations in the same dimension (x-, y-, or z-) (note:
t 2 {x, y, z}, Rt(p,q) 2 {Ux, Uy, Uz}, and Mt(p,q) 2 {Mx, My, Mz}):

8p;r½ðMt;RtÞ p; rð Þ $ 9q½Mt p; qð Þ ^ Rt q; rð Þ� � Mt p; rð Þ 2 Rt p; rð Þ;

8p;r½ðRt;MtÞ p; rð Þ $ 9q½Rt p; qð Þ ^Mt q; rð Þ� � Rt p; rð Þ;

8p;r½ðRt;R�1
t Þ p; rð Þ $ 9q½Rt p; qð Þ ^ R�1

t q; rð Þ� � Ut p; rð Þ

• Composition of orientation relations in orthogonal dimensions (x-axis ⊥ y-axis
⊥ z-axis) (note: t 2 {x, y, z}, Rt(p,q) 2 {Ux, Uy, Uz}, and S⊥t(p,q) represents
orientation relations that are not orthogonal to Rt(p,q))

8p;r½ðRt; S?tÞ p; rð Þ $ 9q½Rt p; qð Þ ^ S?t q; rð Þ� � U p; rð Þ

The inverse composed relations in Table 5 have been tabulated in Table 6. How-
ever, the inverse relations will be organized according to the three dimensions: x, y, and

Table 5. Composition of HVCB orientation relations (1-D X 1-D)

L(b,c) Mx(b,c) R(b,c) A(b,c) My(b,c) Be(b,c) Ba(b,c) Mz(b,c) F(b,c)

L(a,b) L(a,c) L(a,c) Ux(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c)
Mx(a,b) (Mx_L)

(a,c)
Mx(a,c) (Mx_R)

(a,c)
U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c)

R(a,b) Ux(a,c) R(a,c) R(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c)

A(a,b) U(a,c) U(a,c) U(a,c) A(a,c) A(a,c) Uy(a,c) U(a,c) U(a,c) U(a,c)
My(a,b) U(a,c) U(a,c) U(a,c) (My_A)

(a,c)
My(a,c) (My_Be)

(a,c)
U(a,c) U(a,c) U(a,c)

Be(a,b) U(a,c) U(a,c) U(a,c) Uy(a,c) Be(a,c) Be(a,c) U(a,c) U(a,c) U(a,c)

Ba(a,b) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) Ba(a,c) Ba(a,c) Uz(a,c)
Mz(a,b) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) (Mz_Ba)

(a,c)
Mz(a,c) (Mz_F)

(a,c)
F(a,b) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) U(a,c) Uz(a,c) F(a,c) F(a,c)

Note: L-left; Mx-middlex, R-right; A-above, My-middley, Be-below, Ba-back, Mz-middlez, and F-front, Ux =
{L, Mx, R}, Uy = {Be, My, A}, Uz = {Ba, Mz, F}, U = {Ux, Uy, Uz},
(R_S)(a,c) � [R(a,c)_S(a,c)]
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z. An example of application could be in a fleet of drones with one master agent while
the rest are slave agents. In this context, only the master agent knows the orientation of
all the slaves and not vice versa. Assume a as the master agent while c, one of the slave
agents. The slave agent is known/computed to be above the master agent (i.e A(a,c)).
Use Table 6, and it could be concluded that the master agent is below the slave agent
(i.e. Be(c,a)).

In the previous sections, are discussion of 1-D, 2-D, and 3-D HVCB orientation
relations. In this section, composition outcomes for the following are provided: 1-Dx1-D,
1-Dx2-D, 1-Dx3-D (see Table 7 for the x-dimension which is transferrable to the y- and
z-dimensions); 2-Dx1-D, 2-Dx2-D, 2-Dx3-D (one example each and is tabulated in
Table 8); 3-Dx1-D, 3-Dx2-D, 3-Dx3-D (one example each and is tabulated in Table 8).
The outcome of the 1-Dx1-D composition has been tabulated in Table 5.

Table 6. INVERSE OF THE COMPOSITION OF HVCB ORIENTATION RELATIONS (1-D X 1-D)

x-dimension
Sx(a,c)

Sx
−1 (a,c) or

Tx(c,a)
y-dimension
Sy(a,c)

Sy
−1 (a,c) or

Ty(c,a)
z-dimension
Sz(a,c)

Sz
−1 (a,c) or

Tz(c,a)

L(a,c) R(c,a) A(a,c) Be(c,a) Ba(a,c) F(c,a)
Mx(a,c) Ux(c,a) My(a,c) Uy(c,a) Mz(a,c) Uz(c,a)
R(a,c) L(c,a) Be(a,c) A(c,a) F(a,c) Ba(c,a)

Note: L-left; Mx-middlex, R-right; A-above, My-middley, Be-below, Ba-back, Mz-middlez, and
F-front, Ux = {L, Mx, R}, Uy = {Be, My, A}, Uz = {Ba, Mz, F}

Table 7. Composition of (1-D X 2-D) and (1-D X 3-D) HVCB orientation relations

Composition Composition
Outcome

Composition Composition
Outcome

1-D 2-D 1-D x 2-D 3-D 1-D x 3-D

L(a,b) L(b,c)^Be(b,c)
L(b,c)^Ba(b,c)

L(a,c) L(b,c)^Be(b,c)^Ba(b,c) L(a,c)
L(b,c)^Be(b,c)^Mz(b,c) L(a,c)
L(b,c)^Be(b,c)^F(b,c) L(a,c)

L(b,c)^My(b,c)
L(b,c)^Mz(b,c)

L(a,c) L(b,c)^My(b,c)^Ba(b,c) L(a,c)
L(b,c)^My(b,c)^Mz(b,c) L(a,c)
L(b,c)^My(b,c)^F(b,c) L(a,c)

L(b,c)^A(b,c)
L(b,c)^F(b,c)

L(a,c) L(b,c)^A(b,c)^Ba(b,c) L(a,c)
L(b,c)^A(b,c)^Mz(b,c) L(a,c)
L(b,c)^A(b,c)^F(b,c) L(a,c)

Mx(b,c)^Be(b,c)
Mx(b,c)^Ba(b,c)

L(a,c) Mx(b,c)^Be(b,c)^Ba(b,c) L(a,c)
Mx(b,c)^Be(b,c)^Mz(b,c) L(a,c)
Mx(b,c)^Be(b,c)^F(b,c) L(a,c)

Mx(b,c)^My(b,c)
Mx(b,c)^Mz(b,c)

L(a,c) Mx(b,c)^My(b,c)^Ba(b,c) L(a,c)
Mx(b,c)^My(b,c)^Mz(b,c) L(a,c)
Mx(b,c)^My(b,c)^F(b,c) L(a,c)

(continued)
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Table 7. (continued)

Composition Composition
Outcome

Composition Composition
Outcome

1-D 2-D 1-D x 2-D 3-D 1-D x 3-D

Mx(b,c)^A(b,c)
Mx(b,c)^F(b,c)

L(a,c) Mx(b,c)^A(b,c)^Ba(b,c) L(a,c)

Mx(b,c)^A(b,c)^Mz(b,c) L(a,c)
Mx(b,c)^A(b,c)^F(b,c) L(a,c)

R(b,c)^Be(b,c)
R(b,c)^Ba(b,c)

Ux(a,c) R(b,c)^Be(b,c)^Ba(b,c) Ux(a,c)
R(b,c)^Be(b,c)^Mz(b,c) Ux(a,c)
R(b,c)^Be(b,c)^F(b,c) Ux(a,c)

R(b,c)^My(b,c)
R(b,c)^Mz(b,c)

Ux(a,c) R(b,c)^My(b,c)^Ba(b,c) Ux(a,c)
R(b,c)^My(b,c)^Mz(b,c) Ux(a,c)
R(b,c)^My(b,c)^F(b,c) Ux(a,c)

R(b,c)^A(b,c)
R(b,c)^F(b,c)

Ux(a,c) R(b,c)^A(b,c)^Ba(b,c) Ux(a,c)
R(b,c)^A(b,c)^Mz(b,c) Ux(a,c)
R(b,c)^A(b,c)^F(b,c) Ux(a,c)

1-D 2-D 1-D x 2-D 3-D 1-D x 3-D
Mx(a,b) L(b,c)^Be(b,c)

L(b,c)^Ba(b,c)
(Mx_ L)(a,c) L(b,c)^Be(b,c)^Ba(b,c) (Mx_ L)(a,c)

L(b,c)^Be(b,c)^Mz(b,c) (Mx_ L)(a,c)
L(b,c)^Be(b,c)^F(b,c) (Mx_ L)(a,c)

L(b,c)^My(b,c)
L(b,c)^Mz(b,c)

(Mx_ L)(a,c) L(b,c)^My(b,c)^Ba(b,c) (Mx_ L)(a,c)
L(b,c)^My(b,c)^Mz(b,c) (Mx_ L)(a,c)
L(b,c)^My(b,c)^F(b,c) (Mx_ L)(a,c)

L(b,c)^A(b,c)
L(b,c)^F(b,c)

(Mx_ L)(a,c) L(b,c)^A(b,c)^Ba(b,c) (Mx_ L)(a,c)
L(b,c)^A(b,c)^Mz(b,c) (Mx_ L)(a,c)
L(b,c)^A(b,c)^F(b,c) (Mx_ L)(a,c)

Mx(b,c)^Be(b,c)
Mx(b,c)^Ba(b,c)

Mx(a,c) Mx(b,c)^Be(b,c)^Ba(b,c) Mx(a,c)
Mx(b,c)^Be(b,c)^Mz(b,c) Mx(a,c)
Mx(b,c)^Be(b,c)^F(b,c) Mx(a,c)

Mx(b,c)^My(b,c)
Mx(b,c)^Mz(b,c)

Mx(a,c) Mx(b,c)^My(b,c)^Ba(b,c) Mx(a,c)
Mx(b,c)^My(b,c)^Mz(b,c) Mx(a,c)
Mx(b,c)^My(b,c)^F(b,c) Mx(a,c)

Mx(b,c)^A(b,c)
Mx(b,c)^F(b,c)

Mx(a,c) Mx(b,c)^A(b,c)^Ba(b,c) Mx(a,c)
Mx(b,c)^A(b,c)^Mz(b,c) Mx(a,c)
Mx(b,c)^A(b,c)^F(b,c) Mx(a,c)

R(b,c)^Be(b,c)
R(b,c)^Ba(b,c)

(Mx_ R)(a,c) R(b,c)^Be(b,c)^Ba(b,c) (Mx_ R)(a,c)
R(b,c)^Be(b,c)^Mz(b,c) (Mx_ R)(a,c)
R(b,c)^Be(b,c)^F(b,c) (Mx_ R)(a,c)

R(b,c)^My(b,c)
R(b,c)^Mz(b,c)

(Mx_ R)(a,c) R(b,c)^My(b,c)^Ba(b,c) (Mx_ R)(a,c)
R(b,c)^My(b,c)^Mz(b,c) (Mx_ R)(a,c)

(continued)
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Next, is an example of composition for 1-Dx2-D followed by 1-Dx3-D (both of
which have been tabulated in Table 7).

Example 3: L(a,b) ^ (L^Be)(b,c)
Apply Idempotent Law and the equivalence is:

Table 7. (continued)

Composition Composition
Outcome

Composition Composition
Outcome

1-D 2-D 1-D x 2-D 3-D 1-D x 3-D

R(b,c)^My(b,c)^F(b,c) (Mx_ R)(a,c)

R(b,c)^A(b,c)
R(b,c)^F(b,c)

(Mx_ R)(a,c) R(b,c)^A(b,c)^Ba(b,c) (Mx_ R)(a,c)
R(b,c)^A(b,c)^Mz(b,c) (Mx_ R)(a,c)
R(b,c)^A(b,c)^F(b,c) (Mx_ R)(a,c)

1-D 2-D 1-D x 2-D 3-D 1-D x 3-D
R(a,b) L(b,c)^Be(b,c)

L(b,c)^Ba(b,c)
Ux(a,c) L(b,c)^Be(b,c)^Ba(b,c) Ux(a,c)

L(b,c)^Be(b,c)^Mz(b,c) Ux(a,c)
L(b,c)^Be(b,c)^F(b,c) Ux(a,c)

L(b,c)^My(b,c)
L(b,c)^Mz(b,c)

Ux(a,c) L(b,c)^My(b,c)^Ba(b,c) Ux(a,c)
L(b,c)^My(b,c)^Mz(b,c) Ux(a,c)
L(b,c)^My(b,c)^F(b,c) Ux(a,c)

L(b,c)^A(b,c)
L(b,c)^F(b,c)

Ux(a,c) L(b,c)^A(b,c)^Ba(b,c) Ux(a,c)
L(b,c)^A(b,c)^Mz(b,c) Ux(a,c)
L(b,c)^A(b,c)^F(b,c) Ux(a,c)

Mx(b,c)^Be(b,c)
Mx(b,c)^Ba(b,c)

R(a,c) Mx(b,c)^Be(b,c)^Ba(b,c) R(a,c)
Mx(b,c)^Be(b,c)^Mz(b,c) R(a,c)
Mx(b,c)^Be(b,c)^F(b,c) R(a,c)

Mx(b,c)^My(b,c)
Mx(b,c)^Mz(b,c)

R(a,c) Mx(b,c)^My(b,c)^Ba(b,c) R(a,c)
Mx(b,c)^My(b,c)^Mz(b,c) R(a,c)
Mx(b,c)^My(b,c)^F(b,c) R(a,c)

Mx(b,c)^A(b,c)
Mx(b,c)^F(b,c)

R(a,c) Mx(b,c)^A(b,c)^Ba(b,c) R(a,c)
Mx(b,c)^A(b,c)^Mz(b,c) R(a,c)
Mx(b,c)^A(b,c)^F(b,c) R(a,c)

R(b,c)^Be(b,c)
R(b,c)^Ba(b,c)

R(a,c) R(b,c)^Be(b,c)^Ba(b,c) R(a,c)
R(b,c)^Be(b,c)^Mz(b,c) R(a,c)
R(b,c)^Be(b,c)^F(b,c) R(a,c)

R(b,c)^My(b,c)
R(b,c)^Mz(b,c)

R(a,c) R(b,c)^My(b,c)^Ba(b,c) R(a,c)
R(b,c)^My(b,c)^Mz(b,c) R(a,c)
R(b,c)^My(b,c)^F(b,c) R(a,c)

R(b,c)^A(b,c)
R(b,c)^F(b,c)

R(a,c) R(b,c)^A(b,c)^Ba(b,c) R(a,c)
R(b,c)^A(b,c)^Mz(b,c) R(a,c)
R(b,c)^A(b,c)^F(b,c) R(a,c)
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Table 8. Examples of composition of {2-D, 3-D} X {1-D, 2-D, 3-D} HVCB orientation
relations

Composition Composition process and outcome

2-D 1-D Use Idempotent Law
½Be a,bð Þ ^Mx b,cð Þ� ^ ½F a,bð Þ ^Mx b,cð Þ�
� U a,cð Þ ^ U a,cð Þ � U a,cð Þ

Be(a,b) ^
F(a,b)

Mx(b,c)

2-D 2-D Use Idempotent and Distributive Laws
½Be a,bð Þ ^ F a,bð Þ� ^ ½Mx b,cð Þ ^My b,cð Þ�
� Be a,bð Þ ^ ½Mx b,cð Þ ^My b,cð Þ�^
F a,bð Þ ^ ½Mx b,cð Þ ^My b,cð Þ�
� ½Be a,bð Þ ^Mx b,cð Þ� ^ ½Be a,bð Þ ^My b,cð Þ�^
½F a,bð Þ ^Mx b,cð Þ� ^ ½F a,bð Þ ^My b,cð Þ�^
� U a,cð Þ ^ Be a,cð Þ ^ U a,cð Þ ^ U a,cð Þ
� Be a,cð Þ

Be(a,b) ^
F(a,b)

Mx(b,c) ^My(b,c)

2-D 3-D Use Idempotent and Distributive Laws
½Be a,bð Þ ^ F a,bð Þ� ^ ½Mx b,cð Þ ^My b,cð Þ ^ F b,cð Þ�
� Be a,bð Þ ^ ½Mx b,cð Þ ^My b,cð Þ ^ F b,cð Þ�^
F a,bð Þ ^ ½Mx b,cð Þ ^My b,cð ÞÞ ^ F b,cð Þ�
� ½Be a,bð Þ ^Mx b,cð Þ� ^ ½Be a,bð Þ ^My b,cð Þ�^
½Be a,bð Þ ^ F b,cð Þ�^
½F a,bð Þ ^Mx b,cð Þ� ^ ½F a,bð Þ ^My b,cð Þ�^
½F a,bð Þ ^ F b,cð Þ�
� U a,cð Þ ^ Be a,cð Þ ^ U a,cð Þ ^ U a,cð Þ ^ U a,cð Þ ^ F a,cð Þ
� Be a,cð Þ ^ F a,cð Þ

Be(a,b) ^
F(a,b)

Mx(b,c) ^My(b,c)
^ F(b,c)

3-D 3-D Use Idempotent and Distributive Laws
½Mx a,bð Þ ^ Be a,bð Þ ^ F a,bð Þ�
^ ½Mx b,cð Þ ^My b,cð Þ ^ F b,cð Þ�
� Mx a,bð Þ ^ ½Mx b,cð Þ ^My b,cð Þ ^ F b,cð Þ�^
Be a,bð Þ ^ ½Mx b,cð Þ ^My b,cð Þ ^ F b,cð Þ�^
F a,bð Þ ^ ½Mx b,cð Þ ^My b,cð ÞÞ ^ F b,cð Þ�
� ½Mx a,bð Þ ^Mx b,cð Þ� ^ ½Mx a,bð Þ ^My b,cð Þ�^
½Mx a,bð Þ ^ F b,cð Þ�^
½Be a,bð Þ ^Mx b,cð Þ� ^ ½Be a,bð Þ ^My b,cð Þ�^
½Be a,bð Þ ^ F b,cð Þ�^
½F a,bð Þ ^Mx b,cð Þ� ^ ½F a,bð Þ ^My b,cð Þ�^
½F a,bð Þ ^ F b,cð Þ�
� Mx a,cð Þ ^ U a,cð Þ ^ U a,cð Þ^
U a,cð Þ ^ Be a,cð Þ ^ U a,cð Þ^
U a,cð Þ ^ U a,cð Þ ^ F a,cð Þ
� Mx a,cð Þ ^ Be a,cð Þ ^ F a,cð Þ
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[L(a,b) ^ L(b,c)] ^ [L(a,b) ^ Be(b,c)] (note: refer to Table 5 for the composition
outcome of each component)

� L(a,c) ^ U(a,c) � L(a,c)

Example 4: L(a,b) ^ [L(b,c)^Be(b,c)^Ba(b,c)]
Apply Commutative Law and the equivalence is:
[L(a,b) ^ L(b,c)] ^ [L(a,b) ^ Be(b,c)] ^ [L(a,b) ^ Ba(b,c)]
� L(a,c) ^ U(a,c) ^ U(a,c) � L(a,c)
The same set of composition rules for 1-Dx1-D composition applies to the com-

position of 2-D and 3-D HVCB orientation relations.

5 Hybrid Mereology, Horizontal and Vertical Constraints
Block Model

In [14, 15], a formula (obtained through case analyses) have been introduced for
computing the composition of “whole” and “part” cardinal direction relations. These
are adapted for the “whole” and “part” HVCB binary orientations. Assume the entire
x-dimension (i.e “whole”) of a target region b is in the left block of reference region, a,
then the representation is as follows: Ax[left(a,b)]. However, if the x-dimension of the
target region b is in the left and middlex blocks of region a, then the representation is as
follows: Px[left(a,b)]^Px[middlex(a,b)].

5.1 Definition of “Whole” and “Part” Region in a Block Model

Formal definitions of all the specific “whole” orientation relations have been tabulated
in Table 9.

The general representation for the relations is as follows:

Table 9. Formal definitions of “Whole” HVCB orientation relations

“Whole” binary orientation relations Constraints

Ax[left(a,b)] fhx, y, zijXmax bð Þ\Xmin að Þg
Ax[middlex(a,b)] fhx, y, zijXmin að Þ�Xmin bð Þ ^ Xmax bð Þ�Xmax að Þg
Ax[right(a,b)] fhx, y, zijXmin bð Þ[Xmax að Þg
Ay[below(a,b)] fhx, y, zijYmax bð Þ\Ymin að Þg
Ay[middley(a,b)] fhx, y, zijYmin að Þ�Ymin bð Þ ^ Ymax bð Þ�Ymax að Þg
Ay[above(a,b)] fhx, y, zijYmax bð Þ[Ymax að Þg
Az[back(a,b)] fhx, y, zijZmin bð Þ\Zmin að Þg
Az[middlez(a,b)] fhx, y, zijZmin að Þ�Zmin bð Þ ^ Zmax bð Þ�Zmax að Þg
Az[front(a,b)] fhx, y, zijZmax bð Þ[Zmax að Þg
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• At[R(p,q)]: the entire t-dimension of q is in R(p), where R2Ut, where t 2 {x, y, z}

Assume the part of the x-dimension of a target region b is in the left block of
reference region, a, then the representation is as follows: Px[left(a,b)]. The formal
definition of all the specific “part” orientation relations have been tabulated in Table 9
while the general representation for the relations are as follows:

• Pt[R(p,q)] : part of the t-dimension of q is in R(p), where R2Ut, where t 2 {x,y,z}

Based on the definitions presented in Tables 9 and 10, different combinations of
“whole” and “part” orientation relations could be formulated for 2-D or 3-D of the
model (see Table 11). The formal definitions will be based on the definitions in
Tables 11 and X. The universal set for the “whole” and “part” relation primitives, U =
{Ax, Ay, Az, Px, Py, Pz}. The number of different combinations for the 2-D “whole” and

Table 10. Formal definitions of “Part” HVCB orientation relations

“Part” binary
orientation
relations

Constraints

Px[left(a,b)] fhx, y, zijXmin bð Þ\Xmin að Þ ^ Xmax bð Þ[Xmin að Þg
Px[middlex(a,b)] fhx, y, zij½Xmin bð Þ\Xmin að Þ ^ Xmax bð Þ[Xmin að Þ ^ Xmax bð Þ�Xmax að Þ�

_ ½Xmin bð Þ�Xmin að Þ ^ Xmin bð Þ�Xmax að Þ ^ Xmax bð Þ[Xmax að Þ�
_ ½Xmin bð Þ\Xmin að Þ ^ Xmax bð Þ[Xmax að Þg

Px[right(a,b)] fhx, y, zijXmin bð Þ\Xmax að Þ ^ Xmax bð Þ[Xmax að Þg
Py[below(a,b)] fhx, y, zijYmin bð Þ\Ymin að Þ ^ Ymax bð Þ[Ymin að Þg
Py[middley(a,b)] fhx, y, zij½Ymin bð Þ\Ymin að Þ ^ Ymax bð Þ[Ymin að Þ ^ Ymax bð Þ�Ymax að Þ�

_ ½Ymin bð Þ�Ymin að Þ ^ Ymin bð Þ�Ymax að Þ ^ Ymax bð Þ[Ymax að Þ�
_ ½Ymin bð Þ\Ymin að Þ ^ Ymax bð Þ[Ymax að Þg

Py[above(a,b)] fhx, y, zijYmin bð Þ\Ymax að Þ ^ Ymax bð Þ[Ymax að Þg
Pz[back(a,b)] fhx, y, zijZmin bð Þ\Zmin að Þ ^ Zmax bð Þ[Zmin að Þg
Pz[middlez(a,b)] fhx, y, zij½Zmin bð Þ\Zmin að Þ ^ Zmax bð Þ[Zmin að Þ ^ Zmax bð Þ�Zmax að Þ�

_ ½Zmin bð Þ�Zmin að Þ ^ Zmin bð Þ�Zmax að Þ ^ Zmax bð Þ[Zmax að Þ�
_ ½Zmin bð Þ\Zmin að Þ ^ Zmax bð Þ[Zmax að Þg

Pz[front(a,b)] fhx, y, zijZmin bð Þ\Zmax að Þ ^ Zmax bð Þ[Zmax að Þg

Table 11. Combination of “Whole” and “Part” HVCB orientation relations

Combination of “whole” and “part” orientation relations
2-D 3-D

Ax[Rx(a,b)] ^ Ay[Ry(a,b)] Ax[Rx(a,b)] ^ Ay[Ry(a,b)] ^ Az[Rz(a,b)]
Ax[Rx(a,b)] ^ Az[Rz(a,b)] Ax[Rx(a,b)] ^ Ay[Ry(a,b)] ^ Pz[Rz(a,b)]
Ax[Rx(a,b)] ^ Py[Ry(a,b)] Ax[Rx(a,b)] ^ Py[Ry(a,b)] ^ Az[Rz(a,b)]
Ax[Rx(a,b)] ^ Pz[Ry(a,b)] Ax[Rx(a,b)] ^ Py[Ry(a,b)] ^ Pz[Rz(a,b)]

(continued)
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“part” orientation relations are: C(6,2) (note: the following cannot co-exist – Ax and Px,
Ay and Py, Az and Pz) minus 3. The outcome of the total number of possible relations is
15-3 equals to 12 possible combinations. As for the 3-D “whole” and “part” relations,
the total number of combinations is C(6,3) minus 12 which is equal to 8.

5.2 Composition of “Whole” and “Part” Region in a Block

The composition of two orthogonal blocks is not considered in Tables 12 and 13
because based on the results shown in Table 5 the composition outcome is always U.

Table 11. (continued)

Combination of “whole” and “part” orientation relations
2-D 3-D

Px[Rx(a,b)] ^ Ay[Ry(a,b)] Px[Rx(a,b)] ^ Ay[Ry(a,b)] ^ Az[Rz(a,b)]
Px[Rx(a,b)] ^ Az[Ry(a,b)] Px[Rx(a,b)] ^ Ay[Ry(a,b)] ^ Pz[Rz(a,b)]
Px[Rx(a,b)] ^ Py[Ry(a,b)] Px[Rx(a,b)] ^ Py[Ry(a,b)] ^ Az[Rz(a,b)]
Px[Rx(a,b)] ^ Pz[Ry(a,b)] Px[Rx(a,b)] ^ Py[Ry(a,b)] ^ Pz[Rz(a,b)]
Ay[Ry(a,b)] ^ Az[Rz(a,b)]
Ay[Ry(a,b)] ^ Pz[Rz(a,b)]
Py[Ry(a,b)] ^ Az[Rz(a,b)]
Py[Ry(a,b)] ^ Pz[Rz(a,b)]

Table 12. Composition of “Whole” HVCB orientation relations

Composition of “Whole”
orientation relations

Outcome of composition

X-Dimension
Ax[L(a,b)] Ax[L(b,c)] Ax[L(a,c)]

Ax[Mx(b,c)] Ax[L(a,c)]
Ax[R(b,c)] Ax[Ux(a,c)] _ Px[L(a,c)] ^ Px[Mx(a,c)] _

Px[Mx(a,c)] ^ Px[R(a,c)] _ Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,
c)]

Ax[Mx(a,b)] Ax[L(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Px[L(a,c)] ^ Px[Mx(a,c)]
Ax[Mx(b,c)] Ax[Mx(a,c)]
Ax[R(b,c)] Ax[Mx(a,c)] _ Ax[R(a,c)] _ Px[Mx(a,c)] ^ Px[R(a,c)]

Ax[R(a,b)] Ax[L(b,c)] Ax[Ux(a,c)] _ Px[L(a,c)] ^ Px[Mx(a,c)] _
Px[Mx(a,c)] ^ Px[R(a,c)] _ Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,
c)]

Ax[Mx(b,c)] Ax[R(a,c)]
Ax[R(b,c)] Ax[R(a,c)]

(continued)
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Next, it is shown how the composition outcome in Tables 7 and 8 is applied to a
physical context. Let us assume that we have three geographical objects in a scene
(cottage, mountain range and a lake). Their relative locations have been depicted in
Fig. 2. There are three views: pan (Fig. 2(a)); front view (Fig. 2(b)); lateral or left-side
view (Fig. 2(c)). The object cottage is reference object: (a) while its target object is the
mountain range; (b) however, when b is a reference object, its target object is the lake;
(c) the relative “whole” and “part” orientation relations abstracted from Fig. 2 are
tabulated in Table 14 and the composition outcome is tabulated in the same table. The
composition outcome shown in Table 14 is:

Table 12. (continued)

Composition of “Whole”
orientation relations

Outcome of composition

Y-Dimension
Ay[Be(a,b)] Ay[Be(b,c)] Ay[Be(a,c)]

Ay[My(b,c)] Ay[Be(a,c)]
Ay[A(b,c)] Ay[Uy(a,c)] _ Py[Be(a,c)] ^ Py[My(a,c)] _

Py[My(a,c)] ^ Py[A(a,c)] _ Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A
(a,c)]

Ay[My(a,b)] Ay[Be(b,c)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Py[Be(a,c)] ^ Py[My(a,c)]
Ay[My(b,c)] Ay[My(a,c)]
Ay[A(b,c)] Ay[My(a,c)] _ Ay[A(a,c)] _ Py[My(a,c)] ^ Py[A(a,c)]

Ay[A(a,b)] Ay[Be(b,c)] Ay[Uy(a,c)] _ Py[Be(a,c)] ^ Py[My(a,c)] _
Py[My(a,c)] ^ Py[A(a,c)] _ Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A
(a,c)]

Ay[My(b,c)] Ay[A(a,c)]
Ay[A(b,c)] Ay[A(a,c)]

Z-Dimension
Az[Ba(a,b)] Az[Ba(a,b)] Az[Ba(a,c)]

Az[Mz(a,b)] Az[Ba(a,c)]
Az[F(a,b)] Az[Uz(a,c)] _ Pz[Ba(a,c)] ^ Pz[Mz(a,c)] _

Pz[Mz(a,c)] ^ Pz[F(a,c)] _ Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,
c)]

Az[Mz(a,b)] Az[Ba(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)] _ Pz[Ba(a,c)] ^ Pz[Mz(a,c)]
Az[Mz(a,b)] Az[Mz(a,c)]
Az[F(a,b)] Az[Mz(a,c)] _ Az[F(a,c)] _ Pz[Mz(a,c)] ^ Pz[F(a,c)]

Az[F(a,b)] Az[Ba(a,b)] Az[Uz(a,c)] _ Pz[Ba(a,c)] ^ Pz[Mz(a,c)] _
Pz[Mz(a,c)] ^ Pz[F(a,c)] _ Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,
c)]

Az[Mz(a,b)] Az[F(a,c)]
Az[F(a,b)] Az[F(a,c)]
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Table 13. Composition of horizontal and vertical constraints ‘Whole’ and ‘part block relations
(3-D X 3-D)

Composition of “Whole”
and “Part” orientation
relations

Outcome of composition

X-Dimension
Ax[L(a,b)] Px[L(b,c)] Ax[L(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[Mx(b,c)] Ax[L(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[R(b,c)] Ax[L(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Ax[Mx(a,b)] Px[L(b,c)] Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[Mx(b,c)] Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[R(b,c)] Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Ax[R(a,b)] Px[L(b,c)] Ax[R(a,c)] _ {Px[Mx(a,c)] ^ Px[R(a,c)] } _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[Mx(b,c)] Ax[R(a,c)] _ {Px[Mx(a,c)] ^ Px[R(a,c)] } _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[R(b,c)] Ax[R(a,c)] _ {Px[Mx(a,c)] ^ Px[R(a,c)] } _

{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[L(a,b)] Ax[L(b,c)] Ax[L(a,c)]

Ax[Mx(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Ax[R(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Px[Mx(a,b)] Ax[L(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]}
Ax[Mx(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _

{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Ax[R(b,c)] Ax[Mx(a,c)] _ Ax[R(a,c)] _ {Px[Mx(a,c)] ^ Px[R(a,c)]}
Px[R(a,b)] Ax[L(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _

{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Ax[Mx(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Ax[R(b,c)] Ax[R(a,c)]

(continued)
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Table 13. (continued)

Composition of “Whole”
and “Part” orientation
relations

Outcome of composition

Px[L(a,b)] Px[L(b,c)] Ax[L(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Px[Mx(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _ {Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R
(a,c)]}

Px[R(b,c)] Ax[Mx(a,c)] _ Ax[R(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _ {Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R
(a,c)]}

Px[Mx(a,b)] Px[L(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Px[Mx(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Px[R(b,c)] Ax[Mx(a,c)] _ Ax[R(a,c)] _ {Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Px[R(a,b)] Px[L(b,c)] Ax[L(a,c)] _ Ax[Mx(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _ {Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R
(a,c)]}

Px[Mx(b,c)] Ax[Mx(a,c)] _ Ax[R(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _ {Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R
(a,c)]}

Px[R(b,c)] Ax[R(a,c)] _ {Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}

Y-Dimension
Ay[Be(a,b)] Py[Be(b,c)] Ay[Be(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[My(b,c)] Ay[Be(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[A(b,c)] Ay[Be(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Ay[My(a,b)] Py[Be(b,c)] Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[My(b,c)] Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[A(b,c)] Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Ay[A(a,b)] Py[Be(b,c)] Ay[A(a,c)] _ {Py[My(a,c)] ^ Py[A(a,c)] } _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[My(b,c)] Ay[A(a,c)] _ {Py[My(a,c)] ^ Py[A(a,c)] } _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[A(b,c)] Ay[A(a,c)] _ {Py[My(a,c)] ^ Py[A(a,c)] } _

(continued)
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Table 13. (continued)

Composition of “Whole”
and “Part” orientation
relations

Outcome of composition

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[Be(a,b)] Ay[Be(a,b)] Ay[Be(a,c)]

Ay[My(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _
{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Ay[A(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _
{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Py[My(a,b)] Ay[Be(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]}
Ay[My(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _

{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Ay[A(a,b)] Ay[My(a,c)] _ Ay[A(a,c)] _ {Py[My(a,c)] ^ Py[A(a,c)] }
Py[A(a,b)] Ay[Be(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _

{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Ay[My(a,b)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _
{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Ay[A(a,b)] Ay[A(a,c)]
Py[Be(a,b)] Py[Be(b,c)] Ay[Be(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}
Py[My(b,c)] Ay[Be(a,c)] _ Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _

{Py[My(a,c)] ^ Py[A(a,c)]} _ {Py[Be(a,c)] ^ Py[My(a,c)] ^
Py[A(a,c)]}

Py[A(b,c)] Ay[My(a,c)] _ Ay[A(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[My(a,c)] ^ Py[A(a,c)]} _ {Py[Be(a,c)] ^ Py[My(a,c)] ^
Py[A(a,c)]}

Py[My(a,b)] Py[Be(b,c)] Ay[Be(a,c)] _ Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Py[My(b,c)] Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _
{Py[Be(a,c)] ^ Py[My(a,c)]} _ {Py[My(a,c)] ^ Py[A(a,c)]} _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Py[A(b,c)] Ay[My(a,c)] _ Ay[A(a,c)] _ {Py[My(a,c)] ^ Py[A(a,c)]} _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Py[A(a,b)] Py[Be(b,c)] Ay[Be(a,c)] _ Ay[My(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[My(a,c)] ^ Py[A(a,c)]} _ {Py[Be(a,c)] ^ Py[My(a,c)] ^
Py[A(a,c)]}

(continued)
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Table 13. (continued)

Composition of “Whole”
and “Part” orientation
relations

Outcome of composition

Py[My(b,c)] Ay[My(a,c)] _ Ay[A(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[My(a,c)] ^ Py[A(a,c)]} _ {Py[Be(a,c)] ^ Py[My(a,c)] ^
Py[A(a,c)]}

Py[A(b,c)] Ay[A(a,c)] _ {Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[Be(a,c)] ^ Py[My(a,c)] ^ Py[A(a,c)]}

Z-Dimension
Az[Ba(a,b)] Pz[Ba(b,c)] Az[Ba(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[Mz(b,c)] Az[Ba(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[F(b,c)] Az[Ba(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Az[Mz(a,b)] Pz[Ba(b,c)] Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[Mz(b,c)] Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[F(b,c)] Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Az[F(a,b)] Pz[Ba(b,c)] Az[F(a,c)]_ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[Mz(b,c)] Az[F(a,c)]_ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[F(b,c)] Az[F(a,c)]_ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
PzBa(a,b)] Az[Ba(a,b)] Az[Ba(a,c)]

Az[Mz(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Az[F(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Pz[Mx(a,b)] Az[Ba(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]}
Az[Mz(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Az[F(a,b)] Az[Mz(a,c)]_ Az[F(a,c)] _{Pz[Mz(a,c)] ^ Px[F(a,c)] }

(continued)
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Table 13. (continued)

Composition of “Whole”
and “Part” orientation
relations

Outcome of composition

Pz[F(a,b)] Az[Ba(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Az[Mz(a,b)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Az[F(a,b)] Az[F(a,c)]
PzBa(a,b)] Pz[Ba(b,c)] Az[Ba(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}
Pz[Mz(b,c)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _

{Pz[Mz(a,c)] ^ Px[F(a,c)] } _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^
Pz[F(a,c)]}

Pz[F(b,c)] Az[Mz(a,c)]_ Az[F(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _
{Pz[Mz(a,c)] ^ Px[F(a,c)] } _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^
Pz[F(a,c)]}

Pz[Mx(a,b)] Pz[Ba(b,c)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Pz[Mz(b,c)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ Az[F(a,c)]_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Pz[F(b,c)] Az[Mz(a,c)]_ Az[F(a,c)]_ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Pz[F(a,b)] Pz[Ba(b,c)] Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _
{Pz[Mz(a,c)] ^ Px[F(a,c)] } _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^
Pz[F(a,c)]}

Pz[Mz(b,c)] Az[Mz(a,c)]_ Az[F(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _
{Pz[Mz(a,c)] ^ Px[F(a,c)] } _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^
Pz[F(a,c)]}

Pz[F(b,c)] Az[F(a,c)]_ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}

Composition Rules for x, y, and z dimensions
t = {x, y, z}; St 2 {L, R, Be, A, Ba, F}. S−1 is the inverse of S. Mt 2 {Mx, My, Mz}.
Rule 1: AtSt ^ {PtSt, PtMt}� AtSt _ [PtSt^PtMt]_ [PtSt^PtMt^PtSt−1];
Rule 2: PtSt ^ AtSt � AtSt;
Rule 3: PtSt^{AtSt

−1, AtMt}� AtSt_AtSt
−1_AtMt_[PtSt^PtMt]_

[PtSt
−1^PtMt]_[PtSt^PtMt^PtSt−1];

Rule 4: AtMt ^ {PtSt, PtMt}� AtSt _ [PtSt^PtMt]_ [PtSt^PtMt^PtSt−1];
Rule 5: PtSt ^ PtSt � AtSt _ [PtSt^PtMt]_ [PtSt^PtMt^PtSt−1];
Rule 6: PtSt ^ PtMt � AtSt_AtMt_[PtSt^PtMt]_ [PtSt^PtMt^PtSt−1];
Rule 7: {PtSt ^ PtMt, PtSt^PtSt−1}� AtSt_AtSt

−1_AtMt_[PtSt^PtMt]_
[PtSt

−1^PtMt]_[PtSt^PtMt^PtSt−1];
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Table 14. Formal definitions of “Part” HVCB orientation relations

R(a,b) S(b,c) R(a,b)^S(b,c)
x-dimension
Px[L(a,b)]^Px[Mx(a,b)]
^Px[R(a,b)]

Ax[R(b,c)] {Px[L(a,b)]^Px[Mx(a,b)]^Px[R(a,b)]}^
{Ax[R(b,c)]}
� {Px[L(a,b)]^Ax[R(b,c)]}^
{Px[Mx(a,b)]^Ax[R(b,c)]}^
{Px[R(a,b)]^Ax[R(b,c)]}
Use Tables 11 and 12
� {Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}}
^{Ax[L(a,c)] _ Ax[Mx(a,c)] _ Ax[R(a,c)] _
{Px[L(a,c)] ^ Px[Mx(a,c)]} _
{Px[Mx(a,c)] ^ Px[R(a,c)]} _
{Px[L(a,c)] ^ Px[Mx(a,c)] ^ Px[R(a,c)]}}
^ {Ax[R(a,c)]}
� Ax[R(a,c)]

y-dimension
Py[Be(a,b)]^Py[My(a,b)]
^Py[A(a,b)]

Ay[Be(b,c)] Py[Be(a,b)]^Py[My(a,b)]^Py[A(a,b)]}^
Ay[Be(b,c)]
� {Py[Be(a,b)]^ Ay[Be(b,c)]} ^
{Py[My(a,b)]^ Ay[Be(b,c)]} ^
{Py[A(a,b)]^ Ay[Be(b,c)]}
Use Tables 11 and 12
� {Ay[Be(a,c)]}
^{Ay[Be(a,c)] _ Ay[My(a,c)] _
Py[Be(a,c)] ^ Py[My(a,c)]}
^{Ay[Be(a,c)] _ Ay[My(a,c)] _ Ay[A(a,c)] _
{Py[Be(a,c)] ^ Py[My(a,c)]} _
{Py[My(a,c)] ^ Py[A(a,c)] } _
{Py[Be(a,c)] ^ Py[My(a,c)]^ Py[A(a,c)]}}
� Ay[Be(a,c)]

(continued)
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Ax R a; cð Þ½ � ^ Ay Be a; cð Þ½ � ^ fPz Ba a; cð Þ½ � ^ Pz Mz a; cð Þ½ �_
Pz Ba a; cð Þ½ � ^ Pz Mz a; cð Þ½ � ^ Pz F a; cð Þ½ �g:

This means that the “whole” x-dimension of the lake (c) is on the right of the cottage
(a) AND the “whole” y-dimension of the lake is below the cottage AND “part” of the
z-dimension of the lake either covers the cottage’s (back and middlez) blocks or its (back
and middlez and front) blocks. This result is validated with the Fig. 2(c). The compo-
sition results for the x and y dimensions are correct but the outcome for the z-dimension

Table 14. (continued)

R(a,b) S(b,c) R(a,b)^S(b,c)
z-dimension
Pz[Ba(a,b)]^Pz[Mz(a,b)]
^Pz[F(a,b)]

Pz[Ba(b,c)]^
Pz[Mz(b,c)]

{Pz[Ba(a,b)]^Pz[Mz(a,b)]^Pz[F(a,b)]} ^
{Pz[Ba(b,c)]^Pz[Mz(b,c)]}
� { Pz[Ba(a,b)]^ Pz[Ba(b,c)]^
Pz[Ba(a,b)]^Pz[Mz(b,c)]} ^
{ Pz[Mz(a,b)]^Pz[Ba(a,b)]^
Pz[Mz(b,c)]^Pz[Mz(b,c)]} ^
{ Pz[F(a,b)]^ Pz[Ba(b,c)]^
Pz[F(a,b)]^Pz[Mz(b,c)]}
Use Tables 11 and 12
� {Az[Ba(a,c)] _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]}
_
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}}
^ { Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)]
^
Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}}
^ { Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)]
^
Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}}
^ { Az[Mz(a,c)]_ Az[F(a,c)]_ {Pz[Ba(a,c)] ^
Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}}
^ { Az[Ba(a,c)] _ Az[Mz(a,c)]_ {Pz[Ba(a,c)]
^
Pz[Mz(a,c)]} _ {Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^
Pz[F(a,c)]}}
^ { Az[Mz(a,c)]_ Az[F(a,c)]_ {Pz[Ba(a,c)] ^
Pz[Mz(a,c)]} _ {Pz[Mz(a,c)] ^ Px[F(a,c)] } _
{Pz[Ba(a,c)] ^ Pz[Mz(a,c)] ^ Pz[F(a,c)]}}
� {Pz[Ba(a,c)] ^ Pz[Mz(a,c)]} _ {Pz[Ba(a,c)]
^
Pz[Mz(a,c)] ^ Pz[F(a,c)]}}

Note: a: cottage, b: mountain range, c: lake
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is weak because it covers all the three blocks though the correct orientation ought to be
Az[Ba(a,c)].

6 Conclusion

In this paper, a 3-D HVCB orientation model is developed based on horizontal and
vertical block constraints. The model fosters reasoning with partial orientation
knowledge and creation of new knowledge using a composition table. This model is
integrated with mereology to render 3-D orientation relations more expressive. An
application example is given to demonstrate how the 3-D mereological HVCB could be

Fig. 2. A Scene with 3 different geographical objects (cottage, mountain range, and lake) and
views: (a) pan, (b) front, and (c) side.
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applied in a real context. Further work could be conducted to enhance reasoning with
these developed “whole” and “part” 3-D HVCB orientation relations.

Acknowledgment. Deepest thanks to Stacia Low for her invaluable contribution to the
diagrams.
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