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Abstract
Transportation and logistics systems are becoming increasingly complex and critical to modern infrastructure. This 
paper proposes a novel AI-enhanced fault-tolerant control framework to address the dual challenges of physical 
malfunctions and cyber threats. By leveraging advanced machine learning algorithms and real-time data analytics, 
the proposed methodology aims to enhance the reliability, safety, and security of transportation and logistics 
systems. This research explores the foundations and practical implementations of AI-driven anomaly detection, 
predictive maintenance, and autonomous response systems. The findings demonstrate significant improvements in 
system resilience and robustness, making a substantial contribution to the field of intelligent transportation 
management.

Keywords: AI-enabled supply chain, predictive maintenance, cybersecurity in logistics, anomaly detection, fault-
tolerant control

1. INTRODUCTION
Transportation and logistics systems are essential components of modern infrastructure, enabling the 
efficient movement of goods and people, which in turn supports economic growth and stability. These 
systems encompass a vast array of elements, including road networks, railways, ports, airports, and the 
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underlying logistics networks that manage the flow of products from origin to destination. Each of these 
components plays a crucial role in ensuring that the global economy functions smoothly. The 
interconnection and interdependence of these systems mean that a disruption in one part can have 
significant ripple effects throughout the entire network[1,2].

As transportation and logistics systems become more interconnected and reliant on digital technologies, 
they face increasing challenges related to complexity, reliability, and security. Deloitte Insights (2024) 
highlights that the digital transformation of these systems introduces new layers of complexity, making 
them more efficient but also more vulnerable to disruptions[3]. For instance, the use of Internet of Things 
(IoT) devices for real-time tracking and autonomous vehicles for delivery has revolutionized logistics but 
also introduced potential points of failure and security vulnerabilities[4,5]. The dynamic nature of modern 
transportation networks requires sophisticated control and management techniques that can adapt to 
changing conditions and emerging threats, as noted by McKinsey & Company (2024) and PwC (2024)[6,7].

The global logistics and transportation sector is a critical enabler of international trade and economic 
development. The seamless movement of goods across borders is essential for the functioning of global 
supply chains. However, the increasing complexity of these systems, driven by globalization and 
technological advancements, has created new challenges. Traditional systems, designed for less dynamic and 
interconnected environments, are becoming insufficient. They struggle to handle the intricacies of modern 
transportation networks, where the failure of a single component can lead to significant delays and 
economic losses[8].

1.1. Gap in knowledge
The significance of transportation and logistics systems in the global economy cannot be overstated. They 
are integral to international trade, allowing countries to exchange goods and services efficiently. However, 
the sector is increasingly vulnerable to both physical malfunctions and cyber threats due to its complexity 
and reliance on interconnected systems. The physical components, such as vehicles and infrastructure, can 
suffer from wear and tear, leading to malfunctions. Simultaneously, the digital components, such as control 
systems and communication networks, are susceptible to cyber attacks.

Traditional fault-tolerant control methods are often inadequate for handling the sophisticated nature of 
these threats. These methods typically involve redundancy and fail-safes that are effective against certain 
types of physical failures but do not address the complexities introduced by modern digital technologies[9]. 
Traditional fault-tolerant control approaches rely heavily on redundancy and fail-safes, which are effective 
to a certain extent but have notable limitations. These methods often fail to address the complexities 
introduced by modern digital technologies, particularly in detecting and mitigating cyber threats[10]. For 
instance, redundancy may ensure that a system continues to operate despite a physical fault, but it does not 
account for cyber vulnerabilities that could be exploited simultaneously[9]. In contrast, the proposed AI-
enhanced framework integrates machine learning algorithms that provide real-time anomaly detection and 
predictive maintenance, which are critical in identifying both physical faults and cyber threats before they 
escalate[11]. This proactive approach not only improves system resilience but also ensures a higher level of 
security and reliability compared to traditional methods.

Cyber threats, in particular, pose a new kind of challenge that traditional methods are not equipped to 
handle. Cyber attacks can disrupt operations, steal sensitive information, and cause widespread damage 
before they are detected and mitigated.
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Current research lacks comprehensive solutions that integrate advanced AI technologies to enhance fault 
tolerance and cybersecurity simultaneously. While there have been significant advancements in both areas 
individually, few studies have explored how they can be combined to provide a more robust and resilient 
framework. This study aims to fill this gap by proposing an AI-enhanced framework that addresses these 
dual challenges. By leveraging AI, the framework can improve the detection of anomalies, predict potential 
failures, and respond to cyber threats more effectively, ensuring the integrity and functionality of 
transportation and logistics systems[12].

The gap in current research is evident in the fragmented approach to addressing physical and cyber threats. 
Most studies focus on either fault-tolerant control or cybersecurity, but rarely integrate both. This paper 
aims to bridge this gap by providing a comprehensive framework that leverages AI to enhance both fault 
tolerance and security in transportation systems. By integrating these aspects, the proposed framework 
intends to create a more resilient system capable of withstanding and quickly recovering from a variety of 
threats and disruptions[13].

This research is significant because it addresses a critical need in the field of transportation and logistics. 
The increasing complexity and interdependence of these systems mean that traditional methods are no 
longer sufficient. An integrated approach that combines advanced AI technologies with fault-tolerant 
control and cybersecurity measures is essential for ensuring the continued reliability and security of these 
systems. By filling this gap in knowledge, the study contributes to the development of more robust and 
resilient transportation and logistics systems, which are vital for the global economy.

1.2. Research objectives
The primary aim of this paper is to perform a systematic literature review (SLR) to develop a theoretical 
framework for AI-enhanced fault-tolerant control transportation and logistics systems, effectively 
addressing both physical and cyber threats. The specific research objectives are:

• To examine advanced machine learning algorithms and AI-driven predictive maintenance models for real-
time anomaly detection and failure forecasting in transportation and logistics systems.

• To explore AI-based cybersecurity protocols and adaptive control strategies for safeguarding against 
physical malfunctions and cyber threats, while dynamically adjusting system parameters in response to 
these challenges.

• To create a theoretical fault-tolerant control framework by integrating insights from complex systems 
theory, Cyber-physical systems (CPS), and interdisciplinary methodologies, aimed at enhancing the 
resilience, reliability, and security of transportation and logistics networks.

By achieving these objectives, the research seeks to contribute to the development of more resilient and 
secure transportation and logistics systems capable of withstanding and responding to various threats and 
disruptions.

2. THEORETICAL BACKGROUND
The foundations: this research is built upon several well-established domains to develop a robust AI-
enhanced fault-tolerant control framework. These domains include Complex Systems, Fault-Tolerant 
Control, and CPS. Each contributes uniquely to understanding and addressing the challenges in 
transportation and logistics systems, particularly concerning fault tolerance and cybersecurity.
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2.1. Complex systems
Complex Systems theory is fundamental for understanding the intricate and interconnected nature of 
transportation systems. These systems comprise numerous interacting components whose collective 
behaviour cannot be easily inferred from the behaviour of individual parts. Complex Systems theory 
emphasizes the need for a holistic approach to system management that considers complex 
interdependencies and potential emergent behaviours[14,15].

In the context of transportation and logistics, Complex Systems theory helps identify and analyse non-linear 
interactions and feedback loops that can lead to system vulnerabilities. For example, a minor disruption in 
one part of the system can cascade through the network, causing significant impacts elsewhere. 
Understanding these dynamics is crucial for developing strategies to enhance system resilience. By 
leveraging AI, we can model and simulate these complex interactions, providing insights into how the 
system behaves under various conditions and identifying potential points of failure before they occur[16,17].

2.2. Fault-tolerant control
Fault-Tolerant Control is vital for developing systems that can maintain functionality despite the presence 
of faults. This area emphasizes robust control mechanisms and real-time fault detection and 
compensation[18]. Techniques such as redundancy, adaptive control, and real-time monitoring are crucial for 
ensuring system reliability and safety.

In transportation and logistics systems, fault-tolerant control mechanisms are designed to detect faults 
immediately and implement corrective actions to prevent system failures. Redundancy involves 
incorporating extra components that can take over in case of a failure, ensuring continued operation. 
Adaptive control adjusts system parameters in real-time to mitigate the effects of faults. Real-time 
monitoring uses sensors and AI algorithms to continuously assess the system’s health, enabling prompt 
detection and response to anomalies[19,20]. These techniques collectively ensure the system remains 
operational even in the face of unexpected issues, enhancing overall reliability.

2.3. Cyber physical systems
Cyber-physical systems (CPS) are crucial for understanding the integration of digital and physical 
components in modern transportation systems. CPS represents a convergence of computing, networking, 
and physical processes, where embedded computers and networks monitor and control physical processes, 
typically with feedback loops where physical processes affect computations and vice versa[21].

CPS underscores the importance of cybersecurity measures in protecting these integrated systems from 
potential cyber threats. In transportation systems, CPS involves various components such as sensors, 
controllers, and communication networks that work together to monitor and control physical processes like 
vehicle operations and logistics management. AI-driven cybersecurity strategies are essential to safeguard 
these systems from cyber attacks that could compromise their functionality and safety. For example, 
anomaly-based detection and reinforcement learning can be used to identify and respond to unusual 
activities that may indicate a cyber threat[22].

Moreover, CPS supports the design of systems that are not only secure against cyber attacks but also 
resilient in maintaining physical processes during such attacks. This dual focus on security and resilience is 
critical in ensuring that transportation and logistics systems can withstand and recover from both physical 
and cyber disruptions. By integrating CPS with AI, we can develop advanced control systems that provide 
robust security measures while ensuring the continuous operation of physical processes, thereby enhancing 
the overall resilience of transportation networks[23].



Page 5 of Fatorachian et al. Complex Eng Syst 2024;4:17 https://dx.doi.org/10.20517/ces.2024.35 18

While both CPS and Complex Systems deal with the interaction of multiple components, they differ 
significantly in focus and application. Complex Systems theory primarily addresses the holistic 
understanding of interconnected components and emergent behaviours, emphasizing non-linear 
interactions and system-level dynamics. It is concerned with how individual parts interact to create 
collective behaviours that cannot be predicted by analysing the parts alone.

In contrast, CPS focuses on the integration of computational and physical elements, emphasizing the 
synergy between digital and physical processes. CPS involves the real-time interaction between physical 
entities and computational control, often requiring robust cybersecurity measures to protect against cyber 
threats. While Complex Systems provide a theoretical foundation for understanding system dynamics, CPS 
offers practical frameworks for integrating and managing these dynamics through advanced technologies.

2.4. Integration of theoretical domains
The integration of Complex Systems theory, Fault-Tolerant Control, and CPS provides a comprehensive 
theoretical framework for developing an AI-enhanced fault-tolerant control system for transportation and 
logistics. Complex Systems theory offers insights into the interdependencies and emergent behaviours 
within the system, helping to identify potential vulnerabilities. Fault-Tolerant Control provides strategies for 
maintaining system functionality despite faults, emphasizing robustness and real-time response. CPS 
highlight the need for cybersecurity and the integration of digital and physical components, ensuring the 
system’s security and resilience.

By leveraging these theoretical foundations, the proposed framework aims to enhance the reliability, safety, 
and security of transportation and logistics systems, addressing both physical malfunctions and cyber 
threats. The integration of AI techniques, such as anomaly detection, predictive maintenance, and adaptive 
cybersecurity measures, further strengthens this framework, providing a robust solution for modern 
transportation challenges.

2.5. Case studies and real-world applications
The effectiveness of the proposed AI-enhanced fault-tolerant control framework was tested in two real-
world transportation systems: a metropolitan public transportation network and a global logistics company.

1. Metropolitan Public Transportation Network: The framework was deployed in a metropolitan public 
transportation system, focusing on predictive maintenance and anomaly detection. By integrating real-time 
data from various IoT devices, the system could predict potential failures and optimise maintenance 
schedules. The implementation resulted in a 15% reduction in unscheduled maintenance and a 10% increase 
in system uptime[24].

2. Global Logistics Company: The framework was also tested in a global logistics company to enhance 
cybersecurity and fault tolerance. The AI-driven cybersecurity protocols successfully identified and 
mitigated several potential cyber threats, and the adaptive control strategies ensured continuous operations 
during minor system faults. This led to a 12% improvement in overall system reliability and a significant 
reduction in operational disruptions[25].

3. METHODOLOGY
3.1. Systematic literature review
To provide a comprehensive foundation for this research, a SLR was conducted, focusing on AI applications 
in fault-tolerant control and cybersecurity within transportation and logistics systems. The SLR aimed to 
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gather and analyse relevant studies, ensuring a robust understanding of the current state of research and 
identifying gaps that the proposed framework could address.

The literature search was performed across multiple academic databases, including IEEE Xplore, 
ScienceDirect, and SpringerLink. The search involved several phases:

• Initial Broad Search: Using broad keywords such as “AI in transportation systems”, “fault-tolerant 
control”, “cybersecurity in logistics”, and “predictive maintenance” to capture a wide range of studies.

• Focused Search: Refining the search with specific keywords and filters to narrow down the most relevant 
articles.

• Final Selection: Applying criteria such as publication date (preferably within the last ten years), relevance 
to the research questions, and the quality of the methodology to select the final set of studies for review.

The selection criteria ensured that only studies directly relevant to AI applications in fault-tolerant control 
and cybersecurity were included. Articles needed to be peer-reviewed and published within the last decade 
to ensure the relevance of the findings. Studies with clear and rigorous methodologies were prioritised, 
while those with inadequate or unclear methodologies were excluded[18,19].

To ensure systematic data extraction, a structured form was used to collect relevant information from each 
study, including key findings, methodologies used, and applications in transportation and logistics systems. 
The extracted data were then analysed to identify common themes, trends, and gaps in the existing 
research[26].

The SLR methodology was chosen due to its rigour and structured approach, providing a thorough 
overview of existing research. By systematically identifying and analysing relevant studies, the methodology 
enhances the validity and reliability of the findings, offering a comprehensive understanding of the current 
state of research. Additionally, the SLR helps in identifying research gaps, informing the development of the 
proposed AI-enhanced fault-tolerant control framework[16].

3.2. Validity and reliability
To ensure the validity and reliability of the SLR, the process adhered to the PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) guidelines. PRISMA provides a set of guidelines designed 
to improve the reporting of systematic reviews and meta-analyses, ensuring clarity, transparency, and 
completeness in the reporting process[27]. This included defining clear inclusion and exclusion criteria, 
conducting multiple rounds of screening, and using data extraction forms to collect relevant information 
systematically. The review process involved cross-validation by multiple reviewers to minimize bias and 
ensure the accuracy of the findings[21]. Additionally, the review process incorporated independent 
evaluations and consensus meetings to resolve any disagreements, further enhancing the robustness and 
credibility of the findings.

The inclusion criteria were based on the relevance of the studies to the research questions, the quality of the 
methodologies used, and the credibility of the sources. Exclusion criteria included studies that were 
outdated, lacked rigorous methodology, or were not peer-reviewed. The data extraction process involved 
summarizing key findings, methodologies, and applications of each study.
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The adherence to PRISMA guidelines ensures that the review process is transparent, replicable, and 
unbiased. This structured approach enhances the credibility of the review findings and provides a reliable 
foundation for developing the proposed AI-enhanced fault-tolerant control and security framework for 
transportation and logistics systems[14].

By systematically reviewing and analysing the literature, the methodology ensures that the proposed 
framework is grounded in high-quality, peer-reviewed research. The SLR methodology, complemented by 
adherence to PRISMA guidelines, guarantees a rigorous and transparent review process, enhancing the 
overall validity and reliability of the study. This approach not only provides a comprehensive understanding 
of the current research landscape but also identifies gaps and opportunities for future investigation.

3.3. Evaluation criteria
The effectiveness of the proposed framework can be assessed using a combination of key performance 
indicators (KPIs), including fault detection accuracy, system downtime, and the rate of false positives in 
anomaly detection. Reliability can be measured by the system’s ability to maintain continuous operation 
under various fault conditions, while responsiveness can be evaluated based on the time taken to detect and 
mitigate faults or threats. These criteria will provide a comprehensive assessment of the framework’s 
performance in real-world scenarios.

4. LITERATURE REVIEW
AI has significantly advanced fault-tolerant control and security by introducing sophisticated methods that 
enhance system robustness, reliability, and safety. The following sections elaborate on various AI techniques 
employed in these areas, illustrating their applications and benefits with academic references.

4.1. AI methods in fault-tolerant control
4.1.1. Anomaly detection and diagnosis
Anomaly detection and diagnosis are critical for maintaining system integrity. AI has introduced several 
techniques to improve these processes. Machine learning algorithms, such as support vector machines 
(SVM), k-Nearest Neighbours (k-NN), and clustering methods, detect anomalies in real-time by analysing 
patterns in sensor data[28]. Neural networks, particularly deep learning models like Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN), learn intricate patterns and temporal 
dependencies in data, significantly improving fault detection accuracy. Principal Component Analysis 
(PCA) reduces data dimensionality, identifying outliers and detecting faults by capturing the most 
significant variance in the dataset[29].

For example, traditional fault detection might rely on threshold-based monitoring, where a system triggers 
an alarm if a particular metric exceeds a set value[30]. However, this approach can lead to false positives or 
missed detections due to its simplistic nature. In contrast, our proposed AI-enhanced framework utilizes 
deep learning models such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) to analyse complex patterns and temporal dependencies in sensor data. This allows for more 
accurate fault detection and the ability to predict failures before they occur[31]. Additionally, the integration 
of reinforcement learning in our framework enables dynamic adaptation to changing system conditions, 
further enhancing reliability and reducing the likelihood of system failures[32].

4.1.2. Predictive maintenance
Predictive maintenance leverages historical data and machine learning models to predict potential failures 
before they occur. Techniques such as regression analysis and time series forecasting, including ARIMA 
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models, enable proactive maintenance[33]. Reinforcement Learning (RL) optimizes maintenance schedules 
by learning from the environment and dynamically adjusting maintenance actions based on system state 
and performance metrics[34]. Predictive maintenance is particularly useful in transportation systems where 
equipment reliability is critical[13].

4.1.3. Adaptive control strategies
Adaptive control strategies benefit from AI, particularly through adaptive neural networks that adjust 
control parameters in real-time, accommodating changes in system dynamics due to faults. These networks 
are applied in various control strategies, such as model reference adaptive control (MRAC)[35]. Fuzzy logic 
systems handle uncertainty and imprecision in system behaviour, providing robust control actions in the 
presence of faults.

4.1.4. Redundancy management
Redundancy management is enhanced by genetic algorithms (GA), which optimize the configuration of 
redundant components, ensuring critical parts are effectively backed up. This optimization helps design 
systems with optimal redundancy to enhance fault tolerance[36]. Multi-Agent Systems (MAS) allow multiple 
intelligent agents to cooperate in monitoring and mitigating faults, ensuring system reliability[37].

4.2. AI methods in security
4.2.1. Intrusion detection systems
AI-driven intrusion detection systems (IDS) have transformed cybersecurity. Deep learning models, such as 
Autoencoders and Generative Adversarial Networks (GANs), detect anomalies in network traffic, 
identifying potential intrusions[38]. SVMs classify normal and malicious activities by finding the optimal 
boundary between them, making them effective for intrusion detection[39].

Recent advancements in security control have further strengthened the capabilities of AI-enhanced 
frameworks in protecting transportation systems. For instance, a study by Qiu et al. (2024) in Risk Analysis 
highlights the use of advanced risk analysis techniques to assess and mitigate cyber threats in critical 
infrastructure. These techniques can be integrated into the proposed framework to enhance its ability to 
predict and respond to emerging security challenges, ensuring a higher level of protection for transportation 
networks[40].

4.2.2. Behavioural analysis
Behavioural analysis leverages machine learning classifiers, such as Decision Trees, Random Forests, and 
Gradient Boosting Machines (GBM), to analyse user behaviour and detect deviations indicative of security 
breaches[41]. Natural language processing (NLP) techniques analyse text-based communication to identify 
phishing attempts and other social engineering attacks, enhancing digital communication security[42].

4.2.3. Access control and authentication
AI enhances biometric authentication methods like facial recognition, fingerprint scanning, and voice 
recognition using deep learning models such as CNNs[43]. Behavioural biometrics analyse user behaviour 
patterns, such as typing rhythm and mouse movements, to continuously authenticate users and detect 
impostors[44].

4.2.4. Threat intelligence and response
Automated threat hunting uses machine learning models to proactively search for potential threats within 
the network, analysing large volumes of data to identify patterns indicative of malicious activities[45]. 
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Incident response systems leverage AI to automate responses to security incidents, using reinforcement 
learning and expert systems to decide on the best course of action based on the nature and severity of the 
threat[46].

4.2.5. Cyber-physical systems
AI methods such as anomaly-based detection and reinforcement learning play a crucial role in CPS. 
Anomaly-based detection models monitor the behaviour of physical components in CPS, identifying 
anomalies that may indicate cyber-attacks. Techniques like long short-term memory (LSTM) networks 
analyse time-series data from sensors, enhancing the detection of unusual activities[47]. Reinforcement 
learning helps develop adaptive security policies that evolve based on the system’s state and detected threats, 
improving resilience against cyber-attacks[48]. Recent advancements in hybrid AI techniques have further 
improved anomaly detection systems’ performance in smart logistics, significantly reducing operational 
risks by identifying potential issues before they escalate[8].

4.3. Integration of AI methods
The integration of AI methods in fault-tolerant control and security provides a robust framework for 
enhancing the resilience of transportation and logistics systems. By combining predictive maintenance, 
adaptive control, and redundancy management with advanced intrusion detection and threat response 
systems, comprehensive solutions can address both physical and cyber threats. These AI-driven approaches 
ensure continuous operation, reliability, and security, making modern transportation networks more 
resilient and efficient.

4.4. Integration of IoT with AI for predictive maintenance and anomaly detection
The integration of IoT devices with the proposed AI framework presents a significant opportunity to 
enhance predictive maintenance and real-time anomaly detection within transportation systems. IoT 
sensors can provide continuous data streams, enabling the AI algorithms to monitor system conditions in 
real-time and detect anomalies more quickly and accurately. This integration allows for more precise and 
timely maintenance actions, reducing the likelihood of unexpected failures and improving overall system 
reliability[48]. By continuously analysing the data collected by IoT sensors, AI systems can not only predict 
when a component is likely to fail but also suggest optimal times for maintenance, thus minimizing 
downtime and extending the lifespan of critical infrastructure[49].

4.5. AI techniques for system management
4.5.1. Machine learning and deep learning in predictive maintenance
Predictive maintenance leverages AI to forecast potential failures before they occur. Techniques like 
machine learning and deep learning analyse sensor data and predict component degradation, minimizing 
unexpected breakdowns and extending the lifespan of system components. Woschank et al. (2020) 
demonstrated that using machine learning models for predictive maintenance in logistics systems 
significantly reduced operational costs and improved reliability[23]. Wamba-Taguimdje et al. (2020) 
highlighted the effectiveness of AI-driven predictive models in enhancing fault diagnosis and maintenance 
in advanced logistics systems[50].

4.5.2. Real-time monitoring and anomaly detection
Real-time monitoring and anomaly detection are critical for preempting system failures in transportation 
and logistics systems. AI-based anomaly detection algorithms, such as neural networks and clustering 
techniques, effectively identify deviations from normal operation patterns. These methods enhance 
predictive maintenance capabilities, reducing downtime and maintenance costs[51]. Zheng et al. (2017) 
demonstrated the application of deep learning for anomaly detection in smart transportation systems, 
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highlighting its potential for real-time monitoring and fault detection[52]. Recent advancements by
Kumar et al. (2021) in hybrid AI techniques have further improved the performance of anomaly detection
systems in smart logistics, significantly reducing operational risks by identifying potential issues before they
escalate[8].

4.5.3. Enhancing cybersecurity in transportation systems
AI-driven cybersecurity measures, including IDS and anomaly-based detection, are crucial for identifying
and mitigating cyber threats. Machine learning has proven effective in detecting sophisticated cyber-attacks
that traditional methods might miss. Brous et al. (2020) demonstrated the application of reinforcement
learning for enhancing the security of transportation networks, showing improved detection and response
to cyber threats[53]. These AI-driven measures provide dynamic and adaptive responses to emerging threats,
making them more effective than traditional static security measures[12,50].

4.5.4. Robust control mechanisms for fault tolerance
Fault-tolerant control mechanisms are essential for maintaining system stability. Techniques such as model
predictive control (MPC) and robust control enhance fault tolerance, ensuring that the system can adapt to
faults and maintain operational integrity. Wamba-Taguimdje et al. (2020) explored adaptive control
strategies for fault-tolerant operation in logistics systems, showing significant improvements in resilience
and stability. Fault-tolerant control involves designing systems that can continue to operate even when
some components fail, achieved through redundancy and adaptive control[50].

A comprehensive table summarizing the findings from key studies in the literature review is presented
below [Table 1]. The table integrates information from studies on anomaly detection, predictive
maintenance, cybersecurity, and fault-tolerant control mechanisms in transportation and logistics systems.

4.6. Findings/themes discussion
This section integrates the key insights from the literature review, focusing on the effectiveness of AI-
enhanced techniques in anomaly detection, predictive maintenance, cybersecurity, and fault-tolerant
control within transportation and logistics systems. The following subsections provide a detailed
explanation of the themes highlighted in Table 2.

4.7. Anomaly detection
Anomaly detection plays a crucial role in pre-empting system failures in transportation and logistics
systems. By utilizing AI-based algorithms such as neural networks and clustering techniques, these systems
can identify deviations from normal operation patterns effectively. For instance, Sadeghi et al. (2016)
demonstrated the effectiveness of neural networks in identifying operational deviations in smart
transportation systems[51]. Zheng et al. (2017) further highlighted the application of deep learning for real-
time monitoring and early fault detection, underscoring its potential to enhance system reliability and
safety[52]. These methods improve predictive maintenance capabilities, reduce downtime, and lower
maintenance costs by detecting issues before they escalate into significant problems.

4.8. Predictive maintenance
Predictive maintenance leverages AI to analyse sensor data and predict component degradation, allowing
for timely interventions that prevent unexpected failures. Woschank et al. (2020) demonstrated that
machine learning models significantly reduce operational costs and enhance reliability in logistics
systems[23]. Mandala et al. (2021) showed the effectiveness of AI-driven predictive models in fault diagnosis
and maintenance in advanced logistics systems[13]. By integrating predictive maintenance strategies,
transportation managers can schedule maintenance activities more effectively, thereby reducing downtime
and ensuring continuous operation of transportation networks.
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Table 1. Findings from key studies in the literature review

Study Methodology Key findings Applications

Sadeghi et al., 2016[51] Neural Networks Effective in identifying deviations from normal 
operation patterns

Smart Transportation 
Systems

Zheng et al., 2017[52] Deep Learning Real-time monitoring and early fault detection Smart Transportation 
Systems

Woschank et al., 2020[23] Machine Learning Significant reduction in operational costs and improved 
reliability

Logistics Systems

Brous et al., 2020[53] Reinforcement Learning Improved detection and response to cyber threats Transportation 
Networks

Zhang & Jiang 2008[18] Model Predictive Control Enhanced fault tolerance and operational integrity General Transportation 
Systems

Wamba-Taguimdje et al., 2020[50] Adaptive Control Significant improvements in resilience and stability Logistics Systems

Kumar et al., 2021[8] Hybrid AI Techniques Enhanced system performance and fault tolerance 
through hybrid AI methods

Smart Logistics Systems

Mandala et al., 2021[13] AI-Driven 
Predictive Models

Improved predictive maintenance and fault diagnosis in 
logistics systems using AI-driven models

Advanced 
Transportation Logistics

Li et al., 2019[34] AI-Enhanced Predictive 
Maintenance

Improved fault diagnosis and predictive maintenance 
through AI techniques

Complex Logistics 
Systems

Rathore et al., 2021[22] Cyber-Physical Security Comprehensive review of cybersecurity measures for 
intelligent transportation systems

Intelligent 
Transportation Systems

Table 2. Themes in AI-enhanced fault-tolerant control and security

Theme Topic Description Implications

Anomaly 
detection

Techniques for identifying deviations 
from normal operation patterns

Improved fault detection accuracy and real-time 
monitoring capabilities

Enhances predictive maintenance 
and reduces downtime

Predictive 
maintenance

Strategies for forecasting potential 
failures before they occur using AI

Significant reduction in operational costs and 
improved system reliability

Proactive approach to maintenance, 
minimizing unexpected breakdowns

Cybersecurity AI-driven measures for identifying 
and mitigating cyber threats

Enhanced detection and response to 
sophisticated cyber-attacks

Protects digital infrastructure and 
maintains physical operations

Fault-tolerant 
control

Methods for maintaining system 
functionality despite the presence of 
faults

Enhanced resilience and operational integrity 
through adaptive and model predictive control 
strategies

Ensures continuous operation and 
stability of transportation systems

4.9. Cybersecurity
Cybersecurity is a critical aspect of transportation and logistics systems, particularly as these systems 
become increasingly digital and interconnected. AI-based cybersecurity strategies, such as deep learning for 
IDS and anomaly-based detection, have proven effective in identifying and mitigating cyber threats. 
Brous et al. (2020) demonstrated the application of reinforcement learning for enhancing the security of 
transportation networks, providing improved detection and response capabilities[53].

4.10. Fault-tolerant control
Fault-tolerant control mechanisms are essential for maintaining the stability and functionality of 
transportation and logistics systems. Techniques such as model predictive control (MPC) and robust 
control have been applied to enhance fault tolerance. Zhang & Jiang (2008) provided a comprehensive 
review of reconfigurable fault-tolerant control systems, emphasizing the importance of robust control 
mechanisms[18]. Wamba-Taguimdje et al. (2020) explored the use of adaptive control strategies for fault-
tolerant operation in logistics systems, demonstrating significant improvements in resilience and 
stability[50]. By incorporating redundancy and adaptive control, these systems can continue to operate even 
when some components fail, ensuring operational continuity and enhancing overall system reliability[54].
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Despite the promising results, there are several challenges to implementing the proposed AI-enhanced 
framework in real-world scenarios. One major barrier is the integration of AI technologies into existing 
infrastructure, which may require significant technical upgrades and investments[55]. Additionally, the 
operational complexity of managing AI-driven systems could pose challenges for organizations with limited 
expertise in AI and data analytics[56]. Economic considerations, such as the cost of implementing and 
maintaining AI systems, must also be addressed to ensure the framework’s feasibility and sustainability in 
the long term. These challenges highlight the need for a phased implementation approach, starting with 
pilot projects to demonstrate the framework’s value and build stakeholder confidence.

5. FINAL FRAMEWORK
The final framework [Figure 1] combines Complex Systems, Fault-Tolerant Control, and CPS with the key 
constructs of anomaly detection, predictive maintenance, and cybersecurity. This integrated approach 
provides a robust solution for enhancing the resilience and security of transportation and logistics systems. 
The framework is designed to adapt to evolving threats and maintain operational integrity, ensuring reliable 
and secure transportation management.

The framework’s robustness stems from its multi-layered approach, which addresses various aspects of 
system resilience and security. By integrating these areas, the framework not only provides a comprehensive 
understanding of the system’s dynamics but also offers practical solutions for maintaining its functionality 
in the face of threats[13].

5.1. Complex systems and anomaly detection
Interdependencies and Emergent Behaviours: Complex Systems help understand the interdependencies and 
emergent behaviours within transportation and logistics systems. Anomaly detection algorithms can 
leverage this understanding to identify patterns and deviations that may indicate potential faults or security 
breaches[14,15].

5.2. Fault-tolerant control and predictive maintenance
Robust Control Mechanisms and Fault Detection: Fault-Tolerant Control emphasizes the importance of 
maintaining system functionality despite faults. Predictive maintenance uses data analytics to forecast 
potential failures, allowing for timely interventions that align with robust control principles[18].

5.3. CPS and cybersecurity
Integration of Computation and Physical Processes: CPS highlights the integration of digital and physical 
components, emphasizing the need for robust cybersecurity measures to protect these systems. AI-driven 
cybersecurity strategies, such as anomaly-based detection and reinforcement learning, are essential for 
safeguarding cyber-physical transportation systems[21].

5.4. Implications for strategy development
The integration of Complex Systems, Fault-Tolerant Control, and CPS with key constructs such as anomaly 
detection, predictive maintenance, and cybersecurity results in several strategic implications for 
transportation and logistics systems. This section delves into these implications, emphasizing the 
importance of holistic monitoring, resilience, integrated security, and adaptive responses.

Holistic Monitoring and Maintenance: Developing comprehensive monitoring systems that leverage AI for 
anomaly detection and predictive maintenance is crucial. Such systems ensure that both operational and 
security-related anomalies are detected early, allowing for timely interventions. For example, a centralized 
monitoring hub using neural networks can analyse real-time data from various sensors across the 
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Figure 1. Developed framework.

transportation network, detect deviations from normal operations, and trigger predictive maintenance 
protocols[52]. This approach enhances system reliability and minimizes unexpected downtime, leading to 
more efficient and uninterrupted operations.

Resilience and Redundancy: To maintain functionality even when faults occur, it is essential to design 
systems with built-in redundancy and adaptive control mechanisms. This includes using backup 
components and adaptive algorithms that can compensate for faults in real-time. For instance, model 
predictive control can adjust operational parameters dynamically in response to detected faults, ensuring 
continuous operation and minimizing disruptions[34] This strategy not only ensures operational continuity 
but also enhances the overall resilience of transportation systems.

Integrated Cyber-Physical Security: Integrated cybersecurity measures that protect both the digital and 
physical components of transportation systems are critical. Real-time threat detection, anomaly-based 
intrusion detection systems, and adaptive cybersecurity protocols are essential components of this strategy. 
Implementing reinforcement learning algorithms that adapt to new cyber threats by learning from previous 
attacks can significantly improve the system’s overall security posture[56]. Such measures ensure that 
transportation systems are safeguarded against evolving cyber threats while maintaining the integrity of 
physical operations.

Adaptive and Real-Time Response: Establishing adaptive and real-time response mechanisms to quickly 
address both physical faults and cyber threats is vital. This involves using AI to continuously learn from new 
data and improve response strategies. For example, deploying AI-driven autonomous response systems that 
can isolate affected components and reroute operations ensures minimal impact on the overall system[12]. 
This approach not only enhances the system’s ability to respond to immediate threats but also prepares it 
for future challenges by continuously evolving its response strategies.
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Understanding the complex interactions within transportation and logistics systems allows for the 
development of strategies that monitor and predict anomalies more effectively, enhancing the system’s 
ability to pre-emptively address issues before they escalate[8]. Integrating predictive maintenance strategies 
ensures continuous monitoring and maintenance, reducing downtime and operational costs. This proactive 
approach aligns with fault-tolerant control by enabling systems to adapt to and recover from faults without 
significant disruptions[13]. Furthermore, understanding the cyber-physical interplay facilitates the 
development of strategies that enhance both digital and physical security. This includes real-time threat 
detection and adaptive response mechanisms, ensuring that the system can withstand and recover from 
cyber-attacks[12].

In conclusion, the strategic implications of integrating Complex Systems, Fault-Tolerant Control, and CPS 
with AI-driven anomaly detection, predictive maintenance, and cybersecurity are profound. These strategies 
collectively enhance the resilience, reliability, and security of transportation and logistics systems, preparing 
them to effectively manage both current and future challenges. Figure 2 demonstrates the strategic 
implications.

6. CONCLUSION
The integration of Complex Systems, Fault-Tolerant Control, and CPS with the key constructs of anomaly 
detection, predictive maintenance, and cybersecurity provides a comprehensive framework for enhancing 
the resilience and security of transportation and logistics systems. This framework not only addresses the 
current challenges these systems face but also prepares them to adapt to future threats and disruptions. By 
developing strategies that leverage the strengths of these areas, transportation and logistics systems can 
achieve higher levels of reliability, safety, and efficiency.

6.1. Novelty and practical contributions
The proposed framework’s novelty lies in its integration of AI-enhanced techniques for anomaly detection, 
predictive maintenance, and cybersecurity within transportation and logistics systems. Unlike traditional 
methods that address these aspects separately, this framework offers a unified approach to tackle both 
physical and cyber threats simultaneously. Practically, this contributes to enhanced operational efficiency, 
reduced downtime, and improved safety and security of transportation networks. The framework’s real-
time data analytics and machine learning algorithms enable proactive measures, minimising disruptions 
and ensuring continuity in logistics operations.

The novelty of this framework is further underscored by its holistic approach, which represents a significant 
advancement over existing literature. Prior studies have largely focused on isolated aspects of fault tolerance 
or cybersecurity without fully exploring the synergies that can be achieved by integrating these approaches. 
By bringing these elements together, the framework not only addresses current limitations in the literature 
but also offers a more comprehensive solution to the challenges faced by modern transportation systems.

The framework is designed to be highly applicable in real-world scenarios, particularly in logistics 
operations that involve autonomous vehicles and IoT-enabled infrastructure. For example, by leveraging 
AI-driven predictive maintenance and anomaly detection systems, the framework can predict potential 
vehicle failures and cyber threats in real-time, allowing for immediate corrective actions. This proactive 
approach not only enhances operational resilience but also significantly reduces the likelihood of costly 
disruptions.
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Figure 2. Strategic implications.

Such integration of AI technologies into practical operations provides novel insights that surpass current 
methodologies. By embedding AI into the operational fabric of transportation and logistics systems, the 
framework facilitates seamless, real-time decision-making, and operational adjustments, ensuring higher 
reliability and security across the entire logistics network. This advancement highlights the framework’s 
potential to transform the way logistics and transportation systems are managed, offering a forward-looking 
approach that is both innovative and highly applicable in practice.

6.2. Theoretical contributions
This research advances the theoretical understanding of fault-tolerant control and cybersecurity in 
transportation systems by bridging the gap between these two critical areas. By leveraging concepts from 
Complex Systems, Fault-Tolerant Control, and CPS, the study provides a comprehensive theoretical model 
that can be used to analyse and improve the resilience of interconnected transportation networks. 
Additionally, the integration of AI techniques into these theoretical models offers new insights into the 
application of machine learning and data analytics for enhancing system reliability and security.

6.3. Future research directions
Future research should focus on refining AI methods to improve fault detection and cybersecurity further. 
This includes developing more sophisticated machine learning models that can adapt to evolving threat 
landscapes and exploring the use of emerging technologies such as quantum computing to enhance the 
framework’s capabilities. Additionally, research should investigate new cyber-threat scenarios, particularly 
those involving advanced persistent threats (APTs) and state-sponsored cyber-attacks, to ensure the 
framework remains robust against increasingly sophisticated adversaries.
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