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The integrated molecular and histological
analysis defines subtypes of esophageal
squamous cell carcinoma

Guozhong Jiang1,15, Zhizhong Wang 2,3,4,5,15, Zhenguo Cheng3,4,5,15,
WeiweiWang1,15, Shuangshuang Lu3,4,5, Zifang Zhang3,4,5, ChineduA. Anene 6,7,
Faraz Khan6, Yue Chen6, Emma Bailey6, Huisha Xu3,4,5, Yunshu Dong8,
Peinan Chen2,3,4,5, Zhongxian Zhang3,4,5, Dongling Gao1,3,4,5, Zhimin Wang3,4,5,
Jinxin Miao3,4,5, Xia Xue 3,4,5, Pengju Wang3,4,5, Lirong Zhang9,
Rathi Gangeswaran10, Peng Liu10, Louisa S. Chard Dunmall 10, Junkuo Li11,
Yongjun Guo 2, Jianzeng Dong 12,13,14, Nicholas R. Lemoine3,4,5,10,
Wencai Li1,16 , Jun Wang 6,16 & Yaohe Wang 3,4,5,10,16

Esophageal squamous cell carcinoma (ESCC) is highly heterogeneous. Our
understanding of full molecular and immune landscape of ESCC remains
limited, hindering the development of personalised therapeutic strategies. To
address this, we perform genomic-transcriptomic characterizations and AI-
aided histopathological image analysis of 120 Chinese ESCC patients. Here we
show that ESCC can be categorized into differentiated, metabolic, immuno-
genic and stemness subtypes based on bulk and single-cell RNA-seq, each
exhibiting specific molecular and histopathological features based on an
amalgamated deep-learning model. The stemness subgroup with signature
genes, such asWFDC2, SFRP1, LGR6 and VWA2, has the poorest prognosis and
is associated with downregulated immune activities, a high frequency of
EP300mutation/activation, functional mutation enrichment in Wnt signalling
and the highest level of intratumoural heterogeneity. The immune profiling by
transcriptomics and immunohistochemistry reveals ESCC cells overexpress
natural killer cell markers XCL1 and CD160 as immune evasion. Strikingly, XCL1
expression also affects the sensitivity of ESCC cells to common chemotherapy
drugs. This study opens avenues for ESCC treatment and provides a valuable
public resource to better understand ESCC.

Oesophageal cancer (EC) is an aggressive and invasive disease, asso-
ciated with one of the highest mortality rates (509,000 per year) and
incidence rates (572,000 new cases per year) worldwide in 20181. The
global incidence and mortality of EC are predicted to increase in the
coming decades1,2. The highest prevalence of EC occurs in Asia and
Africa, where themost common subtype is oesophageal squamous cell
carcinoma (ESCC)1. Despite advances in therapeutic options, including

novel targeted therapies and cancer immunotherapies, the prognosis
of ESCC remains poor, with a 5-year survival of <15%3,4. The major
challenges facing ESCC treatment are the aggressive progression and
late diagnosis. Therefore, studies on themolecular features of ESCC to
identify biomarkers for early diagnosis and key molecular alterations
affecting the prognosis of the disease are crucial for early intervention
and an improved therapeutic strategy. Several major international

Received: 5 August 2021

Accepted: 3 October 2024

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: liwencai@zzu.edu.cn; j.a.wang@qmul.ac.uk; Yaohe.wang@qmul.ac.uk

Nature Communications |         (2024) 15:8988 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2967-811X
http://orcid.org/0000-0002-2967-811X
http://orcid.org/0000-0002-2967-811X
http://orcid.org/0000-0002-2967-811X
http://orcid.org/0000-0002-2967-811X
http://orcid.org/0000-0002-3591-3358
http://orcid.org/0000-0002-3591-3358
http://orcid.org/0000-0002-3591-3358
http://orcid.org/0000-0002-3591-3358
http://orcid.org/0000-0002-3591-3358
http://orcid.org/0000-0002-5783-1281
http://orcid.org/0000-0002-5783-1281
http://orcid.org/0000-0002-5783-1281
http://orcid.org/0000-0002-5783-1281
http://orcid.org/0000-0002-5783-1281
http://orcid.org/0000-0003-2380-0900
http://orcid.org/0000-0003-2380-0900
http://orcid.org/0000-0003-2380-0900
http://orcid.org/0000-0003-2380-0900
http://orcid.org/0000-0003-2380-0900
http://orcid.org/0000-0003-1641-2969
http://orcid.org/0000-0003-1641-2969
http://orcid.org/0000-0003-1641-2969
http://orcid.org/0000-0003-1641-2969
http://orcid.org/0000-0003-1641-2969
http://orcid.org/0000-0001-7299-7805
http://orcid.org/0000-0001-7299-7805
http://orcid.org/0000-0001-7299-7805
http://orcid.org/0000-0001-7299-7805
http://orcid.org/0000-0001-7299-7805
http://orcid.org/0000-0003-2509-9599
http://orcid.org/0000-0003-2509-9599
http://orcid.org/0000-0003-2509-9599
http://orcid.org/0000-0003-2509-9599
http://orcid.org/0000-0003-2509-9599
http://orcid.org/0000-0003-2367-6313
http://orcid.org/0000-0003-2367-6313
http://orcid.org/0000-0003-2367-6313
http://orcid.org/0000-0003-2367-6313
http://orcid.org/0000-0003-2367-6313
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53164-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53164-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53164-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53164-x&domain=pdf
mailto:liwencai@zzu.edu.cn
mailto:j.a.wang@qmul.ac.uk
mailto:Yaohe.wang@qmul.ac.uk
www.nature.com/naturecommunications


studies have made important advances in identifying the molecular
landscapes and understanding the molecular mechanisms of ESCC5–9.
They highlighted common deregulation of RTK/RAS/PI3K and WNT/
Notch pathways, cell cycle regulation, frequently mutated genes such
as TP53, FAT1, NOTCH1, KMT2D, NFE2L2 and ZNF750, and epigenetic
alterations of ESCC10. However, the genetic events associated with the
heterogeneous behaviour of ESCC are still poorly understood, result-
ing in a lack of robust biomarkers for predicting prognosis or
designing effective targeted therapeutics. Moreover, the immune
landscape and precise immune escape mechanisms of ESCC have not
been fully revealed, and there is no effective immunotherapeutic
regime available for ESCC even though immunotherapeutic agents will
be featured in standard systemic treatment for ESCC in the near future,
as it is significantly associated with inflammation and host immunity
against dysplastic cells11. Therefore, an integrated multi-omics inves-
tigation of ESCC to decipher themolecular and immune heterogeneity
is required for a thorough understanding of disease pathogenesis,
especially for patients from the region with the highest incidence
of ESCC.

Here we present a comprehensive genomics and transcriptomics
analysis of tumours with matched normal tissue in untreated ESCC
patients with more than 4 years of follow-up after surgical resections.
We explored the transcriptomic subtypes and diverse immune
microenvironments, as well as their prognostic potential, and uncov-
ered tumour-intrinsic immune escape mechanisms. We further iden-
tified significant gene and pathway alterations that contributed to the
adverse phenotypes. In addition, we developed a deep-learningmodel
to extract and compare subtype-specific histopathological features
based on digitised whole-slide histology images (WSI) of the samples.
Our study broadens the knowledge of ESCCmolecular and histological
diversity and provides potential therapeutic targets for the treatment
of ESCC.

Results
Transcriptomics subtypes of ESCC with distinct prognosis
To fully understand the transcriptomic heterogeneity and molecular
signatures of ESCC associated with differences in prognosis, we
investigated the transcriptomic landscape of 120 treatment-naive
ESCC tumours prospectively collected under strict protocols (Sup-
plementaryData 1).Unsupervised clusteringofRNA-seqprofiling using
non-negative matrix factorisation revealed four stable clusters (Fig. 1a
and Supplementary Fig. 1a, Supplementary Data 2). Functional anno-
tation of representative genes in each cluster annotated these sub-
types as ‘differentiated’, ‘immunogenic’, ‘metabolic’ and ‘stemness’
(Fig. 1b, c, Supplementary Data 2 and 3). Gene signatures of these four
subtypes were validated in three independent patient cohorts12–14

(Supplementary Fig. 1b). Keratinocyte differentiation and epidermis
development genes such as LCE3D, CDSN and KLK5 defined the dif-
ferentiated subtype. B-cell surface markers MS4A1, CD79A and MZB1
and T-cell chemokine ligands CXCL9, CXCL13 and CXCL10 char-
acterised the immunogenic subtype. The metabolic subtype is asso-
ciated with the upregulation of genes involved in drug metabolism by
cytochrome P450 and retinol metabolism, such as GSTA1, ADH7,
UGT1A10 and UGT1A3. High expression of WFDC2, PEG10, Wnt sig-
nallingmodulator SFRP1 and squamous cell carcinoma (SCC) stem cell
marker LGR615 defined the stemness subtype (Fig. 1a and Supplemen-
tary Data 2). All immune-associated pathways, such as the interferon-
gamma pathway, TCR pathway and chemokine-signalling pathway,
were significantly downregulated in the stemness subtype (Fig. 1b).
The transcription factor (TF) profiling further highlighted subtype-
specific TFs, including the upregulated activity ofMYB, SOX10, SP5 and
ARNT2 in the stemness group (Supplementary Fig. 2).

We next utilised a large single-cell RNA-seq data set of samples
from 60 individuals with ESCC16 to validate our subtype specific gene
signatures and identify associated cell types in the cancer tissue. Out of

the 208,659 cells, 44,122 were epithelial cells that were dominantly
cancer cells (Supplementary Fig. 3), and signature genes from differ-
entiated, metabolic and stemness subtypes were mainly expressed by
epithelial cells, while most signature genes of our immunogenic sub-
type were all expressed by non-tumour cells. For example, MS4A1,
CD79A and MZB1 were expressed by B cells, CXCL9 was expressed
mainly by myeloid cells, with some in fibroblasts, endothelial and
pericytes (Fig. 1a and Supplementary Fig. 3b). To further dissect the
heterogeneity of ESCC epithelial cells, the NMF clustering (with k = 10
factors) was performed on epithelial single cells to identify diverse
transcriptional programmes (Supplementary Fig. 4). Based on shared
signature genes and pathway activities, their corresponding pro-
grammes of Zhang et al.16, and transcriptomic subtypes were assigned.
Reassuringly, all previous eight expression programmes of epithelial
cells16 were identified in NMF programmes, and these NMF transcrip-
tional programmes seemed to capture all our four transcriptomic
subtypes derived from bulk RNA-seq. For example, the NMF cluster 5
and 10 corresponded to our differentiated subtype and the epithelial
differentiation (Epi1/2) programme identifiedby Zhang et al.16, with the
overlap of many signature genes, such as LGALS7, LGALS7B, KRT16,
KRT6B/C, FABP5 and LY6Dof the Epi1 programme, S100A7/8/9, SPRR1A/
B and SPRR2D of the Epi2 programme. Our metabolic subtype corre-
sponded to theNMF cluster 4 and theoxidative stressordetoxification
(Oxd) programme, with shared genes as CES1, ALDH1A1, ALDH3A1,
AKR1C1/2/3 and GPX2. The NMF cluster 6 had the most activated
immune and cell adhesion pathways, and shared many mucosal
immunity-like (e.g., S100P, CXCL17, AGR2 and MUC20) and antigen
presentation programmegenes (e.g.,CD74,HLA-DPA1,HLA-DRA/B1/B5,
HLA-A/B/C and B2M). Thus, this cluster mostly likely corresponded to
our immunogenic ESCC cells. Interestingly, our stemness subtype was
captured by the NMF cluster 1 with many shared genes, such as SFRP1,
COL9A3,WFDC2 and LGR6, although this was not characterised by the
eight epithelial programmes of Zhang et al., (Supplementary Fig. 3e
and Supplementary Fig. 4). Cluster 1 also had significantly upregulated
Wnt signalling and NCAM1 interactions, and the most downregulated
keratinisation/cornified envelope and metabolism pathways, which
were all signature pathway activities for the stemness subtype.
Therefore, the single-cell results further validated our findings derived
from bulk tissue RNA-seq and supported our four distinct tran-
scriptomic subtypes.

Importantly, the stemness subtype was associated with the worst
overall survival of all subtypes (Fig. 1d, log-rank test P = 0.028). The
significance as a prognostic biomarker of the top four genes (WFDC1,
SFRP1, LGR6 and VWA2) related to the stemness signature was further
proven in an independent cohort of 65 ESCC patients using RT-PCR
(Fig. 1e, P =0.031). Subsequently, we investigated the SFRP1 expression
in ESCC by Immunohistochemistry (IHC) and Western blot assay. The
frequency of SFRP1 protein expression was low in human primary
ESCC tumour, showing that SFRP1 protein was positive in 4.3% (3/70)
of ESCC tumour tissues and no positive in the matched normal sam-
ples, as demonstrated in Supplementary Fig. 5a, b, SFRP1 exhibited
positive expression in part clinical specimens and cell lines. Further
functional experiments demonstrated that the overexpression of
SFPR1 in KYSE-70 and KYSE-140 cell lines could significantly increase
cell proliferation in vitro or xenograft tumour growth in vivo, while
SFRP1 knockdown in KYSE-450 and KYSE-520 cells exhibited the
opposite effects (Fig. 1f and Supplementary Fig. 5c–j).

Distinct histological features among transcriptomic subtypes
As we also matched Hematoxylin and Eosin (H&E) stained pathology
slides for samples that were profiled by sequencing, we next explored
if there were any unique histological features specific to each mole-
cular subtype. To quantify and compare the histopathological data/
features extracted from the scanned H&E histology images, we
developed a deep-learning model using five state-of-the-art
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convolutional networks, namely Inception-V3, Inception-ResNet-V2,
DenseNet-121, VGG16 and ResNet-50, and performed feature extrac-
tion on selected tiles from each whole slide image (WSI) (Supple-
mentary Fig. 6a). This model diversity can enhance performance by
capturing different predictive elements and building more enriched
representations into the system. This ensemble approach was

reported to retainmore informative features for the final retrieval and
achieve better accuracy than a separate feature extraction17–19. We then
compared features among the four transcriptomic groups (Supple-
mentary Data 4), and identifiedmeta features strongly associated with
each group (i.e., combined features that were significantly higher in
one group compared to the rest) (see Methods, Supplementary Fig. 6,
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Supplementary Data 5). Imaging tiles with the highest scores of each
feature were selected for review by a pathologist (Fig. 1c). Indeed, tiles
with the highest subtype-specific features all contained the distinct
histopathological features corresponding to each subgroup (Fig. 1c,
Supplementary Fig. 6b). ‘DIFF-Feature’, characterised by keratin pearls
within tumours, is significantly higher in the differentiated samples
than the non-differentiated samples. The ‘MET-Feature’, marked by
eosinophilic cytoplasm with less immune cell infiltration, is higher in
metabolic than in the immunogenic, stemness and differentiated
groups. By contrast, the ‘IMM-Feature’ with extensive immune cell
infiltrationwithin the stromaof tumours, is higher in the immunogenic
than in the non-immunogenic groups. Finally, the STEM-Feature
associated with poorly differentiated tumour cells and few immune
cells infiltratingwithin the tumour is the highest in the stemness group
compared to other groups (Fig. 1c and Supplementary Fig. 6b, c).

Tumour immunecell infiltration and tumour cells expressingNK
marker genes
Wenext examined the tumour immune environment of patient tissues
based on RNA-seq and determined how this correlated with the four
transcriptomic subtypes and prognosis. Several in silico immune
deconvolution published methods20–25 were benchmarked against
molecular protein staining of CD4+ and CD8+ cells, tumour cellularity
and copy number profiles (Methods, Supplementary Fig. 7), and the
best-performing method, the Danaher et al.22 signature was used to
investigate the tumour-infiltrating immune cell populations within the
120 ESCC tumours. Consensus clustering based on the immune cell
estimates revealed three distinct clusters: C1 is associated with a gen-
erally low level of immune cell infiltration, but with relatively high
levels of neutrophils, dendritic and mast cells; C2 is marked by a high
level of immune infiltration of B cells, T cells and macrophages; C3 is
correlated with a low level of infiltration of all immune cell popula-
tions, except forNKcellmarkers (Fig. 2a). TheC3 cluster is significantly
associatedwith high expression of NK cell markersXCL1, XCL2 (Fig. 2b)
and CD160 (Supplementary Fig. 8a).

We further performed IHC of immune cell markers of CD4, CD8
and CD56 (Supplementary Fig. 9), quantified and compared the IHC
measurements among the transcriptomic and immune subtypes. The
results demonstrated that the immunogenetic subtype and the
C2 subtype indeed had the highest level of CD8+ and CD56+ cell infil-
tration, slightly less so for CD4+ cells (Fig. 2c, Supplementary
Fig. 10a, b). It is noteworthy that the C3 cluster had a low level of CD56
by IHC, but high mRNA levels of XCL1, XCL2 and CD160. The mRNA
expression of other NK markers, such as NKG7 and KLRC1, was the
highest in the C2 cluster but low in C3 (Supplementary Fig 8a). This
interesting but conflicting observation of NK marker genes warrants
further investigation later.

The prognostic values for all profiled immune cells were then
assessed in our cohort using a multivariate Cox regression analysis,
accounting for patient age, drinking and smoking history, tumour
stage and grade, and the higher NK cell abundance was the strongest
poor prognostic factor (Fig. 2d, e (China), log-rank test P =0.019). This
negative correlation with overall survival for NK cell markers was also
seen in the TCGA cohort of 90 ESCC samples (Fig. 2e (TCGA),
P =0.015). The comparison between the four transcriptomic subtypes
and three immune profile clusters demonstrated a non-random cor-
relation (Fisher’s exact test, p = 9.37e−11). Fifteen of 31 cases (48.4%)
from the C3 cluster were stemness tumours, while the differentiated
and immunogenic subtypes were overrepresented in the C1 and C2
clusters, respectively (Fig. 2f). Of note, we also observed positive
correlations of mRNA expression between LGR6 and XCL1 (r = 0.40,
p <0.0001), XCL2 (r =0.39, p <0.0001) and CD160 (r =0.32,
p =0.0003) (Fig. 2g), suggesting a degree of certain association
between stemness and NK cell estimates.

To further investigate this correlation, IHC staining for XCL1,
CD160 and LGR6 was performed in the matched serial sections of
tumour tissues in order to determine the spatial composition and cell
types that expressed these markers (Supplementary Fig. 11). Surpris-
ingly, XCL1 and CD160 were predominantly expressed in tumour cells
(Fig. 2h), with a few positive immune cells infiltrated in the stroma.We
also observed a positive correlation between XCL1/2 gene expression
and tumour cellularity based on sequencing data (Supplementary
Fig. 8b). XCL1 or CD160 expression co-localised with LGR6 expression
(Fig. 2h, Supplementary Fig. 8c), and co-expression within tumours
was seen in 16.3% (16/98) of our cohort for XCL1 and LGR6, and 27.8%
(25/90) for CD160 and LGR6 (Supplementary Data 6 and 7). When
assessing all 98 samples with available IHC, the LGR6 and XCL1 IHC
staining appeared to be significantly associated (co-expressed, two-
tailed Fisher’s exact test, P <0.0001), while assessing all 90 samples
with IHC, LGR6 and CD160 staining was not significantly associated
(P = 0.93, Supplementary Data 7).

Of note, XCL1 was predominantly expressed in cancer cells
showing adenocarcinoma morphology and dysplastic cells in the
submucosa glands,while CD160 could be expressed in both squamous
carcinoma and adenocarcinoma cells (Fig. 2h, Supplementary Fig. 8c)
as well as in the proliferative and dysplastic cells of the submucosa
glands (Supplementary Figs. 8d and 11). Interestingly, we observed that
XCL1-expressing dysplastic cells in the submucosal gland in most of
the cases are completely separated from the squamous cell carcinoma,
suggesting that this subgroup of patients might concurrently have
both squamous cell carcinoma and adenocarcinoma, or this ade-
nosquamous carcinoma might be derived from submucosa gland
epithelial cells. Our finding of tumour cells overexpressing NK cell
markersXCL1/2 andCD160 correlatingwith the lowest level of immune

Fig. 1 | Transcriptomic subtypes of Chinese ESCC. a Four distinct transcriptomic
subtypes were identified using non-negative matrix factorisation (NMF). The
expression heatmap of all representative genes from the four clusters is displayed,
and the top five representative genes are shown next to each cluster. Each row
represents a representative gene, and each column represents a patient.bHeatmap
of top enriched pathways for each subtype is shown. Each row represents a sig-
nificant pathway curated from the mSigDB database (v.6.2). Four subtypes are
shown in the column. The ‘−log10’ transformed p-values from the hypergeometric
test were used to generate this heatmap. Red indicates that the pathway is highly
enriched for the gene set. Blue indicates that no enrichment was observed for the
gene set. For the stemness subtype, results of three mostly downregulated path-
ways, ‘interferon gamma signalling’, ‘TCR pathway’ and ‘chemokine signalling
pathway’ from GSEA are shown. Normalised enrichment scores (NES) and FDR
values are also displayed. c Representative histopathology images for the four
subtypes are shown. A deep-learningmodel was developed to extract and compare
subtype-specific histological features based on histology slides. The high-
magnification pictures were shown with arrows indicating their locations in the

slides in the right panel. These features clearlydiscriminate themolecular subtypes.
dAKaplan–Meier curve is showncomparing patients from the four subtypeswith a
log-rank p-value calculated. e A Kaplan–Meier curve is shown for patient samples
with high and low stemness signatures in an independent cohort (n = 63). The
stemness signaturewasmeasured as the average expression readout of four genes,
LGR6, VWA2, WFDC1 and SFRP1, by RT-PCR. The patients were split into high and
low groups based on an optimal cut-off with R survminer package (see Methods).
For all survival curves, significancewas determined using a two-sided log-rank test.
f The effect of SFRP1 overexpression (in KYSE-70, n = 6) or knock-down (in KYSE-
520, n = 6) on the tumour growth of ESCC was evaluated by the tumour growth of
SFRP1-modified ESCC cells in immune-deficient mice. All mice in the over-
expression group developed tumours, while twomice in the knockdowngroup had
no tumour formation. The tumour size is presented at the end time point of the
study (30 days after transplantation of the ESCC cells). The box bounds the inter-
quartile range divided by the median, with the whiskers extending to the min and
max values. Significance was determined using a two-sided Wilcoxon test. Source
data are provided as a Source Data file.
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a box andwhiskerplot. Significance in eachpairwise comparison is shownusing the
two-sided Wilcoxon rank-sum test. c IHC analysis revealed that the C2 immune
subtype had significantly increased levels of CD8 (67 samples) and CD56 (75 sam-
ples) expression. Significance was determined using a two-sided Wilcoxon test;
*p <0.05, ***p <0.001. d The survival analysis of all profiled immune cell types
against overall survival for 102 samples is shown. The hazard ratio (HR) derived
from the multivariate Cox regression model is shown as a whisker plot. The
blue square indicates the HR value, and the error bars represent 95% confidence
intervals. Significance is determined using a two-sided log-rank test (■ p <0.1;

* p <0.05). e A Kaplan–Meier curve is shown for NK cell estimates against overall
survival for our cohort (China, 102 samples) and TCGA (90 samples). Multivariant
survival analysis was performed for the China cohort. HR and p-value derived from
the log-rank test are shown. f The number of cases of the four transcriptomic
subtypes is shown among the three immune subtypes C1, C2 and C3. Fisher´s exact
test was used to test if there is any difference in the proportion of transcriptomic
subtypesbetweendifferent immune subtypes (****p <0.0001).gThe scatter plot of
expression levels between LGR6 and three NK cell markers, XCL1, XCL2 and CD160,
is shown. Two-sided Pearson’s correlation coefficient and associated p-value are
displayed. h IHC (Immunohistochemistry) staining of XCL1 and LGR6 from one
patient, Sample 427, and IHC of CD160 and LGR6 from a different patient, Sample
341, are shown. The IHC results show that XCL1 and LGR6, CD160 and LGR6 are co-
expressed in tumour cells. Furthermore, to provide a more comprehensive
understanding of our findings, we included a larger visualisation of IHC results
depicting CD160, LGR6, XCL1, and CD56 in both normal control and tumour
samples for Sample 333 in Supplementary Fig. 11a. In b, c, the box bounds the
interquartile range divided by the median, with the whiskers extending to a max-
imumof 1.5 times the interquartile range beyond the box. Source data are provided
as a Source Data file.
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indicated in red and blue, respectively. Source data are provided as a Source
Data file.
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cell infiltration suggests a tumour-intrinsic immune evasion mechan-
ism of ESCC. Furthermore, we also found that both XCL1 and XCL2 had
muchmore elevated expression in patient tumour samples compared
to their matched normal (P <0.0001), and within tumour samples,
high XCL1 expression was significantly associated with worse overall
survival (Supplementary Fig. 12). All these observations suggest that

XCL1 expressed by tumour or dysplastic cells may have a tumour-
promoting role in ESCC.

Molecular characteristics of XCL1-high ESCC tumour cells
Characterisation of tumour cells expressing NK marker genes, espe-
cially XCL1, is essential to uncover molecular mechanisms and
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pathways which may offer alternative therapeutic targets and candi-
date drugs for this subgroup of ESCC. We first utilised the Cancer Cell
Line Encyclopaedia (CCLE) RNA-seq data to analyse the association of
XCL1/2 with ESCC. Interestingly, EC cell lines had the highest level of
XCL1 mRNA expression out of all cancer types profiled (Fig. 3a). Hier-
archical clustering based on differentially expressed genes (n = 413,
P <0.01) between XCL1 high (n = 11) and low (n = 11) ESCC cell lines
clearly separated the two groups (Fig. 3b, Supplementary Data 8). The
GSEA results further showed that XCL1-high cells exhibited upregula-
tion of drug metabolism cytochrome P450, retinol metabolism and
biological oxidation pathways (false discovery rate, FDR <0.0001),
while asparagine N-linked glycosylation, N-Glycan biosynthesis, cyto-
solic tRNA aminoacylation and signalling by NTRK1 were highly over-
represented in XCL1-low cells (Fig. 3c). It is worth noting that different
subsets of genes contributed to the upregulation of drug metabolism
by cytochrome P450 and retinol metabolism were seen in XCL-high
cells and the metabolic subtype (Supplementary Fig. 13). We also
observed a significantly positive correlation in mRNA expression
between XCL1 and LGR6 for ESCC cell lines (Supplementary Fig. 12d,
Pearson’s correlation r =0.59, p = 0.004), further highlighting the
association between NK marker XCL1 and the stemness signature in
ESCC cell lines. Interestingly, XCL1-high cells also showed significantly
downregulated cell cycle gene set enrichment scores compared to
XCL1-low cells (Fig. 3d). This was further seen in the single cell data16,
which showed that XCL1 positive epithelial cells (n = 515) had sig-
nificantly lower cell cycle gene set enrichment scores than XCL1
negative epithelial cells (n = 32,944) (Fig. 3e, Wilcoxon rank test,
P = 7.48e−06 for cell cycle checkpoints; P =0.001 for cell cycle mito-
tic). AlthoughmRNA expression levels of cell cycle-related genes were
reduced in XCL1-high cells compared to XCL1-low cells, XCL1 over-
expression in ESCC cells did not functionally affect the cell cycle
(Supplementary Fig. 14). More work is needed to further elucidate its
role in the cell cycle and other pathways associated with ESCC.

Given the upregulation of drug metabolism cytochrome P450 in
XCL1-high ESCC cells, we next explored the drug sensitivity to fluor-
ouracil (5-FU), the first-line chemotherapy drug for ESCC, between
XCL1-high and -low cell lines. All XCL1-high cell lines tested exhibited a
much higher IC50 than XCL1-low cells (Fig. 3f, Wilcoxon rank test,
P =0.007). Impressively, over-expression of XCL1 inXCL1-low cell lines,
KYSE-150, KYSE-180 and KYSE-410, resulted in a significant increase in
IC50 of 5-FU compared to their control cells (Fig. 3g, Supplementary
Fig. 15a, b) while overexpression of XCL1 did not affect the cell pro-
liferation (Supplementary Fig. 15d). We then explored the cancer drug
sensitivity data of 367 compounds from the Genomics of Drug Sensi-
tivity in Cancer (GDSC) resource26. Compared to XCL1-low cells, XCL1-
high cell lines displayed a higher level of resistance to almost all drugs
screened (Fig. 3h and Supplementary Data 9, IC50 z-score t-test
p <0.05). XCL1-low cell lines exhibited a significantly higher sensitivity
to Wnt-C59, LGK974 (both targeting PORCN and WNT signalling) and
CP724714 (targeting ERBB2 andRTK signalling). Deregulatedpathways
associated with XCL1-high cells may represent therapeutic targets for
this subtype of ESCC with poor prognosis.

The genomic landscape among molecule subtypes of ESCC
Given the heterogeneous transcriptomic and immune signatures
observed in our cohort, we next examined whether the genomic
landscapes differ among ESCC subtypes. Whole-exome sequencing of
103 samples with matched RNA-seq was performed and analysed
(Supplementary Data 10). We identified, on average, 358 somatic
mutations (range 21–3583) and 152 non-silent mutations (range
9–1242) per sample, respectively. Overall and subclonal mutation
burden and tumour purity were not correlated (Supplementary
Fig. 16a). The overall mutational load, the number of non-silent
mutations, and somatic copy number profilingwere similar among the
four ESCC subtypes (Supplementary Fig. 16b). Three driver gene

detection methods, MutsigCV27,28, dNdScv29, OncodriveFM30, were
applied, and 10 ESCC driver genes were identified by at least two
methods (Supplementary Fig. 16c), which had all been detected in
ESCC previously5,7–9,31,32. Incorporating representative genomic altera-
tions of the three molecular subtypes ESCC1/2/3 previously identified
from 90 TCGA ESCCs13 and driver genes that have been implicated in a
large series of Chinese ESCCs5,32, we found that although the alteration
frequencies (i.e., mutations, amplifications and deletions) of most
significant genes in ESCC were similar among our subtypes, the
stemness type had a higher frequency of NOTCH1 and EP300 altera-
tions, affecting 39% and 26% of stemness tumours, respectively
(Fig. 4a, Fisher’s exact test, P = 0.018 and 0.008 for NOTCH1 and
EP300, respectively). Interestingly, no alterations in NOTCH1 and
EP300 were detected in the metabolic subtype, and no ZNF750
alterations were detected in the differentiated subtype. Stemness
tumours seemed to have the highest overall frequencies of ESCC1 and
ESCC2 alterations (74% and 65% of cases, respectively). Across our
cohort, although the highest overall frequencywasobserved for ESCC1
alterations (61%), other subtype alterations alsooccurred substantially,
50% for ESCC2 and 52% for ESCC3 (Supplementary Fig. 16d).

Next, we investigated the genomic alterations of ESCC func-
tional genes identified above across ESCC cell lines. Interestingly, in
XCL1-high cells, alterations in EP300 occurred in 4/11 (36%) cases,
compared to zero cases in XCL1-low cells (Fig. 4b), corresponding to
our result of the highest EP300 alternation frequency in the stem-
ness group. Whereas alterations in NOTCH1, FAT1 and KDM6A
seemed to be more prevalent, 64%, 55% and 45%, in XCL1-low cells,
respectively, than in XCL-high cells, 18%, 9% and 9%, respectively
(Fig. 4b). EP300 is a histone acetyltransferase, and its mutation has
been shown to be associated with poor outcome in ESCC and
HNSCC33,34. We also observed significantly poorer overall survival for
patients with EP300 mutations in our cohort (Fig. 4c, HR = 5.248,
P = 8e−06). When combined with CREBBP mutations, the EP300/
CREBBP mutation status was still predictive of worse survival
(Fig. 4d, HR = 2.229, P = 0.02). Although CREBBPmutations were not
enriched in the stemness subtype, alterations in EP300 and CREBBP
tended to co-occur (n = 4) only in stemness samples (Fig. 4a).
Interestingly, EP300-mutated patient samples (n = 8, 7.8%) had sig-
nificantly higher EP300 expression levels than EP300-wildtype
samples (Fig. 4e, Wilcoxon rank test, P < 0.01). Out of eight EP300
mutations, three single nucleotide mutations (2 missense muta-
tions, c.4312 T > C, c.4355 C > G and one splice site mutation,
c.4617+1 G > A) showed significantly elevated levels of the alter-
native (mutated) allele in RNA- compared to the DNA-level (Fig. 4f).
While for two codon-affecting mutations, one nonsense (c.3244
C > T) and one frame-shift deletion (c.1914_1915del), the opposite
pattern was observed, with decreased levels of the alternative allele
in RNA than in DNA (Supplementary Data 11).

EP300 mutations and overexpression and their relationship
with stemness and NK marker genes in ESCC
We next examined whether EP300 mutations and expression had any
associations with stemness and NK marker genes. We first performed
differential expression analysis between EP300-mutated and wildtype
samples, followed by GSEA against representative (i.e., upregulated)
gene sets of four transcriptomic subtypes andXCL1-high genes derived
from cell lines. We found that the gene set representative of stemness
subtype was upregulated in EP300-mutated compared to wildtype
samples (NES = 1.36, FDR =0.05), while all gene sets of other three
subtypes were massively downregulated in EP300-mutated samples
(Fig. 5a, b, FDR <0.001, Supplementary Fig. 17a). Although there was
no upregulation of XCL1-high genes, we observed significantly
increased gene expression of CD160 in EP300-mutated samples
(Fig. 5c, P =0.003). Interestingly, the EP300 gene expression was also
the highest in the stemness subtype, and there was a positive
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correlation in expression between EP300, XCL1/2 and CD160 (Supple-
mentary Fig. 17b, 17c).

Next, focusing on EP300-wildtype samples,we selected the top 20
EP300-high and 20 EP300-low expression samples, and found that the
stemness gene set and XCL1-high genes were significantly upregulated
in the EP300-high group (Fig. 5a, b, ‘stemness up’ gene set, NES = 2.49,
FDR <0.0001; XCL1-high gene set, NES = 1.47, FDR =0.014), whereas
the differentiated gene set was greatly downregulated (NES = −3.47,
FDR <0.0001). Interestingly, we found that themetabolic gene set was
significantly upregulated in EP300-high samples (NES = 2.71, FDR <
0.0001), while the immunogenic gene set was not notably affected by
EP300 expression levels (Fig. 5a). Taking all these together, our results
demonstrate a strong positive association between EP300 mutations,
overexpression and stemness/NK marker XCL1 related signatures,
suggesting that EP300may have a role promoting tumours to become
a more aggressive subtype in ESCC.

Functional mutation enrichment in pathways among ESCC
subtypes
To further investigate whether specific pathway-related mutations
were associated with transcriptomic subtypes, we performed func-
tional mutation enrichment analysis adjusted for sample mutation
load using the 50 cancer hallmark gene sets (see Methods). We iden-
tified functionally relevant mutations in Wnt/β-catenin signalling
whichwere significantlymore enriched in the stemness samples, while
functional mutations in inflammatory response, angiogenesis and
hypoxia were highly enriched in the immunogenic tumours (Fig. 5d,
Kruskal–Wallis test, P <0.05, Supplementary Fig. 18a). Of note, the
hallmark gene set expression profile using GSVA also confirmed the
functional differences identified among the four subtypes (Supple-
mentary Fig. 18b). We then evaluated whether the pathway functional
mutation enrichment affected the expression of pathway genes, and
found that mutation enrichment in Wnt/β-catenin signalling, inflam-
matory response and hypoxia were positively correlated with pathway
gene expression activities for the corresponding ESCC subtypes
(Fig. 5e), suggesting that high level of Wnt signalling expression in the
stemness group could be a consequence of functional mutations in
regulators of the Wnt pathway, and these functional mutations were
the most enriched in stemness samples. This is also the case for the
high pathway activity of inflammatory response and hypoxia for the
immunogenic subtype. Interestingly, the stemness subtype also
seemed to have the highest proportion of nonsense mutations in Wnt
pathway genes. Themissensemutations in theWnt signalling pathway
were highly deleterious, as predicted by SIFT35 and PolyPhen-236, and
the stemness group seemed to have the highest proportion of dele-
terious Wnt mutations (93%), significantly higher than that of the dif-
ferentiated subtype (60%, Fisher’s exact test, P =0.035, Supplementary
Fig. 18c).

Clonality analysis among molecule subtypes of ESCC
Given the well-documented interplay between immune infiltration and
tumour clonal evolution37,38, we finally investigated the level of intra-
tumoural heterogeneity (ITH, measured by the Shannon diversity
index) based on variant allele frequencies of all mutations in each
tumour among the immune and transcriptomic subtypes. Our results
showed the greatest ITH in the C3 cluster, whereas in C2 where the
immune infiltration was the highest, the diversity was greatly reduced
(Fig. 5f). In addition, the highest ITH presented in the stemness sub-
type while the immunogenic subtype had the lowest ITH (Fig. 5f). The
negative correlation between ITH and immune infiltration was further
confirmed by IHC of CD8 and CD56 (Supplementary Fig. 10c). Our
results suggest that the immune microenvironment strongly influ-
ences the tumour evolution and (sub)clonal architecture. The stem-
ness / C3groupwith thehighest level of immuneexclusion alsohad the
highest tumour (sub)clonal diversity. Importantly, high ITH was also a

significant marker of poor prognosis in ESCC (Fig. 5g, multivariate
analysis, hazard ratio HR = 2.214, log-rank P = 0.007).

Discussion
This study carried out the comprehensive genomic-transcriptomic
characterisation of a large cohort of treatment-naïve ESCC patients
with long-term follow-up data from high-incidence areas. Here we
performed a thorough integrated analysis of genetic alterations, gene
expression and immune cell infiltration, and examined their correla-
tionswith clinical and pathological data.We validated our results using
independent datasets, and in vitro and in vivo biological experiments.
Importantly, we developed a deep-learning model to extract and
measure the level of subtype-specific histopathological features based
on digitised WSIs among patient samples. Our study offers important
insights into genetic events that drive ESCC diversity and progression
and reveals a mechanism of ESCC immune evasion.

Firstly, four distinct subtypes of ESCC (differentiated, immuno-
genic, metabolic and stemness) have been identified and validated in
our study, and each subtype shows a unique molecular signature and
histopathological changes. Previously, the integrated genomic char-
acterisation of EC had divided ESCC into three molecular subtypes13,39.
These ESCC subtypes showed trends for geographic associations,
while their correlationswith clinical outcomeswerenot demonstrated.
The limitation also lies in the fact that the cases originated from the
regions with moderate or lower ESCC incidence. Upon investigating
their subtype-specific alterations in our cohort and subtypes,we found
that the overall frequencies were high and comparable for all three
previous subtypes, although stemness tumours seemed to have the
highest frequencies of ESCC1 and ESCC2 alterations. The ESCC sam-
ples of our study were from the high-incidence populations of China,
where ESCC accounts for the vast majority of EC (>90%). Identification
of robust biomarkers in these ESCCs has tremendous clinical impli-
cations, given that 70% of global EC cases occur in China. Indeed, we
found that the stemness subgroup has the poorest prognosis com-
pared to other subgroups. We functionally validated the role of one of
the top stemness genes, SFRP1 (a WNT signalling modulator), in the
progression of ESCC. We proved that SFRP1 significantly enhances the
malignant phenotypes of ESCC cells in vitro and progression in vivo,
suggesting that targeting the WNT pathway via SFRP1 may be a pro-
mising strategy for the treatmentof ESCCasESCChas ahigh frequency
(up to 86%) of alterations in the WNT pathway7.

Immune evasion is a hallmarkof cancer40. Cancer immunotherapy
has revolutionised the profile of cancer therapies over the past dec-
ade. While long-term survival is observed for a fraction of cancer
patients, the majority of patients, including EC patients, currently do
not benefit from immunotherapy treatments such as immune check-
point blockade therapy11, emphasising the need to identify the geno-
mic and molecular determinants underpinning immune evasion of
ESCC. Here we identified ESCC cells overexpressing natural killer (NK)
cell markers such as XCL1/2 and CD160. The overexpression of these
markers is significantly associated with a shorter overall survival of
ESCC patients. XCL1 is a C-class chemokine and is produced pre-
dominantly by NK and activated CD8+ T cells41,42, and the XCL1-XCR1
axis normally plays a crucial role in the induction of effective cytotoxic
immunity43. A recent study demonstrated that XCL1 expression cor-
relates with CD8-positive T cell infiltration and PD-L1 expression in
mature ovarian cystic teratomas, but there is no correlation between
XCL1 expression and prognosis or clinical stage44. However, in our
samples, the XCL1-overexpressing tumours showed the lowest
immune cell infiltration. Interestingly, the Human Protein Atlas data
also provided evidence of XCL1-overexpressing tumour cells in a
number of cancer types, and this overexpression is significantly cor-
related with a shorter overall survival rate in patients with colorectal
and renal cancer (Supplementary Fig. 15c). The immunogenic role of
XCL1 and its underlying functionalmechanisms in the development of
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ESCC and other tumours need further investigation. CD160, a
glycosylphosphatidylinositol-anchored Ig domain protein that is
expressed on NK cells, γδ T cells and aminor subset of CD4+ and CD8+

T cells, is also overexpressed in some ESCC tumours in our study.
Previous studies demonstrated thatCD160 is dramatically increased in
B cellmalignancies45,46. CD160 can function as both a co-activating and
co-inhibitory receptor, depending on which receptor/ligand is oper-
ating in the context of neighbouring interactions47. Given the negative
correlation of CD160 expression with clinical prognosis in ESCC and
other tumours such as renal cancer (Supplementary Fig. 8e), we pos-
tulate that CD160-expressing cancer cells could use the HVEM and
BTLA inhibitory pathways to inhibit T and NK cells activities47,48. These
interesting preliminary data warrant further investigation into the
detailed pathways of howCD160 expression in cancer cells modulates
host immunity. The interactions of CD160 with its ligands may be
important in the pathophysiology of ESCC, offering targets for ther-
apeutic manipulation.

Recent studies have shown that cancer stem cells (CSCs) have the
ability to hide from the immune system ab initio, evading the immu-
nosurveillance phase49,50. Interestingly, we found that in the C3
immune cluster of ESCC characterised by relatively higher levels of
XCL1 and CD160, ~50% of tumours are from the stemness subtype,
which presents a significant WNT alteration. A recent study demon-
strated that latency-competent cancer (LCC) cells from early-stage
human lung and breast carcinoma can enter a quiescence state
through the expression of the WNT inhibitor DKK1 and a broad
downregulation ofULBP ligands forNK cells. These cells evadeNK-cell-
mediated clearance to remain latent for extended periods50. In this
study, we also observed an association between WNT dysregulation
and a stemness slow-cycling state and identified an unreported
immune evasion of ESCC stem-like cells:masking the tumour cells with
expression of NK cell markers. These findings, together with those
previously discussed, highlight the critical interaction between key
signalling pathways crucial for stem-cell propagation and the
mechanisms that guide immune evasion. A deeper understanding of
the unique interactions between cancer stem-like cells and the
immune system could provide ground for developing therapeutic
strategies that can harness the immune system against the “hardest
immune evaders”.

When investigating the differences in genomic changes among
ESCC subtypes, we noted a strong positive association between EP300
mutations/overexpression and stemness/NK marker XCL1-related sig-
natures. Histone acetyltransferase p300 is a crucial transcriptional
coactivator. Along with CBP, they regulate the transcription of thou-
sands of genes in a cell via chromatin remodelling and histone mod-
ification, playing an important role in several fundamental biological
processes, including proliferation, cell cycle, cell differentiation, and
DNA damage response51. Of note, how cancer cells utilise p300 seems
to be context-dependent; both loss- and gain-of-function genetic
alterations in p300 have been reported across solid tumours and
haematological malignancies51–54. Our data suggests that missense and
splice site mutations of EP300 appeared to have elevated expression
levels of the mutated allele in RNA while truncating mutations of
EP300 had significantly decreased levels of the alternative allele in
RNA.However, theoverallmRNAexpressionof EP300was significantly
higher in mutated than in wild-type samples on average. The EP300
alterations potentiallypromotedESCC tumours to becomemore stem-
like phenotypes, which leads to immune exclusion, drug resistance
andworse clinical outcomes. It has been shown that overexpression of
EP300 led to upregulation of mesenchymal and stemness markers,
increases in migration, invasion, anchorage-independent growth and
drug resistance in a breast cancer cellmodel55. Similar observation was
also obtained in non-small cell lung cancer and nasopharyngeal car-
cinoma cells56,57. EP300 knockdown, on the other hand, reduces cancer
stem cell phenotype, EMT, tumour growth and metastasis in these

cancers56–58, further supporting its oncogenic role and potential
involvement in stem-like phenotype. Indeed, EP300 mutations and
overexpression correlate with adverse prognoses in many solid can-
cers, including ESCC33,34. Importantly, it has been shown that phar-
macological inhibition of CEP/p300 KAT activities sensitises cells to
DNA-damaging chemotherapeutic agents and radiation34,59. Thus,
more work lies ahead to test similar combinational therapies to treat
these resistant stemness/XCL1-high ESCC cells in vitro and in vivo.

We also developed an amalgamated deep-learning model to
extract and quantify significant histopathological features associated
with each molecular subtype. This approach identified subtype-
specific imaging features, and such features were highly enriched in
their corresponding molecular subtypes. This AI model based on
whole slide images highlighted the potential of predicting molecular
subtypes using histological features only. Moreover, it also identified
intratumoural heterogeneity in the tissue, as subtype-specific features
seemed to be present in all slides but with varied proportions. Our
ongoing effort is focused on analysing high-resolution image repre-
sentations across all slides using hierarchical self-supervised learning60

and testing if any of these features or combinations of features are
correlated with clinical outcomes and molecular subtypes. Further-
more, a joint omics-imagemodel based onmultimodal deep learning61

is yet to be developed using our data to allow for the most compre-
hensive data integration and biomarker discovery in ESCC.

In summary, this in-depth analysis of genomics-transcriptomics of
Chinese ESCC patients provides insights into the nature of ESCC
tumours. These findings pave the way for us to developmore effective
diagnostic and therapeutic approaches for ESCC. In addition, the data
created from this study, especially from treatment-naïve ESCCpatients
with follow-up more than four years after surgery, provides a unique
public resource to better understand and treat ESCC.

Methods
Patient cohort
120 patients diagnosed with oesophageal squamous cell carcinoma
from 2013 to 2016 were enrolled in Anyang Cancer Hospital under the
approval of the ethics committee of Both Anyang Cancer Hospital and
The First Affiliated Hospital of Zhengzhou University. None of these
patients received any radiotherapy or chemotherapy before surgery,
and pathology diagnosis was confirmed by three independent
pathologists. Tumour samples and adjacent normal tissues at least
5 cm away from paired tumour tissues were collected and placed in
liquid nitrogen within 30minutes after the surgery operation. A vali-
dation cohort of 65 ESCC patient samples was also identified from
Anyang Cancer Hospital, all primary treatment naïve tumours. All
patientswere informedand signed apatient informedconsent, and the
study was approved by the Ethics Committee of Zhengzhou University
so that sex and age when first diagnosed were reported for each
patient in Supplementary Data 1. However, no sex or age-specific
analysis was carried out, as these were not associated with our mole-
cular signatures.

RNA-seq experiment
Total RNA from the tumour and matched normal samples were
extracted with Invitrogen’s TRIzol Regents according to the manu-
facturer’s instructions. After quantification with Agilent 2100 Bioana-
lyzer (Agilent RNA6000Nano Kit), 1 ug RNAwas used to construct the
sequencing library following the introductions of VAHTS® Total RNA-
seq (H/M/R) Library Prep Kit for Illumina® and quantified libraries were
sequenced on Illumina X Ten platform (BGI) with paired-end 150 bp
read length, with on average 120M reads per sample.

RNA-seq data analysis
Rawsequencing readswerefirst evaluatedbyFastQC(0.11.7)62, andonly
clean data generated by SOAPnuke1.5.663 (-l 10 -q 0.5 -n 0.05 -Q 2 -G)
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was aligned and quantified against the indexed GRCh37 genome using
Salmon(version 0.9.0)64. The transcriptome abundances were impor-
ted into R (version 3.5.1) with ‘tximport’ R package65. Only transcripts
with TPM larger than 1 in more than half of the samples were kept and
normalised by cqn66. Principle component analysis (PCA) was carried
out on the whole transcriptome to further explore the data quality and
possible bias. Limma67 method was then used to perform the different
expression analyses for tumour versus normal pairs. Gene Set Enrich-
ment Analysis (GSEA)68 was further performed to identify significantly
dysregulated canonical pathways.

ESCC subtypes based on transcriptomics
To make sure that only the highly variable ESCC-related genes were
used for this analysis, mean absolute deviation (MAD) for each gene
among tumour samples was first calculated, and the top 1,500 variable
genes with the largest MAD values were selected for the ESCC subtype
discovery. The non-negative matrix factorisation (NMF) algorithm
‘NMFConsensus’69 was used to discover distinct transcriptomic sub-
types with default parameters with cluster size k = 2 to 7 considered.
Although k = 2 gave the best cophenetic correlation r =0.99, k = 4 also
achieved great clustering performance with cophenetic correlation
r =0.985 (Supplementary Fig. 1a), and the latter (k = 4) uncovered the
level of heterogeneity and granularity of transcriptomic patterns in a
finer resolution, thus was selected for our investigation. The rationa-
lisation of these clusters was also verified by the consensus clustering
method with Consenseclusterplus70.

Identification and annotation of subtype-specific genes
Limma was used to perform different expression analyses for each
NMF cluster against all other clusters. Genes with adjusted P-value <
0.05 and log2 fold change (FC) > 1 were considered as subtype-specific
genes for that cluster. For the ‘stemness’ cluster, the cutoff of adjusted
P-value < 0.05 and log2FC > 0.8 was used to increase the number of
representative genes for the cluster annotation. Two independent
methods were applied for the functional annotation of clusters. First,
for each cluster, representative genes were functionally annotated
using DAVID71. Gene sets from Gene Ontology biological process
terms, and KEGG pathways were used for the enrichment test. Second,
the canonical pathways and cancer hallmark gene sets from the
mSigDB database (v.6.2) were selected, and the over-representation
hypergeometric test was applied to each subtype-specific gene set.
The P values from the hypergeometric tests were adjusted formultiple
comparison testing using the Benjamini & Hochberg correction, and
significant associations were reported at adjusted P <0.05. The
P values were transformed as ‘−log10(P)’ and used for the heatmap.
According to the annotation results, each NMF cluster was assigned a
name representing their subtype transcriptomic features.

Estimation of tumour infiltrating immune cell types and
abundance
Previously defined immune cell type gene signatures20–25,72 were used
to deconvolute the immune microenvironment and estimate the
immune cell abundance of all tumours with RNA-seq normalised gene
expression data. For methods where the web service or R code was
available, the default setting was applied for analysis. For the remain-
ing published gene signatures, the mean of normalised expression of
marker geneswas calculated andused to correspond to the level of the
represented cell types. Following a recent study73, we further bench-
marked the estimates/signatures of immune cell types from those
methods using the following analyses. First, the signatures of various
immune cells were correlated with tumour purity, with the aim to
identify negative corelations between them for all immune cell types
considered. Second, the immune signatures were correlated with the
tumour copy number at the marker gene locus. A non-significant
correlation was expected between them, to exclude any confounding

factors from tumour cells. Third, the immune estimates from all
selected methods were correlated and compared, to measure the
consistency among thosemethods for estimated cell types. Finally, the
immune estimates were compared with the tumour-infiltrating lym-
phocyte (TIL) histopathology estimates of CD8+ and CD4+ T cells. The
immune estimation that characterised our immunemicroenvironment
the best (i.e., Danaher et al. signature) was chosen for all following
analyses, covering 12 different immune cell types. In addition, as sug-
gested by Rosenthal et al. and our benchmarking results, CD4+ T cell
estimates from Davoli et al.24 were also included for our final immune
profiling.

ESCC subtypes based on immune cell estimation
Based on the immune estimates of 13 immune cell types across all our
RNA-seq samples, consensus clustering using ‘Consenseclusterplus’70

was performed to identify distinct immune profiles among patients.
The parameters of agglomerative hierarchical clustering, Pearson
correlation distance and 50 re-samplings were applied. The size of the
best-performing cluster was subsequently determined by consensus
matrices and tracking plots. Immune cells were clustered with Pearson
correlation and the ‘average’ clustering method. The rationality of our
immune clusteringwas also verifiedbyMCP-counter23 derived immune
cell estimates.

Whole exome sequencing (WES) experiment
Genomic DNA from tumours and matched normal samples or per-
ipheral blood were isolated using the QIAamp DNA Mini Kit (Qiagen),
according to the manufacturer’s instructions. To construct whole-
exome capture libraries, 1μg of genomic DNA from each fresh-frozen
tumour and matched normal sample was randomly fragmented by
Covaris into 250–300bp. After fragmentation, Fragments were pur-
ified with the AxyPrep Mag PCR clean up Kit and then captured with
the Agilent SureSelect Human Exomes V6 kit(~35.7Mb, Cat No.: 5190-
8881). All the constructed libraries were loaded on the Illumina X Ten
platform (BGI Wuhan), and the sequences were generated as 150 bp
paired-end reads.

Whole-exome sequencing data analysis
After quality control with FastqQC (0.11.7), sequencing reads were
mapped to the hg19 genome sequences with BWA (0.7.17)74 mem fol-
lowed by the further improvement of the alignments using GATK4
(4.0.6.0)75 following its best practiceguideline. For the identificationof
somatic variants, mutect276 and strelka2 (2.8.4)77 were used, and only
variants called by both variant callers were considered. Variant anno-
tation was further performed using The Ensembl Variant Effect
Predictor78. Three independent methods, MutSigCV27,28,
OncodriveFM30 and dNdScv29 were then used for the identification of
driver genes (i.e., significantly mutated genes or functionally sig-
nificant genes) in our WES cohort. For the analysis of copy number
aberrations, Sequenza (2.1.2)79 was used with default parameters. The
tumour cellularity of all DNA samples was also derived from this ana-
lysis. Genome-wide gain or loss was defined as described previously80.
Briefly, processed copy number values for each sample were divided
by the sample mean ploidy and log2 transformed. Gain and loss were
defined as >log2(2.5/2) and <log2(1.5/2), respectively. Amplificationwas
defined as ≥log2(4/2) and deletion as ≤log2(1/2). Clonality analysis for
each tumour was further carried out using PyClone81. Clusters with
fewer than 3 mutations were filtered out. Major clones and subclones
were identified based on the cluster cellular prevalence derived from
PyClone.

Pathway functional mutation enrichment analysis
We chose the 50 cancer hallmark gene sets curated at the mSigDB
database for this analysis. Using the called mutations, we considered
all non-silent mutations as functionally relevant. For each sample, a
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functionalmutation enrichment score for eachgene setwasderivedby
dividing thenumber of functionalmutations by thenumber ofgenes in
the gene set, further adjusting for the total mutation burden for that
sample. For each gene set, the functional mutation enrichment scores
were then compared among the four subtypes using the
Kruskal–Wallis test, to identify whether any gene sets were specifically
enriched for certain subtypes. The correlation between function
mutation enrichment score and tumour cellularity was calculated
across all patients for each gene set. TheGSVA82 R packagewas used to
calculate pathway activity scores of the 50gene sets across all samples,
and GSVA scores were subsequently compared among the four sub-
types for each gene set using the Kruskal–Wallis test.

Estimation of intra-tumour heterogeneity
Shannon diversity was used to calculate the intra-tumour hetero-
geneity using a previously described method83. Briefly, the variant
allele frequencies of all mutations in each tumour sample were
assigned into 10 bins of equal range, starting from 0-10%, 10-20%, to
90-100%. Diversity index H′was calculated based on the proportion of
mutations in each bin (pi) with the formula: H0 = �Pn

i= 1pilnpi.

Data analysis of the CCLE dataset for XCL1 expression
Gene expression profiling (in the RPKM unit) of the CCLE dataset was
downloaded from its data portal (https://portals.broadinstitute.org/
ccle), and expression values were transformed as log2(RPKM+ 1).
Expression for 22 oesophageal SCC cancer cell lineswas extracted, and
XCL1 expression was inspected. The 22 cell lines were further split into
XCL1 high (n = 11) and low (n = 11) groups based on log2(RPKM+ 1)
value of 1.5 as cutoff, and differential expression analysis in the whole
transcriptome was performed using limma. GSEA analysis was further
carried out for gene sets from canonical pathways curated in the
mSigDB database.

Deep learning histology analysis
Imagepre-processing. Stained (H&E) and scannedwhole slide images
(WSI) of FFPE tissue slides were obtained in SVS format for our sam-
ples. Slide layers corresponding to 64× down sample factor of 20×
objective power and 0.44 µmper pixel resolutionwere extracted using
the Openslide python package84. All images were down-sampled to
64× factor and converted to JPEG format for easy manipulation and
handling. Each WSI was manually reviewed by a qualified pathologist,
and poor-quality images were discarded under the direct pathologist’s
supervision. The poor quality of imaging means the sections were
folded without clear morphology, or there were not enough tumour
cells presented in the slides obtained from the department of histo-
pathology. Only those images with tumours and free of technical
artefacts were used for further analysis. A total of 91 WSIs were
retained for the deep-learning analysis, i.e., differentiated group,
n = 28; immunogenic, n = 27; metabolic, n = 18; stemness, n = 18. The
slides were tilled in non-overlapping 300 × 300 pixels windows and
filtered for information content, i.e., we removed all the tileswith >20%
background or irregular tissue coverage. The number of tiles depends
on the area covered by tissue and can vary from tens to hundreds.
Thus, we randomly selected 50 tiles per WSI, considering the required
memory and the average number of tiles per slide (total = 4550 tiles in
91 patients). We used 65% of those tiles for discovery and 35% for
testing. The data split was performed at the patient level to prevent
overlaps between the two sets.

Feature extraction. We performed feature extraction using five state-
of-the-art convolutional networks, namely Inception-V3, Inception-
ResNet-V2, DenseNet-121, VGG16 and ResNet-50. Already pre-trained
for any image analysis, combining these networks allow us to obtain
7169 features of a wide range of characteristics. Thus, we obtained 50

(tiles) × 7169 (features) for each slide, ready for inference of our gene
expression classification.

Inference of gene expression classification. We used the Wilcoxon
test to identify features associated with the gene expression classifi-
cation/subtypes. During the inference on the discovery set, we create a
binary variable (target group = 1 and the rest = 0) for each group (DIFF,
IMM, STEM and MET) and features (7169). A P-value was calculated by
evaluating the difference in the average feature level between the
group and the rest. The resulting P values were then adjusted to con-
trol for the FDR across the entirety of feature-group pairs tested using
the method of Benjamini and Hochberg. We selected the top five
features per group that are significant at FDR <0.01, higher in the
target group than the rest, and unique to one group (Supplementary
Data 4). We summed these five features to create four stable histolo-
gicalmarkers of gene expression-based classifications (Meta Features).
Finally, we repeated the above analysis on the left-out test set and
compared the direction and significance of these features to the dis-
covery set (Supplementary Data 5).

Single-cell RNA-seq analysis
Processed unique molecular identifier (UMI) matrices and associated
cell annotation were downloaded from Gene Expression Omnibus
under the accession of GSE160269. Processed data were further loa-
ded into Seurat R package85 for downstream analysis and visualisation.
UMAP was used to visualise all annotated cellular clusters and feature
plots of marker genes were subsequently generated. For the gene set
scoring, the Seurat AddModuleScore function was used, and the gene
sets of interest, e.g., cell cycle activities, were available from the
mSigDB database. XCL1 positive and negative cells were identified
basedon the Seurat SCTransform-based normalised gene-level counts:
as positive when normalised gene-level counts >0; and negative when
normalised gene-level counts = 0. Wilcoxon rank test was then used to
compare the level of cell cycle activities, i.e., gene set scoring, between
the two groups.

To investigate the heterogeneity of transcriptional programmes
of ESCC epithelial cells, the NMF clustering with k = 10 factors was
performed on epithelial single-cell data, similar to previous
investigations86–88, followed by the differential expression analysis
using the Seurat “FindMarkers” function to identify top differentially
expressed genes, as well as gene set enrichment analysis for each
cluster. Signature genes for each cluster were identified based on
adjusted P-value < 0.0001 and log2 fold change > 1. The top 50 sig-
nature geneswere then selectedbasedon the log2 fold change for each
cluster. The NMF clusters were annotated based on their signature
genes and up/down-regulated pathways.

Drug sensitivity analysis
To evaluate the cytotoxicity of chemotherapy drugs in human ESCCcell
lines, ESCC cancer cells KYSE-150, KYSE-180, KYSE-410 and their cor-
responding XCL1 overexpressed cells were seeded in 96-well plates at
4000 cells/well, and cultured in DMEM with 10% FBS for 24 h, then
treatedwith various concentrations of 5-FU for 72 h in a 37 °C incubator
with 5%CO2. Cell viability was examined using theMTS assay (Promega,
Madison, WI, USA). The IC50 value (half maximal inhibitory con-
centration) was calculated. Experiments were performed in triplicate.
Cell viability in eachwell was calculated basedon the following formula:
Cell viability = (absorbance value of treated cells −background)/
(absorbance value of untreated control cells –background) and
expressed as a percentage of that for untreated cells. The differences in
cell viability between the control cells and the corresponding XCL1
overexpressed cells were determined using the Mann–Whitney test.

To explore the sensitivity of ESCC cells against different drugs,
the drug screening data of IC50s was downloaded from the
Genomics of Drug Sensitivity in Cancer (GDSC) data repository
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(https://www.cancerrxgene.org/downloads/bulk_download). TheGDSC1
data set was used. The z-transformed IC50 values were compared
between XCL1 high and low samples using the Student’s t-test.

Establishment of XCL1 overexpressing stable cell lines and its
expression detected by Quantitative real-time Polymerase
Chain Reaction (qRT-PCR)
Human XCL1 cDNA was synthesised by GENEWIZ and cloned into a
lentivirus vector. To obtain XCL1 overexpressing or control ESCC
stable cell lines, 1 × 105 cells were seeded into 24-well plates and
infected with lentivirus atMOI = 50 (Multiplicity of infection). 72 hours
later, cells were selected by puromycin (SelleckChem) and relative
expressing of XCL1 was evelated by qRT-PCR assay. In brief, cell total
RNA was isolated by TRIzolTM Reagent (ThermoFisher Scientific) and
reverse transcriptase into cDNA using PrimeScriptTM RT reagent Kit
(Takara). Then XCL1 level was further quantified by TB Green® Premix
Ex Taq™ II kit (Takara) with 2−△△CT assay following the instructions.

Western blot assay
Total cell protein was isolated with RIPA lysis buffer (Beyotime Bio-
technology, P0013C) containing 1%protease inhibitor cocktail solution
(Roche, 04693132001). Then 30 µg protein prepared with loading
buffer was separated by 10% SDS-PAGE and transferred to PVDF
membranes (Millipore). After blocking with 5% non-fat milk, mem-
branes were incubated with primary antibodies at 4°C overnight,
washed and probed with horseradish peroxidase-conjugated second-
ary antibodies (1:5000, ZSBIO), then detected by the enhanced che-
miluminescence (ECL) system (Thermo pierce, USA). Antibodies were
listed as the following, anti-SFRP1 (1:500, Atlas antibodies,
HPA064870), anti-GAPDH (1:5000, ProteinTech, 60004-1-Ig), HRP-
Goat Anti-Rabbit IgG (1:5000, ZSBIO, ZB-5301), HRP-Goat anti-mouse
IgG (1:5000, ZSBIO, ZB-5305).

Cell proliferation assay
To validate the effect of SFRP1 or XCL1 on cell proliferation, cells were
seeded into 96-wells plate at 5 × 103/well, and the real-timemonitoring
of cell proliferation was performed with Incucyte® Live-Cell Analysis
Systems. All experiments were performed three times in triplicates.

Edu Incorporation and cell cycle assays
We detected the proliferation of KYSE180, KYSE180-XCL1, KYSE410 and
KYSE410-XCL1 cells in the BeyoClick Edu cell proliferation detection kit
(Beyotime Biotechnology, C0075S) according to the instructions.
Briefly, we incubated the cells cultured in 6-well plates with 10μM Edu
working solution for 2 h and then did immunofluorescence. We got
about 5 visual fields of each cell using a fluorescence microscope and
calculated the Edu-positive cells in each field using ImageJ 1.53e.

The cell cycle assaywas detected by Propidium iodide(PI) staining
using the Annexin V-FITC/PI Apoptosis Detection Kit (A211-01, Vazyme
Co., Nanjing, China) according to the instruction. Then we detected
the cell percentage of each phase by flow cytometry and analysed by
Flowjo 10.53 software.

Xenograft tumour growth of ESCC in nude mice
SFRP1 cDNA and shRNA sequence were synthesised by GENEWIZ and
cloned into lentivirus vector to obtain SFRP1 overexpressing (KYSE-70
and KYSE-140) and knockdown (KYSE-450 and KYSE-520) cells. Five-
week-old female BALB/c Nude mice were purchased from Beijing Vital
River Laboratory (Beijing, Cat# 401). Sex analysis was not considered.
2 × 106 of SFRP1 overexpressing/knockdown and its matched control
ESCC cells were subcutaneously injected into bilateralflanks of BALB/c
nude mice (n = 6 per group). Tumour volumes were measured using
electronic callipers [tumour volume = (length x width2xπ)/6] twice a
week.When tumours reached 3000mm3, tumour ulceration occurred,
or animals lost 20% of their body weight, animals would be sacrificed.

In this study, mice were sacrificed, and xenograft tumours were pho-
tographed 30 days after the tumour cells were transplanted sub-
cutaneously. Allmice in the overexpressing groupdeveloped tumours,
while twomice in the knockdowngrouphadno tumour formation. The
animal study was approved by the AnimalWelfare and Research Ethics
Committee of Zhengzhou University (Zhengzhou, China) for the pro-
ject SQ2016YFHZ020118 and was conducted in accordance with
accordancewith theGuide for theCare andUseof Laboratory Animals.

Sequence for SFRP1 shRNA were as following, SFRP1-shRNA1#:
CCGGCCCTGTGACAACGAGTTGAAACTCGAGTTTCAACTCGTTGTCA-
CAGGGTTTTTG, SFRP1-shRNA2#: CCGGCCGGAGAGTTATCCTGA-
TAAACTCGAGTTTATCAGGATAACTCTCCGGTTTTTTG.

Immunohistochemical assay
Hematoxyline and Eosin (H&E) and Immunohistochemistry staining
were performed as standard protocol. Briefly, ESCC patients’ sections
were deparaffinised, rehydrated, heated for antigen retrieval and
blocked endogenous peroxidases. After blocking with normal goat
serum, slides were incubated overnight at 4 °C with proper primary
antibodies. Subsequently, slices were stained with ElivisionTM plus
(KIT-5020, Maixin Biotechnology), DAB kit (DAB-1031, Maixin Bio-
technology) and sealed with neutral resins, then photographed with
NDP.view2 system. Some slides for XCL1 and LRG6 staining were
scanned by NanoZoomer S210 (Hamamatsu Photonics), which is an
automated bright field slide scanner and then analysed by QuPath and
NanoZoomer Digital Pathology Image (.ndpi) software. Antibodies
used in this study were listed as follows, anti-SFRP1 (1:200, Atlas anti-
bodies, HPA064870), anti-XCL1 (1:400, Atlas antibodies, HPA057725),
anti-LGR6 (1:100, Abcam,126747), anti-CD160 (1:300, Origene,
TA349762), anti-CD8 (Genetech, GT211207), anti-CD4 (Maixin Bio-
technology). For pathology, TIL estimates, positive cells in 15 random
fields were counted with Image J software.

TCGA data
RNA-seq data were downloaded from the UCSC Xena Browser, TCGA
Oesophageal Cancer (ESCA) (n = 198). The available ‘Level_3’ normal-
ised gene-level data were obtained, and the 90 annotated oesophageal
SCC samples were further extracted based on the clinical information
from the TCGA integrated genomic study13.

Survival analysis
The Kaplan–Meier method was used to generate curves for overall
survival with R survminer 0.4.3 package. Surv_cutpoint function was
used to split each endpoint with numeric values into low and high
groups. Hazard-ratio (HR), 95% confidence interval and log rank p-
value for each endpoint studiedwere calculatedwith Coxproportional
hazard (PH) regression mode.

Statistics and reproducibility
All statistical analyses were performed in the R programming envir-
onment (https://www.r-project.org/). No statistical method was used
to predetermine sample size. The experiments were not randomised.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data used during the study has been deposited at the
National Genomics Data Centre of China (https://bigd.big.ac.cn/), and
the Bioproject Access ID is PRJCA001577. This BioProject has two
associated Genome Sequence Archive (GSA) accession numbers:
HRA000111 hosts the raw sequencing data of RNA-seq, while
HRA000112 has the raw sequencing data of whole exome sequencing.
The availability of the data has been approved by the Human Genetic
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Resources Registration System of the Ministry of Science and Tech-
nology of the People’s Republic of China with the registration number
2024BAT00864. Single-cell RNA-seq data were downloaded from
Gene Expression Omnibus (GEO) under the accession number
GSE160269. The data associatedwith PRJCA001577, i.e., GSA accession
numbersHRA000111 andHRA000112,was under controlled access. To
access this data, interested users must apply through the National
Genomics Data Centre of China GSA system. The application process
involves providing a detailed research proposal that outlines the pur-
pose and intended use of the data. The Data Access Committee (DAC),
with the identifier HDAC000064, reviews these applications to ensure
that the proposed research aligns with the ethical and scientific stan-
dards set for the use of such data. Data access will be updated on a
yearly basis with renewed options at the end of each year. Three
publicly available gene expression data sets from GEO were used:
GSE53625, GSE47404, and GSE160269. TCGA Oesophageal Cancer
(ESCA) RNA-seq data was also used [https://xenabrowser.net/
datapages/?dataset=TCGA.ESCA.sampleMap%2FHiSeq&host=https%
3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443], and 90 ESCC samples were further
extracted. Source data are provided with this paper.

Code availability
All the codes that were used for analyses and the generation of figures
are available at https://github.com/Zhong2020/ESCCproject. All the
codes used for the deep-learning analysis are available at https://
github.com/BioInforCore-BCI/giExtract. (https://doi.org/10.5281/
zenodo.11049708)89.
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