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ABSTRACT Person identification using ear images has gained significant attention recently. Transfer
learning provides an effective platform for image classification, utilizing CNNs like AlexNet, ResNet,
VGG16, and VGG19, which are fine-tuned for specific applications. Combining transfer learning with
support vector machines (SVM) enhances people recognition via ear images. This paper integrates a hybrid
transfer learning model with an ensemble technique to improve recognition accuracy. We use pre-trained
CNN models, VGG16 and VGG19, for feature extraction and replace the fully connected layer with an
SVM classifier. Using the SoftMax activation function, each model generates a probabilistic output, which
is averaged for classification. The proposed ensemble model was validated on two datasets with variations in
pose, illumination, and rotation. Simulation results show that the ensemble-based transfer learning approach
outperforms its two anchor models and competes with state-of-the-art ear recognition techniques.

INDEX TERMS Ensemble learning, transfer learning, feature extraction, classification, accuracy.

I. INTRODUCTION

Person identification using ear images has become an ever-
growing need in recent years due to its vast applications
in security, surveillance systems, and forensic investigation.
Deep learning-based approaches that leverage ear images
have demonstrated remarkable performance for person recog-
nition [1], [2], [3]. These techniques effectively extract robust
features from ear images and determine relevant information,
enabling accurate features classification. Researchers have
introduced various methodologies and datasets, with a
primary focus on utilizing ear biometrics for individual
identification [1]. Their work spans techniques ranging
from holistic approaches to deep learning, accompanied
by comprehensive explanations of both constrained and
unconstrained ear image datasets. The traditional machine
learning algorithms perform image classification tasks by
training each classifier separately whereas the transfer learn-
ing approaches use cross-domain learning techniques [4].
Zarachoff et. al. in [5], [36], presented a multi-image
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generation methodology, which they applied to still grey
images and high-frequency wavelet subbands of the grey
images. They then employed PCA to extract ear image fea-
tures from the resulting multi-images. They experimentally
showed that their methods outperformed conventional anchor
PCA-based and other state-of-the-art statistical methods,
generating competitive performance to those of learning-
based methods at a fraction of the computation cost without
needing to be trained. The intuition behind the deployment
of the transfer learning technique is to pass the knowledge
from one field to another related field. However, the major
challenge associated with this approach is to prevent the
transfer of wrong information and to guarantee the transfer
of correct information since the performance of the new
system is massively dependent upon the transfer of positive
knowledge.

Khaldi et. al in [6] conducted research on ear recognition
by applying an image coloring method to a Generative Adver-
sarial Network (GAN) model. Their study employed unsu-
pervised learning techniques across three distinct datasets:
University of Science and Technology Beijing (USTB2),
Annotated Web Ears (AWE), and Mathematical Image

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Analysis (AMI). The resulting recognition accuracies were:
51.25%, 100.00%, and 98.33%, respectively. In a separate
investigation, Lei et al. [7] validated their work using the SSD
MobileNet vl model with the USTB dataset, achieving an
accuracy exceeding 99%.

Mehta et al. [8] proposed an ensemble approach that
combined lightweight CNNs with popular pre-trained models
such as VGG16, VGG19, and DenseNet201. Their classi-
fication task involved identifying 221 different individuals
based on their ear images. By extracting deep features
from various pre-trained models and lightweight CNNs,
they fine-tuned the classification process at fully connected
layers. Their findings underscore the effectiveness of utilizing
two different types of CNN models (lightweights and
pre-trained) in the domain of ear recognition, resulting
in robust performance. Additionally, Chowdhury et al.
in [9] leveraged handcrafted features for robust ear recog-
nition, achieving a recognition accuracy of over 98%.
In their study, Alshazly et al. [10] utilized domain adap-
tation techniques to address the limitations posed by a
restricted dataset. They applied deep convolutional neural
network (CNN) models, specifically ResNet, ResNeXt,
Inception, AlexNet, and VGGNet, to the unconstrained
EarVNI1.0 dataset. Their fine-tuning strategies resulted in
state-of-the-art recognition performance on this demanding
dataset.

Zarachoff et. al applied a combined approach of Multi-
Banding and Support Vector Machine (CERMB-SVM) to
perform ear recognition [11]. They split the input image into
different bands and applied canny edge detection techniques
to extract the edge portion in each band. The binary edge
maps are generated corresponding to the ear shape in each
band. The generated binary edge maps are then combined to
create a single binary edge map. The resulting edge map is
divided into non-overlapping cells which are used to create
the Freeman chain code corresponding to each cell. By taking
four contiguous cells, a histogram is computed which is then
normalized and linked together to create a chainlet for the
input image. These created chainlet histogram vectors are
utilized for the training and testing of a pairwise Support
Vector Machine (SVM). Their approach achieves 99.02% and
99.44% accuracy on two benchmark datasets IITD-II and
USTB-I respectively.

Shaha and Pawar in [12] introduced a hybrid model for
image classification. They employed a VGG19 model as
pre-trained for deep feature extraction and the SVM for the
classification. They compared the performance of their pro-
posed model on three different challenging image datasets,
they reported an accuracy of 99% for their proposed hybrid
model, which was significantly higher than the other state
of the art networks, e.g., AlexNet, and VGG16. However,
the application of the hybrid VGG16 and VGG19 and the
SVM for ear recognition has not been fully investigated in
the literature.

The study at hand harnesses the power of hybrid transfer
learning and an ensemble technique, seamlessly integrating
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both within a single model. For the ensemble aspect, two
distinct CNN models VGG16 and VGG19 are employed
to extract efficient features. Additionally, SVM classifier is
utilized at the final layer of the networks for classification
tasks. This ensemble-based hybrid transfer learning approach
significantly enhances the accuracy of person recognition
using ear images. The authors’ contributions in this paper are
as follows:

A. INTEGRATION OF SVM CLASSIFIER
The major contribution lies in integrating the SVM classifier

with popular deep learning models, specifically VGG16 and
VGG19.

B. LEVERAGING BASE MIODELS

By utilizing these two base models, VGG16 and VGG19, the
system effectively learns task-specific information from input
ear images.

C. OVERCOMING LIMITED DATASET LIMITATIONS
The adoption of transfer learning techniques helps overcome
the constraints posed by a limited dataset.

D. ROBUSTNESS AGAINST OUTLIERS

The SVM classifier enhances robustness, even in the presence
of occlusions caused by hair, earrings, and varying lighting
conditions.

E. MITIGATING OVERFITTING
Incorporating dropout strategies and appropriate regularizers
prevents the model from overfitting.

To demonstrate the effectiveness of the proposed approach,
experiments were conducted on two distinct datasets: one
downloaded from Kaggle and the other being the IITD-
IT dataset. The experimental results reveal that the com-
bined ensemble method achieves superior performance in
terms of accuracy. Initial findings from this investiga-
tion were originally published in [13], where a single
CNN model (VGG16) paired with an SVM classifier
achieved a recognition accuracy of 99.23%. Thus, the
present work represents an improvement over the previous
approach [13].

The rest of the paper is structured as follows: Section II
looks at different techniques and architecture of deep learning
models; Section III details the dataset and the proposed
methodology; the setup for experiments and the proposed
models’ simulation results are presented in Section IV and
the paper is concluded in Section V.

Il. RELATED WORKS

With the advancements in communication, technology and
digital application, the demand for automated secure authen-
tication systems has increased. Biometric identification sys-
tems have been considered as one of the solutions. Ear image
is one of the popular biometric modalities, which is widely
acceptable under controlled and uncontrolled environmental
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conditions. It is socially acceptable and its passive and non-
intrusive nature provides accurate authentication. Due to the
presence of high levels of intra- and inter-class variance
in ear image data, traditional algorithms that use hand-
crafted features frequently fail due to large datasets. In such
circumstances, deep CNNs are widely used and gaining more
success.

In the context of the traditional approach, Mehta et. al.
proposed a cohort-based technique and applied mini-batch
k-means clustering algorithm to perform ear recognition
tasks [14]. For feature extraction and matching purposes,
they applied oriented FAST and rotated BRIEF (ORB)
methods. This approach shows superior result over the
non-cohort-based approach. Deep CNN-based approaches
process the input images through a series of convolutional
layers followed by Max Pooling and a fully connected
layer. Thus, in an image-based classification system, different
layers of CNN transform an image volume to output
in the form of predictions. The volume of training data
and the time needed to train the model are the major
challenges associated with these CNN models. Insufficient
information on data may lead to overfitting problems
and reductions in their performance with new sample
data [15].

Many researchers tried to solve the overfitting issue by
penalizing the loss functions, regularizing the architectures,
and by creating synthetic samples [16], [17]. In this context,
transfer learning has been proven to be an alternative solution
to utilize the popular deep learning model (pre-trained
model), which has been trained on a larger dataset for specific
tasks [18], [19], [20]. Some pre-trained models like VGG16,
VGG19, AlexNet, and GoogleNet are proposed which
demonstrate tremendous performance on low-resolution and
noisy challenging data [21], [22].

Initially, researchers proposed the AlexNet model to
handle tasks related to object recognition [23]. One issue
with this CNN model is the training of this model for which
the ILSVRC dataset is used which is publicly available.
This model requires a deeper network for extracting robust,
intrinsic, and complex features. VGG16 model meets these
requirements and solves many image-based classification
tasks.

Simonyan et. al. proposed VGGI16 architecture and
analyzed the effect of network depth of convolutional
neural network by the accuracy [24]. They found that by
increasing the depth to 16-19 weight layers, significant
improvement in the classification accuracy is achieved.
Their model generalizes well with other unseen datasets.
To meet the requirement of a deeper network, the VGG16
model uses a repeated set of convolutions, ReLu, and
pooling layer. To overcome the drawback of AlexNet,
an extended version of VGGI16 architecture was devel-
oped in VGGI19 to improve the overall accuracy of the
system.

Mehta et. al. developed three light-weight CNN models
and ensemble them. They found that their associated accuracy
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is more than the individual models [25]. They extracted the
features through several lightweight CNN models with min-
imum pre-processing. Their proposed model was assessed
on ear images of the IITD-II dataset, and they reported
over 98% accuracy. In another work, they recently explored
the application of Vision Transformers (ViTs) in computer
vision tasks and developed a powerful model that combines
CNNs and self-attention for 2D ear detection [26]. Their
model worked on the ear dataset in worldwide representation.
The model performance is validated across two challenging
datasets of Kaggle and IITD-II in which experimental results
show an accuracy of 99.36% and 91.25% respectively with a
16 x 16 patch size.

Rastogi et. al presented an ear biometric system for
person identification with the help of only 60 ear images
of the AMI dataset and reported an accuracy of 80%
[27]. Their model was found to be rotation and scale
invariant. Zhang and Mu applied Faster-RCNN methods
to locate the correct ear portion from side profile images
and discard the false positives automatically [28]. This
model was validated on the UND-J2 ear image dataset,
which is a challenging dataset containing variations in
pose, occlusion, and illumination. They reported 100% and
98.22% accuracy on UND-J2 and UBEAE ear image datasets,
respectively.

Mehta et al. applied deep learning techniques on smaller
ear image datasets and overcame the limitations of a
small dataset through an augmentation technique [29].
They validated their experiments on both constrained and
unconstrained image datasets and achieved very good
results. Transfer learning for computer vision tasks such
as text classifications [30], link prediction [31], disease
classification [32], rank learning [33], and sentimental clas-
sifications [34] have been widely reported in the literature.
Zarachoff et al. presented a 2D Wavelet-based Multi-Band
PCA technique to perform ear recognition and achieved
94.14% accuracy [36]. Their approach outperforms the other
PCA and eigenface methods.

Alshazly et. al presented an ear recognition model by
constructing a Deep Residual Network(ResNet) of different
depths [39]. They solved the problem of the limited dataset
using three steps. In the first step, features are extracted using
ResNet architecture. In the second step, they fine-tuned the
pre-trained model on each dataset. In the third step, they
fed the output of the fine-tuned model to the SVM classifier
to perform classification tasks. They achieved recognition
accuracy of 99.64%, 81.89% and 67.25% on three benchmark
datasets AMI, WPUT, and AWE respectively. Susan et.
al highlighted an important fact that yaw pose angles and var-
ious ear image distortions affect the recognition performance
of deep learning-based ear recognition models [41]. In their
study, they applied different variations of blurriness, additive
noise, brightness, and contrast to see the effect of recognition
performances.

Priyadharshini et al. in [43] introduced a six-layer deep
convolutional neural network (CNN) architecture for ear
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recognition. They conducted experiments using the IITD-
IT ear dataset and the AMI ear dataset. Remarkably, the
deep network model achieved a recognition rate of 97.36%
for the IITD-II dataset and 96.99% for the AMI dataset.
Furthermore, the robustness of their proposed system was
validated in an uncontrolled environment using the AMI Ear
dataset.

Meromania et al. in [46] reported an efficient online
personal identification system based on ear images. Their
identification algorithm focuses on extracting a specific set
of features for each ear. These features are derived from
the Gabor filter response and include phase, module, and
a combination of the real and imaginary parts. By testing
various feature combinations during the fusion phase, they
achieved an optimal multi-representation system, resulting in
improved identification accuracy. They reported a Rank-One
Recognition (ROR) rate of 90.21%, with the lowest Rank of
Perfect Recognition (RPR) at 154.

In their study, Ramos-Cooper and Camara-Chavez
introduced a novel dataset, meticulously crafted from the
VGGFace dataset [47]. They fine-tuned pre-trained deep
models and meticulously analyzed their responsiveness
to various data covariates. Additionally, they delved
into score-level fusion techniques to enhance overall
recognition performance. Their experiments encompassed
both open-set and close-set scenarios, utilizing the pro-
posed dataset alongside the challenging UERC dataset.
Notably, they achieved a remarkable 9% improvement
by employing a pre-trained face model compared to a
general image recognition model. Furthermore, fusing scores
from both models yielded an additional 4% performance
boost.

Recently, Sowmya and Prasanna presented a Gannet
Sparrow Search Optimization enabled Convolutional Neu-
ral Network with Transfer Learning(GSSO_CNN-TL) for
recognizing a person using their ear images [48]. This
approach achieves more than 95% accuracy on the ear
dataset downloaded from Kaggle. A compilation of articles
employing deep learning for ear recognition tasks is presented
in Table 1

In this paper, an ensemble approach combines two distinct
CNN models VGG16 and VGG19 for feature extraction,
aiming to enhance the classification accuracy of the ear
recognition model. The experimental results highlight their
advantages over existing methods.

Ill. MATERIALS AND METHODOLOGY

In this section, two datasets, Kaggle and IITD-II, are
introduced. It then delves into the architecture of the
VGG16 and VGG19 models, providing detailed insights. The
ensemble technique combines these two models, serving as
a hybrid transfer learning approach. Instead of relying on a
fully connected layer, an SVM classifier aids in performing
the classification tasks. Lastly, each of the proposed models
undergoes fine-tuning based on problem suitability. To give a
detailed description of the materials and methodology of the
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TABLE 1. Overview of existing ear recognition techniques and their
performance on different databases.

Technique Used method Used Accuracy
Dataset (%)
Ear Recognition Based on  Supervised learning ~ USTB- 100
Deep Unsupervised Active  and  Unsupervised II AMI ~ 98.33
Learning [6] active learning AWE 51.25
Ear recognition based SSD-MobileNet-v1 USTB 99.98
on SSD-MobileNet-vl  deep learning
network [7]
Ear recognition using deep ~ Handcrafted UND 98.22
CNN [9] features using  USTB 95.73
neural networks IITD 96.13
Deep CNN for uncon- Domain adaptation EarVNI1.0 95.85
strained ear recognition  with transfer learn-
[10] ing
Ear recognition using six ~ Deep convolutional ~AMI 96.99
convolutional layers [43] layer with different  IITD-II 97.36
optimizers
Ear identification using Based on Gabor IITD-II 92.39
Gabor filter responses [46]  filters response for
feature  extraction
and Hamming
distance for
matching purposes
Deep CNN using dataaug- ~ Augmentation and  AMI 98.57
mentation [29] deep CNN IITD-1I 95.98
AWE 86.10
Ear recognition using  Average and IITD-II 98.74
deep ensemble learning  weighted average
approach [25] ensemble technique
Domain adaption for un-  Fine-tuning UERC 71.0

constrained ear recogni-
tion [47]

strategies of deep
pre-trained mode

proposed model, this section is divided into six subsections
as follows:

A. DATASET DESCRIPTIONS

1) KAGGLE DATASET

The proposed models were initially applied to an ear dataset
obtained from Kaggle [35]. This dataset comprises 2,600
images representing 13 distinct subjects. All images within
the dataset have dimensions of 227 x 227. During pre-
processing, the images were resized to 150 x 150 to
match the input size required by the CNN in the hybrid
model. The dataset includes both color and grayscale
images. Figure 1 displays a sample of ear images from
this dataset. The dataset was divided into training and test
sets, maintaining a 9:1 ratio, where 2,360 images were
used for training, while 240 images served as the test
dataset.

2) lITD-1l DATASET

The IOT Delhi-II ear image dataset comprises ear images
captured under consistent environmental conditions [49].
This dataset is intentionally limited in scope and consists
of a total of 793 labeled images representing 221 distinct
individuals. After dividing the dataset in an 8:2 ratio,
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FIGURE 1. A selection of ear images from the Kaggle dataset [35].

634 images were allocated for training, while 159 images
were reserved for the test set. All images share a uniform
resolution of 50 x 180. Figure 2 displays a selection of
sample images from this dataset.

| RRIRID

ﬂ. R13ﬁ$
B

Do
P

FIGURE 2. A selection of ear images from the IITD-II ear dataset captured
under controlled environmental conditions [49].

B. PROPOSED ENSEMBLE-BASED HYBRID TRANSFER
LEARNING MODEL

The proposed ensemble-based hybrid transfer learning
approach combines the strength of ensemble learning and
transfer learning to improve the recognition accuracy of the
system. We utilize the concept of transfer learning using
two popular CNN models, VGG16 and VGG19, which are
already trained on the ImageNet dataset. This approach
saves the model’s training time. Here, we only perform a
fine-tuning strategy so that it operates well on the used
two-ear image datasets. Different layers of the VGG16
and VGGI19 models help with the extraction of different
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features from the input images. For example, their early
layers, convl_1, convl_2, extract basic edges and color
gradients present in the ear images, while the intermediate
layers are responsible for extracting complex patterns and
connected parts of the ear portions. Thus, more semantic
information, such as connected components of edge-of-the-
ear images, is extracted in the intermediate layers. These
features are extracted by combining the basic features
detected in the early layers of the models. The deeper layers
of the VGG16 and VGG19 models extract more abstract
and high-level features like the shape of the ear and other
minute details present in the ear images. These features
are less spatially detailed and are generally not captured
in the early layers. Hence, diverse feature distributions are
easily handled, controlled, and transferred from one domain
to another, accelerating the learning process with improved
generalizations. Some sample features and characteristics of
the ear images extracted by the VGG16 and VGG19 models
are illustrated in Figure 3

Instead of using a fully connected layer, we utilize an
SVM classifier to perform the classification task. Each pre-
trained model generates a probabilistic-based output. The
average of the resulting probabilistic is used to generate the
final output. The entire process that combines the two hybrid
transfer learning models into an ensemble model is illustrated
in Figure 4.

C. ENSEMBLE OF VGG16 MODEL WITH SVYM

The architecture of the first deep learning model, comprising
VGG16 and the SVM classifier, is illustrated in Figure 3.
The model is fine-tuned according to the suitability of the
problem. The fully connected layer of the VGG16 model was
replaced with the SVM classifier. In this stage, two tasks are
mainly performed. In the first task, the first 13 convolution
layers of VGG16 extract robust and intrinsic features from
the input ear images. The classification task is performed
in the second stage using the SVM classifier. Hence, the
last three layers of the VGG16 model were replaced with a
dense layer consisting of 128 and 13 neurons. The input ear
image is convolved using several convolutional layers and
max pooling layers, as shown in Figure 5.

The combination of the convolution and max pooling
layers increases the network’s efficiency by reducing the
spatial dimensionality of the feature maps. The obtained
feature maps are then flattened into one-dimensional vectors.
These vectors are fed to the SVM layer. Based on the features
extracted from the convolutional layers of the VGG16 model,
the SVM performs the classification, thereby leveraging the
representation power of the VGG16 model and classification
capabilities of the SVM. This capability makes the system
invariant to pose, illumination, occlusion, and rotations. Thus,
the proposed hybrid transfer learning approach combines the
capability of transfer learning and fine-tuning, allowing ear-
based classification with higher accuracy, faster convergence,
and improved generalization.
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FIGURE 3. Sample extracted features characteristic from an ear image by VGG16 and
VGG19 models.
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FIGURE 4. The proposed ensemble method using hybrid transfer learning model.

D. ENSEMBLE OF VGG19 MODEL WITH SVM

The architecture of the proposed ensemble model using
VGG19 and SVM is illustrated in Figure 6. Like the ensemble
model using VGG16 and SVM, the VGG19 model is fine-
tuned according to the problem-specific tasks, and its last
layer uses the SVM classifier to classify the ear images.
In this stage, the first 16 convolution layers of the VGG19
are used for feature extraction, whereas the SVM performs
the role of a fully connected layer to do the classification.
Hence, the last three layers of the VGG 19 model are replaced
with a dense layer consisting of 128 and 13 neurons,
respectively.

E. MODEL TUNING
In this section, we explore concise descriptions of fine-tuning
strategies on two popular CNN models, VGG16 and VGG19.

155738

With this strategy, these models enhance both training
efficiency and accuracy when dealing with challenging ear
image datasets [35], [49]. In the fine-tuning stage, we retain
the first 13 layers from VGG16 and the 16 layers from the
VGG19 network as fixed components. The last three layers
of each network are replaced with a fully connected layer
containing 128 and 13 neurons for classification. To solve the
problem of non-linearity, the Rectified Linear Unit (ReLu)
activation function is added to the last layer of each network.
This function speeds up the training procedure and makes the
model free from the vanishing gradient problem. To validate
the proposed method, we execute each model for a different
number of epochs on two datasets. Before training the model,
each dataset is partitioned into training and test sets in
different ratios. Details regarding the number of images in
the training and test sets, as well as the number of runs for
each model, are provided in Table 2. For every model, we set
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FIGURE 5. Block diagram of the proposed ensemble model using VGG16 and SVM.
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FIGURE 6. Block diagram of the proposed ensemble model using VGG19 and SVM.

the learning rate to 0.001 and the batch size to 16. To perform
the classification tasks with the SVM classifier, the squared
hinge loss function was used.

F. IMPLEMENTATION STEPS
In this section, a concise explanation of the implementation
steps undertaken to construct the proposed model is pre-
sented. The model was executed on a 3.40 GHz Core i9
processor with 16 GB of RAM, utilizing Python version 3.7.8.

Step 1: Pre-processing

a) The input images are resized to a fixed size (150 x 150)
to facilitate convolution.

b) The dataset is split into training and test datasets.

Step 2: Model Training
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a) The pre-trained model is independently fine-tuned,
considering the number of classes present in the datasets.

b) Various hyperparameters, including loss functions,
optimizers, number of epochs, learning rate, iterations, batch
size, and dropout, are configured.

c) Step b is repeated for both pre-trained models.

Step 3: Ensemble of Models

a) After training each pre-trained model, a predicted output
using an SVM classifier is obtained. The reason for using
SVM is mainly due to its interpretability. The decision
boundary in SVM is determined by a subset of training data
called support vectors, which helps in identifying the critical
features for classification. Additionally, SVM classifiers
generalize well even with relatively small datasets and are
less prone to overfitting compared to deep neural network

155739



IEEE Access

R. Mehta et al.: Ensemble-Based Hybrid Transfer Approach for an Effective 2D Ear Recognition System

TABLE 2. Training parameter of each used CNN Model in the ensemble technique.

Dataset Model Epochs Loss function Optimizers Batch Training  Test Learning
Size Set Set Rate
Kaggle Modell 30 squared hinge Adam Optimizer 16 2340 260 0.001
(VGG16+SVM)
Model2 30 squared hinge Adam Optimizer 16 2340 260 0.001
(VGG19+SVM)
IITD-1I Modell 100 squared hinge Adam Optimizer 16 634 159 0.001
(VGG16+SVM)
Model2 100 squared hinge Adam Optimizer 16 634 159 0.001
(VGG19+SVM)

methods. In the proposed method, the two datasets used have
small sizes in terms of the number of images. Therefore,
the application of SVM helps mitigate the overfitting
problem.

b) The predicted outputs of the two models are then
combined using their average and weighted average to
generate the ensemble model’s output.

IV. RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed methods,
experiments were conducted using images from the Kaggle
and IITD-II datasets. The dataset was split into training and
test sets in a ratio of 9:1 for Kaggle and 8:2 for the IITD-
IT dataset. For the training procedure, a system with 16 GB
of RAM and a simple CPU running at a speed of 3.70 GHz
was used. The proposed method was implemented using
Python IDLE (version 3.7.8) and built upon the TensorFlow
framework. The ear images in the Kaggle dataset have a
resolution of 227 x 227, while the two CNN models used
accept images with a resolution of 150 x 150. Therefore,
the input images were first resized to 150 x 150. This step
was followed for both datasets, as the image resolutions
varied across them. To learn specific patterns, the top layers
of both the VGG16 and VGGI19 models were fine-tuned.
The experiments were conducted using the hyper-parameters
tabulated in Table 3.

The model is executed for 30 and 100 epochs on two
different datasets, namely Kaggle and IITD-II, respectively.
To apply the SVM classifier for classification purposes,
we utilize squared hinge functions during model training.
For the entire dataset, we set the batch size equal to 16.
In convolution operations, a filter of size 3 x 3 is used. The
Adam optimizer tunes the network parameters, preventing
overfitting issues and optimizing the loss function. Sparse
gradients pose a significant challenge in noisy environments,
but this optimizer effectively addresses these issues. Ridge
regularization (L2) with a value of 0.01 is applied in the
last dense layer. The L2 regularization controls the strength
of the penalty on the square value of the model’s weights.
Calculating the ideal regularizer value is challenging, as a
larger value heavily penalizes the model due to higher
weights, reducing the risk of overfitting due to the small
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TABLE 3. Hyper-parameters used for both models.

Hyper Parameters Values
Image size 150 x 150
No. of epochs 30/100
Batch Size 16

Batch Size 16

Filter Size 3x3
Dropout 0.5
Learning iterations 10
Learning Rate 0.001
Regularizations L2=0.01

Loss functions squared hinge

Optimizers Adam

training data size. Conversely, using a lower value makes
the models more complex and more prone to overfitting
the training set. The squared hinge loss function at the last
layer of the model enables classification through an SVM
classifier. Additionally, the SoftMax activation function at
the last layer of each model provides probabilistic output
to classify input images into different classes based on the
number of distinct subjects present in the dataset. For each
model, this SoftMax activation function yields probabilistic-
based outputs, which are then averaged to create the final
prediction.

To evaluate the contributions of each model in the
ensemble-based approach, we calculate the accuracy of
each model individually and their combined accuracy
using ensemble techniques. These results are tabulated
in Table 4. Additionally, other performance metrics such
as Precision, Recall, F1_score, and Accuracy for each
model individually and in combination are also presented
in Table 4.

From Table 4, the combination utilizes 60% weights from
the VGG16 model and 40% weights from the VGG19 model,
resulting in an accuracy of 100%. Additionally, at this stage,
the precision, recall, and F1_score metrics also achieve their
highest accuracy of 100%.
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TABLE 4. Performance of the proposed ensemble method using different combinations of the two CNN models on the Kaggle dataset.

VGG16 VGG19 ENSEMBLE PRECISION (%) RECALL (%) F1_Score (%)
(ACCURACY (ACCURACY ACCURACY
OF 0.9935) OF 0.9871)

Wi 0.3 0.7 99.35 99.43 99.35 99.36

w2 0.8 0.2 99.48 99.40 99.35 99.36

W 0.6 0.4 100.0 100.0 100.0 100.0

To demonstrate the efficiency of the proposed model
compared to other existing models, we also validated the
results using the IITD-II ear dataset. For the performance
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evaluation of each model, we plotted accuracy and loss
against epochs for each model, as shown in Figures 8 and 9.
It has been observed that on the IITD-II dataset, the
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FIGURE 10. (a) Model accuracy and (b) Model loss of VGG19 and SVM classifier on the on IITD-1I dataset.

VGG16 model with an SVM classifier converges after
just 200 epochs, achieving a maximum model accuracy
of 83.17%. Additionally, the VGG19 model with an SVM
classifier achieves a model accuracy of 91.78%. Using a
learning rate of 0.001 and a batch size of 16, the VGG19
model converges after only 25 epochs.

To assess the impact of each model within the ensemble-
based approach on the IITD-II dataset, we compute the
individual accuracy of each model as well as their combined
accuracy using ensemble techniques. These findings are sum-
marized in Table 5. Furthermore, Table 5 includes additional
performance metrics such as Precision, Recall, F1-score, and
Accuracy for both individual models and their combined
configurations.

155742

To evaluate the performance of the proposed model,
we employed a weighted average ensemble technique. From
Table 5, it is evident that the VGG19 model outperforms
the VGG16 model in terms of accuracy. We assigned
random weights to these two models, ranging from 0.1 to
0.9. The accuracy plot, generated by varying the model
ratio between 8:2 and vice versa, is presented in Table 5.
Notably when we combined 70% accuracy from the VGG19
model with 30% accuracy from the VGG16 model on
the IITD-II dataset, we achieved a maximum accuracy of
93.47%. Due to lower variability in the IITD-II dataset
compared to the Kaggle dataset, the accuracy with IITD-II
is relatively lower. Additionally, we plotted the AUC curve
in Figures 10(a) and 10(b) for both datasets to demonstrate
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TABLE 5. Performance of the proposed ensemble method using different combinations of the two CNN models on the IITD-1I dataset.

VGG16 (ACCU- VGG19 (ACCU- ENSEMBLE PRECISION (%) RECALL (%) F1_Score (%)
RACY: 83.17%)) RACY: (91.35%) ACCURACY
(%)
Wi 0.2 0.8 92.71 92.11 92.36 92.23
w2 0.8 0.2 92.18 92.21 92.08 92.14
W 0.3 0.7 93.47 93.67 93.29 93.57
Receiver Operating Characteristic (ROC) Curve for each class Receiver Operating Characteristic (ROC) Curve for each class
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08 08
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FIGURE 11. AUC curve of the proposed ensemble method on (a) the Kaggle dataset and (b) the IITD-II dataset.
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FIGURE 12. CMC curve for the proposed ensemble method on (a) Kaggle dataset (b) IITD-II dataset.

recognition efficiency. Remarkably, our ensemble-based images in the Kaggle/IITD-II dataset, some features could
hybrid transfer learning approach consistently outperformed not be effectively retrieved by the model. The ITD-II
normal cases. However, due to the uneven distribution of dataset contains 221 classes, while the Kaggle dataset has
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TABLE 6. Hyper-parameters used for both models.

Related Article DATASET Accuracy(%)
Image classification using Transfer  caltech256 88.04
learning (VGG16) [12], 2018

Image classification using Transfer  caltech256 88.63
learning (VGG19) [12], 2018

Image classification using Transfer =~ GHIM10k 98.57
learning (VGG16) [12], 2018

Image classification using Transfer =~ GHIM10k 99.38
learning (VGG19) [12], 2018

Single Image ear recognition using IITD-II 94.14
wavelet-based multi-band PCA [36],

2019

Ear recognition using Domain adap- ~ Multi-PIE 98.57
tation with VGG16 [40], 2018

Ear recognition using Domain adap-  Multi-PIE 97.80
tation with GoogleNet [40], 2018

Ear recognition with ensemble IITD-II 94.29
classifiers(AlexNet)) [37], 2019

Ear recognition with ensemble IITD-II 90.71
classifiers(GoogleNet)) [37], 2019

Ear recognition with ensemble IITD-II 93.57
classifiers(ResNet50)) [37], 2019

Deep Learning Models for Ear UERC 98.33
Recognition Against Image

Distortions [41], 2019

Non-Decimated WBMBPCA for ear  IITD-II 94.47
recognition [42], 2021

Deep learning model for person iden- ~ IITD-II 97.36
tification using ear biometrics [43],

2021

Ear recognition technique based on  IITD-II 98.74
deep ensemble learning approach

[25],2023

Ear recognition using Gabor filters ~AWE 74.63
and ensemble of pre-trained deep

CNN [45], 2023

Transfer Learning: Ear Biometric  IITD-II 88.37
Recognition using CNN [44], 2022

Transfer Learning: Ear Biometric = IITD-II 88.73
Recognition using VGG16 [44], 2022

Transfer Learning: Ear Biometric IITD-II 89.71
Recognition using ResNet50 [44],

2022

Ear recognition using hybrid transfer =~ Kaggle 98.72
learning model with VGG16+SVM

[13],2023

Ear identification using Gabor filter — IITD-II 92.39,
responses [46], 2015

Deep CNN using data augmentation — IITD-II 95.98
[29], 2023

Proposed ensemble-based hybrid  IITD-II 93.57
transfer learning model

Proposed ensemble-based hybrid  Kaggle 100.00

transfer learning model

13 classes. We generated AUC curves using different colors
corresponding to the number of classes in each dataset.
Specifically, for the Kaggle dataset, we plotted the AUC curve
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for all 13 classes, as depicted in Figure 10(a). In contrast, for
the IITD-II dataset, which has 221 classes, we focused on
visual clarity and plotted the AUC curves for only 15 classes,
as shown in Figure 10(b). This selection ensures that
the curves remain distinct and easily interpretable without
overlapping.

We have also plotted the CMC curve for two different
datasets, as shown in Figures 11(a) and 11(b). The graph
demonstrates that the ensemble model yields the best
results with respect to R5, exceeding 98% on the Kaggle
dataset. Simultaneously, the same model achieves the best
results with respect to RS, exceeding 93% on the IITD-II
dataset.

Furthermore, the proposed ensemble-based hybrid model
outperforms other state-of-the-art methods, as indicated in
Table 6.

V. CONCLUSION

In this paper, we aim to address the challenges posed
by ear recognition which includes variations in illumi-
nation, rotations, and occlusion due to hair or earrings.
For this purpose, we proposed an ensemble-based hybrid
transfer learning approach that leverages the power of
VGG16 and VGG19 models in conjunction with an SVM
classifier.

To validate our approach, we conducted extensive experi-
ments using two datasets comprising 2600 ear images from
Kaggle and 793 images from the IITD-II dataset. These
datasets exhibit significant variability, making them suitable
for rigorous evaluation. To extract the distinct features
two pre-trained models VGG16 and VGG19 models are
used. The extracted features are then fed into the SVM
classifier for classification tasks. The results demonstrate
that our proposed ensemble model outperforms individual
models.

Furthermore, our approach surpasses existing state-of-
the-art methods. Looking ahead, we envision extending
this ensemble-based hybrid transfer learning model to
incorporate lightweight CNN architectures. By doing so,
we can seamlessly integrate our solution into mobile devices
for real-time applications, such as object recognition and
human action identification. This research opens exciting
avenues for improving ear recognition systems, emphasiz-
ing both accuracy and practical deployment in real-world
scenarios.
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