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Abstract
The productivity of agriculture plays a critical role in the Indian economy. Growing crop production is a critical respon-
sibility nowadays to accommodate citizen demand and provide farmers with greater rewards. Therefore, a machine 
learning (ML) technique is employed to more precisely identify diseases and pests on leaves and other crop parts. This 
paper introduces a machine learning-based system in early crop disease and pest detection using image processing and 
optimization. Initially, the data is collected from the CCMT plant disease Dataset. Image augmentation techniques such 
as rotation, flipping, and zooming are utilized to make the dataset wholesome. After amplification, the pre-processing is 
carried out on these images. Noise reduction as well as enhancing quality are done by Adaptive Bilateral Filter. Lanczos 
interpolation technique resized it and normalization is done so that the analysis can proceed. Kapur’s Entropy-based 
Whale Optimization is introduced for the segmentation of the image efficiently by dividing diseased areas into segments. 
The features are extracted using the Gray Level Co-occurrence Matrix, which assesses relationships among the pixels and 
produces an appropriate feature matrix for color images. This processed data then feeds into a Moth-Flame Optimized 
Recurrent Neural Network for crop disease and pest detection. These results achieved high accuracy levels at 98.4% for 
cashews, 98.3% for cassava, 98.5% for maize, and 96.8% for tomato crops, outperforming all the reported techniques.

Keywords Agriculture · Crop pest · Diseases · Early diagnosis · Machine learning

1 Introduction

Crop production is substantially raised if stresses are identified at the earliest possible time to facilitate the adoption 
of required prevention measures [1]. One of the most difficult jobs in agriculture is identifying plant diseases early on. 
Early disease detection was crucial for increasing agricultural yield [2]. With the application of ML and deep learning 
(DL) techniques, this issue has been resolved. Large crop farms were now automatically detecting plant illnesses, which 
is advantageous because it cuts down on monitoring time [3]. The demand for additional food increased due to the 
population’s rapid rise [4]. Agricultural enterprises are adapting their methods to ML technologies to attain enhanced 
capabilities to fulfill this need. ML might be crucial in helping to boost output and expand the market for agricultural 
goods [5]. Insect pests and crop diseases are the biggest obstacles to agricultural productivity and the sustainable growth 
of the agricultural industry [6].
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School of Built Environment, Engineering and Computing,  Leeds Beckett University, LS6 3QS Leeds, United Kingdom.



Vol:.(1234567890)

Research Discover Computing           (2024) 27:43  | https://doi.org/10.1007/s10791-024-09481-2

Farmers frequently turn to the indiscriminate application of synthetic fertilizers and plant protection agents to fulfill 
the increasing demand [7]. Plant disease and pest identification must be done quickly and accurately to avoid reduced 
agricultural output and/or decreased quantities of agricultural products. One possible strategy to get the answer is 
through ML techniques. In the current era, DL has significantly outperformed earlier methods in the development of 
image processing [8]. Agricultural contexts are among the many applications of ML, notwithstanding its specialized 
nature as an analytics system. This research aimed to develop a model for pest identification and classification to facilitate 
the process of recognizing and labeling the insects observed in the images [9].

The manual visual inspection approach, which involves skilled experts observing plants with unaided eyes, was still a 
widely used technique for detecting plant diseases. To achieve this, a sizable team of specialists and ongoing observation 
are needed. For impoverished farmers, this is expensive and time-consuming when their farm is huge [10]. However, in 
some nations, farmers lack the necessary tools or are unaware that they can seek advice from specialists. Plant disease 
identification by hand is a more time-consuming procedure that is prone to human error and has only been carried out in 
a few places [11]. The integration of ML in agriculture fields enables to identification of plant leaf diseases and accurately 
reporting such findings to the appropriate persons within appropriate ranges. The challenges that modern farmers face 
daily have made farming and agriculture unappealing to the masses. To live a safe life and escape such obstacles in the 
agricultural area, all young people were moving to modern cities [12].

Early diagnosis of crop pests and diseases in agriculture is crucial for mitigating potential damage to crops and 
optimizing yield. The proactive identification of anomalies in crop health allows timely intervention, enabling farmers 
to implement targeted and efficient pest and disease management strategies [13]. Leveraging Optimized RNNs in this 
context can significantly enhance the accuracy and efficiency of early diagnosis. These models are designed to be fine-
tuned to address the specific challenges posed by agricultural data, facilitating improved decision-making in pest and 
disease control. The pressing need for efficient models to overcome existing challenges in crop pest and disease diag-
nosis underscores the significance of adopting advanced technologies [14]. Optimized RNNs, with their unique ability 
to combine DL capabilities with tailored optimizations for agricultural data intricacies, emerge as a compelling solution. 
Their potential to revolutionize early diagnosis practices in agriculture promises a more reliable and timely approach to 
pest and disease management, ushering in a new era of precision agriculture [15].

The foremost contributions of this paper are as follows:

• This paper focuses on developing an optimized RNN-based model for the early diagnosis of crop pests and diseases 
in agriculture.

• The paper offers a preprocessing unit that utilizes the Adaptive Bilateral Filter to lessen noise and improve the quality 
of the collected images. This step is essential for ensuring that the input data is clean and ready for further analysis.

• KEWO is proposed for efficient image segmentation. A reliable segmentation is critical for accurate feature extraction 
and subsequent analysis.

• The paper introduces the MFRNN as the core model for detecting crop diseases and pests which is the combination 
of the Moth flame-optimization (MFO) and Recurrent Neural Network (RNN). This choice of model suggests a focus 
on capturing temporal dependencies in the data, which can be crucial for identifying patterns indicative of pests and 
diseases.

The rest of the section is systematized as Sect. 2 of this study offers a literature review of the techniques that have 
been done previously on crop pest and disease detection in agriculture environments, and Sect. 3 offers the proposed 
methodology of the suggested model. The result and discussion of the paper are offered in Sects. 4, 5offers a conclu-
sion of the research study.

2  Literature review

2.1  This section evaluated some of the most recent studies on crop pests and disease detection 
in agriculture settings

In 2021, Wang, et. al. [16] proposed the ADSNN-BO model, which was built on an enhanced attention mechanism 
and a mobile net structure. In addition, the Bayesian optimization technique was used to modify the model’s 
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hyperparameters. Cross-validated classification studies are performed using a four-category public rice disease 
dataset. The experimental results demonstrate that our mobile-friendly ADSNN-BO model achieves a test accuracy 
of 94.65%, outperforming all analyzed state-of-the-art models.

Rahman, et. al. [17] have discussed, that farmers could apply timely treatments to their rice plants and significantly 
lower their economic losses by accurately and promptly detecting diseases and pests. The accuracy of picture clas-
sification has significantly increased due to recent advancements in DL-based convolutional neural networks (CNN). 
This research developed DL-based methods for identifying illnesses and pests from images of rice plants, inspired by 
CNN’s remarkable performance in image categorization. The accuracy of this existing model is 93.2%.

In 2023, Ahmed and Yadav [18] have discussed the ‘‘Plant Village’’ dataset, which contains 17 common ailments. 
There are four bacterial infections, two viral infections, two mold infections, and one ailment associated with mites on 
exhibit. For twelve crop species, there are also images of unharmed leaves. Prediction models were developed using 
the ML techniques of CNN, GLCMs, and support vector machines (SVMs). Artificial intelligence for classification has 
advanced along with the introduction of backpropagation neural networks. To diagnose disease, a K-mean clustering 
algorithm is also applied based on the collected real-time images of the leaves and the accuracy achieved is 92%.

In 2023, Islam, et. al. [19] suggested a DL-based technique for cotton leaf disease identification that makes use 
of existing TL algorithms’ layers and parameters to be fine-tuned. In addition, has looked into how well other fine-
tuning TL models including VGG-16, VGG-19, Inception-V3, and Exception performed for cotton disease prediction 
utilizing publically accessible datasets. According to the research, the Exception model has the highest accuracy rate 
(98.70%) and was chosen to create a web-based smart application that predicts cotton diseases in real time, helping 
farmers grow more cotton. As a result, the model would open up novel possibilities for the automatic identification 
of leaf illnesses in other plants and may correctly identify diseases affecting cotton leaves.

In 2024, Jessie, et. al. [20] suggested pre-processing the increased images of paddy leaves using a Contrast Limited 
Adaptive Histogram Equalization (CLAHE) method. The characteristics were taken out of an image of the paddy leaves 
that have already been processed using the GLCM model. The five disease classes of paddy leaves that were ultimately 
identified were Sheath Rot (SR), Bacterial Leaf Blight (BLB), Brown Spot (BS), Narrow Brown Leaf Spot (NBLS), and Leaf 
Smut (LS), utilizing the hybrid CNN approach. Platforms for MATLAB manage implementation tasks. The suggested 
model demonstrates the superiority of paddy leaf classification (93.5%) when compared to earlier methods.

Sourav and Wang [21] have created an intelligent model based on deep convolutional neural networks (DCNN) 
and transfer learning (TL) for the identification of jute pests to address this real-world issue. The proposed DCNN 
model can accurately and quickly identify jute pests automatically based on images. TL explicitly used the ImageNet 
resource to train the VGG19 CNN model. Furthermore, an organized image dataset of the four most prevalent jute 
bugs is produced. The increased accuracy rate (91.8%) and reliable indicators of other performance parameters sup-
port the model’s validity for use in real-world scenarios. The suggested concept was integrated into iOS and Android 
apps to achieve the objectives of smart agriculture development.

Adil, Et. al. [22] have used an architecture based on convolutional neural networks to pinpoint the cause of leaf 
disease. To identify leaf conditions, several models including CNN, VGG-16, VGG-19, and ResNet-50 structures were 
used. By using images of the plant leaves, the suggested web tool seeks to help farmers diagnose plant illnesses. 
The suggested application classifies the current illness kind and distinguishes between healthy and infected leaves 
using the ResNet50 transfer learning model and achieved an accuracy rate of 94.2%. By early detection and adequate 
treatment, the aim is to assist farmers in conserving resources and averting financial loss.

In 2022, Liu, et. al. [23] suggested using IoT data to directly sense crop field ecological factors to anticipate ailment 
attack probability early on. The life cycles of plant diseases are significantly influenced by environmental conditions. 
Plant disease incidence was forecasted based on agricultural field environmental factors. Multiple Linear Regres-
sion (MLR) is used as the machine learning model when there is a linear relationship between disease attack and 
environmental variables. When crop field environmental parameters are based on the Internet of Things (IoT), the 
ML approach has more accurately predicted the existence of plant diseases. The effectiveness of the recommended 
remedy was (92.5%) evaluated by implementing the suggested model for tea plant blister blight prediction.

2.2  Problem statement

The crop pests and diseases in the agriculture sector affect substantial production and financial losses. Information on 
crop health and disease detection can enhance productivity and help control diseases through appropriate management 
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techniques including using fungicides, pesticides, or disease-specific chemicals to control vectors. Many farmers were 
stuck in a cycle of low production and poverty due to a lack of access to fundamental crop knowledge and instruction. 
This is due to the adoption of current technology and management methods being hampered by the knowledge and 
skill gap written by various authors which are shown in Table 1.

3  Proposed methodology

In agriculture, early detection of crop pests and diseases guarantees prompt intervention, averting extensive damage 
and maximizing resource use. Integrating Optimized RNN technology enhances accuracy in predicting threats, enabling 
farmers to adopt proactive measures. This approach not only improves crop health but also promotes sustainable and 
efficient farming practices, contributing to increased yields and reduced environmental impact.

Early Diagnosis of Crop Disease and Pests Utilizing an Optimized RNN model is developed by following the below-
mentioned steps (i) Data Collection (ii) Image Augmentation (iii) Data Pre-processing (iv) Image Segmentation (v) Feature 
Extraction (vi) MFRNN-based Crop Diseases and Pests Detection. Figure 1 depicts the suggested model’s overall structure.

3.1  Data collection

The CCMT Plant Disease Dataset is where the raw data was gathered. Leveraging Artificial Intelligence (AI) in agriculture 
is made possible in large part by the CCMT Dataset for crop pest and disease identification, especially when it comes to 
tackling issues that the agricultural industry faces in underdeveloped nations such as Ghana. The dataset, which includes 
102,976 enhanced images and 24,881 raw images from nearby farms, focuses on four important crops: cashew, cassava, 
maize, and tomato. Each crop has a different class associated with pest and disease problems.

To ensure privacy and ethical use, the dataset is carefully divided into 22 classifications, certified by knowledgeable 
plant virologists, and de-identified. It encompasses a variety of settings and backgrounds, with different sizes including 
400 × 400, 487 × 1080, 1080 × 518, 3024 × 4032, and 4032 × 3024. The dataset is more resilient for real-world settings when 
a variety of backdrops, including white, dark, lighted, and genuine backgrounds, are included. Owing to its extensive 
scope, the CCMT Dataset not only bridges the knowledge gap between farmers and technology, but it also offers a use-
ful tool for agricultural pest and disease detection researchers and practitioners using AI. The availability of the dataset 
to the scientific community may facilitate the creation of more precise and effective artificial intelligence models, which 
might enhance crop productivity, manage disease, and lower agricultural costs. The CCMT dataset and its corresponding 
classifications are displayed in Fig. 2 [24].

The collected raw data are moved on to the image augmentation stage.

3.2  Image augmentation

Image augmentation is the process of adding different changes to the original images in the context of agricultural pest 
and disease identification to enhance the size of the dataset and add diversity to the training data. Zooming, flipping, 
and rotations are used to obtain this augmentation.

3.2.1  Rotations

Rotations entail turning images at various angles, including 90, 180, or 270 degrees, to alter their orientation. This makes 
the model more resilient to changes in how features or objects are positioned within the images. Rotations improve the 
model’s ability to generalize and perform well on unseen data with diverse orientations by exposing it to images from 
various angles.
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Fig. 1  Overall structure of the suggested model

Fig. 2  CCMT dataset with its respective classes
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3.2.2  Flipping

Mirroring the images vertically or horizontally is a part of flipping. Vertical flipping happens along the horizontal 
axis, whereas horizontal flipping entails flipping the image along its vertical axis. Flipping creates changes to the 
way items are arranged inside the images, which lessens the model’s sensitivity to the precise orientation of features. 
This is particularly useful in situations where objects might show up with varying orientations in the real world [25].

3.2.3  Zooming

By zooming in to focus on certain elements or out to get a broader picture, one can adjust the scale of the images. By 
using this method, the model is better able to adapt to changes in the distances between the objects in the pictures 
and the camera. Zooming helps the model perform better overall on a variety of spatial configurations by enhanc-
ing its capacity to identify patterns and features at various scales. Figure 3 shows the image augmentation picture.

Fig. 3  Image augmentation from CCMT plant disease dataset
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The dataset is successfully enhanced by implementing various augmentation strategies, increasing the diversity 
of training samples. After the data are enhanced, they proceed to the pre-processing phase.

3.3  Data pre‑processing

The gathered raw data is carefully pre-processed to enhance its quality and usefulness for identifying crop diseases 
and pests. The procedure involves an adaptive bilateral filter to improve image quality and reduce noise, resizing 
using Lanczos interpolation, and normalization. Crop pest and disease identification can be done more effectively 
using a uniform format provided by the resized images, which are scaled to pixel values between 0 and 1.

3.3.1  Adaptive bilateral filter based noise reduction and enhancement

An essential part of the pre-processing phase of crop pest and disease detection is the Adaptive Bilateral Filter. The 
principal purposes of this filter are to reduce noise and improve image quality.

The purpose of the bilateral filter is smoothing; a damaged image’s sharpness cannot be restored. We suggested 
a modified adaptive bilateral filter as a way to improve the bilateral filter’s performance. The most common type of 
bilateral filter is the adaptive bilateral filter. The following significant adjustments were made to the bilateral filter in 
order to improve the denoised image’s visual quality:

1. An offset � is introduced to the range filter.
2. Both � and �s i.e. the width of the range filter are made locally adaptive.
3. The color space utilized is CIE-Lab.

Assuming that 
[
n0, o0

]
 represents the window’s center pixel and that �e and �s represent the respective standard 

deviations of the domain and range Gaussian filters, Eq. (1) can be utilized to create the kernel weight function or 
normalization factor employed in the suggested method.

Through the adaptation of both �  and �s and their joint optimization, the bilateral filter is enhanced to become 
a considerably more potent and adaptable filter. An exhaustive search is conducted in the parameter space 
� = {(� , �s) ∶ ����&�s���s

}, to identify the pair of parameters that minimizes the MSE.

where ��s
= [5,45]and�� = [−60,60]. Empirically, the parameters’ range and step size are selected to produce suf-

ficient sharpening and smoothing for all kinds of images.
The strength of edges as assessed by a Gaussian Laplacian (LoG) operator, which is described as follows in Eqs. (2) 

and (3), is the feature that is used for pixel classification.

where �LoG = 1.5andO = 4.

The following are characteristic attributes of the LoG operator [15]:

(1)sn0,o0 =

n0+O�
n=n0−O

o0+O�
o=o0−O

e

�
−(n−n0)

2
+(o−o0)

2

2�2e

�

× e

�
−

‖(h[n,o]−h[n0,o0]−�[n0,o0])‖2
2�2e[n0,o0]

�

(2)LoG[n, o] =

{
−

1

��4
LoG

(
1 −

n2+o2

2�4
LoG

)
exp

(
−

n2+o2

2�4
LoG

)
− D, |n|, |o| ≤ O

0, else

(3)And D =
1

(2O + 1)2

n0+O∑
n=n0−O

o0+O∑
o=o0−O

−
1

��4
LoG

(
1 −

n2 + o2

2�4
LoG

)
exp

(
−
n2 + o2

2�4
LoG

)
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1. The filter is a high pass one.
2. It calculates the input image’s second derivative.
3. Reaction: Near edges: a large reaction magnitude.

Smooth areas: the response’s magnitude is little.
The response’s magnitude is zero in the center of an edge.
The method used to compute the pixel class index is shown in Eq. (4)

where  hLoG[n, o] = LoG[n, o] ∗∗ h[n, o],Mmax = 60 and denotes arrounding ⌈y⌋ to the nearest integer. � is roughly equiva-
lent to the LoG class. The magnitude of the LoG reaction determines how much offset is wanted. Furthermore, the sign 
of � is identical to the LoG class’s.

The breadth of the range filter �s in a simple bilateral filter is fixed. To improve the bilateral filter’s strength and adapt-
ability, offset � , as well as � and �s . are made locally adaptable. By carefully addressing noise, the filter contributes to 
refining the overall clarity and detail of the images, preparing them for subsequent stages of analysis.

3.3.2  Resizing

Lanczos interpolation is used in the pre-processing pipeline’s essential step of resizing to modify the image’s dimensions.
A mathematical procedure called the Lanczos interpolation function is used to interpolate a digital image’s value 

smoothly between samples. Every sample of the provided image is mapped to a translated and scaled copy of the 
Lanczos kernel, which is a dilated sinc function with its central hump acting as a window. At the target pixel, the sum of 
these translated and scaled kernels is subsequently calculated. For geometric changes that do not require heavy down 
sampling, Lanczos interpolation offers the best qualities in terms of detail preservation and low aliasing artifact produc-
tion. Equation (5) displays the Lanczos interpolation function of order n in one dimension.

where the normalized sinc function is presented in Eq. (6):

The use of Lanczos interpolation comes from its capacity to reduce artifacts and preserve image quality when resiz-
ing. By preserving the resized images’ key characteristics and aesthetic integrity, this method makes for a more accurate 
and trustworthy analysis [26].

3.3.3  Normalization

Another essential component of the pre-processing process is normalization. It entails converting each image’s pixel 
values to a uniform scale of 0 to 1. To enable consistent comparison and analysis of images, this normalization phase is 
essential for maintaining consistency in data representation. Variations in intensity are adjusted by scaling pixel values, 
which makes it possible to understand characteristics more reliably in later phases of crop pest and disease detection. 
After pre-processing, the processed data moves to the Image Segmentation stage. Figure 4 shows the input image and 
normalized image.

(4)M[n, o] =

⎧
⎪⎨⎪⎩

⌈hLoG [n, o]⌋ , ��hLoG[n, o]�� ≤ Mmax

Mmax, hLoG[n, o] > Mmax

−Mmax, hLoG[n, o] > −Mmax

(5)M(y, o > 0) =

{
sin c(y). sin c(y∕o) for|y| ≤ o

0 otherwise

(6)M(y, o > 0) =

{
1 for y = 0

sinc(𝜋y)∕(𝜋y) otherwise
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3.4  Image segmentation through KEWO

The main aim of image segmentation is to precisely identify and isolate regions of interest, specifically focusing on areas 
affected by diseases or infestations, and distinguish them from the healthy sections within the images. In the segmen-
tation process applied to the pre-processed data, the KEWO approach is utilized. This model integration enhances the 
accuracy of identifying and isolating relevant areas, ensuring a thorough and effective crop pest and disease detection 
process.

Fig. 4  Input and normalized 
image
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The purpose of proposing KEWO is to enhance the accuracy of crop disease and pest detection image segmentation 
along with improving efficiency. KEWO has been specifically selected to get maximum entropy at the time of segmenta-
tion so that the infected region separated in an image comes out to be much more diversified from the healthy region. 
This method provides an optimized thresholding technique that improves the quality of segmentation and leads toward 
a better extraction of features and improvement in overall detection accuracy.

3.4.1  Multilevel thresholding utilizing Kapur’s entropy

Two primary types can be distinguished in image threshold segmentation: bi-level thresholding techniques and mul-
tilevel thresholding techniques. Using a threshold value, the bi-level thresholding approach divides a picture into a 
foreground and background to handle simple images. An essential unsupervised image processing technique that can 
handle complicated picture segmentation problems and produce better segmentation results is the multilevel thresh-
olding method.

Kapur’s entropy approach is a nonparametric threshold strategy that divides an image into many classes based 
on the entropy of the histogram; a higher entropy value indicates more homogeneous groups. Numerous academics 
have expressed interest in the suggested approach, which is better than existing thresholding-based techniques. The 
following are the special benefits of Kapur’s entropy method: the minimum amount of computations needed, simple 
implementation, robust constancy, rapid processing speed, and excellent segmentation correctness. An image’s 
entropy provides information on how distinct classes are compact and isolated from one another. Image segmen-
tation has been achieved through the widespread application of Kapur’s entropy, which efficiently finds the ideal 
threshold values by maximizing the objective function. Assume that the image is divided into many classes using. n 
threshold values from the ideal threshold values [u1, u2, ..., uo].  the probability qj is defined as follows in Eq. (7):

where ij indicates the number of pixels,O the total number of pixels, M the number of levels, and j He grey level. Kapur’s 
entropy is defined as shown in Eq. (8):

where,

(7)qj =
ij∑M−1

j=0
i(j)

(8)g
(
u1, u2, ..., uo

)
= H0 + H1 + H2 +⋯ + Hn

(9)H0 = −

u1−1∑
j=0

qj

�0
ln

qj

�0
,�0 =

u1−1∑
j=0

qj

Fig. 5  Bubble-net feeding 
behavior of humpback whales
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The entropies of Kapur for each class are represented by I1, I2, ..., andIO is expressed in Eqs. (9)–(12), while the prob-
abilities are represented by �0,�1, ..., and�n.

3.4.2  WOA

To conduct a successful global search, the WOA is a state-of-the-art swarm intelligence optimization algorithm that 
essentially imitates the encirclement of the prey, the bubble-net assaulting strategy, and the hunt for prey. It is based 
on the way humpback whales assault nets with bubbles. Each humpback whale in the WOA is a possible remedy. 
The WOA search method is used to filter the candidate solutions to determine the global optimal solution. Figure 5 
shows the bubblenet feeding behavior model.

A. Encircling prey

A humpback whale can locate its prey and rapidly close in on them. It is believed that the humpback whale’s current 
location is either the intended prey or a less-than-ideal option because the location of the ideal solution is unknown. 
The other whales will adjust their positions based on the ideal position after the optimal humpback whale has been 
identified. One definition of the position update is expressed in Eqs. (13), (14),

where u is the iteration number now in progress, X∗ is the position vector of the ideal solution, Y is the current position 
vector, || is the absolute value, and ⋅ is an elementwise multiplication. The definition of the coefficient vectors denoted 
by �⃗B and �⃗E   Can be found in Eqs. (15), (16):

where �⃗b indicates a linear drop from 2 to 0 and s⃗ Indicates a random vector in [0, 1].
B. Bubble-net attacking technique (phase of exploitation)

The bubble-net assaulting method consists of the decreasing encircling technique and the spiral position updat-
ing. Using a random vector �⃗B and a control variable b , The method used to reduce the gap between the current 
optimal location and the global optimal position is the shrinking encircling mechanism. The updated spiral position 
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(13)�⃗E = |��⃗D. ���⃗Y∗
(u) − �⃗Y (u)|

(14)�⃗Y (u+1) =
���⃗Y∗

(u) − �⃗B. �⃗E

(15)�⃗B = 2 �⃗b.⃗s − �⃗b

(16)��⃗D = 2.⃗s
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guides the humpback whales as they swim in the direction of their prey, and they determine the distance between 
their location and the prey’s position to successfully catch them. One definition of the position update is illustrated 
in Eqs. (17), (18).

where m represents a random value in [− 1, 1], c indicates a constant for defining the shape of the logarithmic spiral, and 
��⃗E′ indicates the distance between whale and prey.

where ��⃗E′ Is the distance between the whale and its prey, m is a random value in [− 1, 1], and c is a constant that 
defines the shape of the logarithmic spiral. When humpback whales update their positions to intercept prey, there 
is a 50% chance that they will use the logarithmic spiral position updating method or the diminishing encircling 
mechanism. One definition of the position update is shown in Eq. (19):

wherein q represents a random number within the range [0, 1].
C. Encircling prey

To avoid slipping into the local optimum, the WOA modifies the vector. �⃗B  In a random search strategy to find the 
prey. The WOA has a great exploration capacity to find the global optimal solution if | �⃗B | > 1. The definition of the 
position update is expressed in Eq. (20) and (21):

where a random position vector (a random whale) chosen from the present population is indicated by the symbol �������⃗Yrand .

In crop disease and pest detection, Kapur’s entropy is employed for image segmentation, proving well-suited for delin-
eating regions of interest in agricultural images where manifestations of pests or diseases may occur. However, utilizing 
Kapur’s entropy alone in pest and disease detection may encounter challenges related to local optima and difficulties in 
handling the complex and varied visual characteristics of crops. To address these challenges, the WOA is integrated. Its 
global optimization capabilities efficiently explore the solution space, enhancing adaptability to diverse crop conditions. 
By combining Kapur’s entropy with WOA, the segmentation process becomes more robust and adept at handling the 
intricate visual patterns associated with crop health. With its global optimization capabilities and automatic parameter 
adjustment, this integrated approach significantly improves agricultural pest and disease detection systems’ accuracy 
and dependability. The threshold value of specific image segmentation is shown by the position of each whale or search 
agent. By adjusting its location, a whale sets the threshold level to achieve the best outcome. Figure 3 displays the WOA 
flowchart for Kapur’s Entropy.

(17)��⃗E� = | ���⃗Y∗
(u) − Y⃗(u)|

(18)���⃗Y �
(u+1) =

���⃗Y �.f cmcos(2𝜋m) + ���⃗Y∗
(u)

(19)Y⃗(y + 1) =

{
���⃗Y∗(u − ��⃗B.D⃗ if q < 0.5

��⃗E�.f cm. cos (2𝜋m) + ���⃗Y∗
(u) if q > 0.5

(20)�⃗E = |��⃗D. �������⃗Yrand − �⃗Y|

(21)�⃗Y (u+1) = �������⃗Yrand − �⃗B. �⃗E
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Algorithm 1  KEWO-based Image Segmentation
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3.5  Feature extraction via GLCM

To extract the best features from the feature-segmented data, a GLCM is utilized.
Gray-Level Co-occurrence Matrix (GLCM) a square matrix, contains some features related to a texture image’s gray-level 

distribution in space. The intensity value of m, also known as the neighbor pixel, and a pixel value with the intensity 
value of l, also known as the reference pixels, are shown about each other in terms of frequency. Each component (l,m) 
Of the matrix is the number of occurrences of a pair of pixels with values of l and m that are apart by a distance of d. The 
spatial relationship between two adjacent pixels can be specified in several ways, including different offsets and angles. 
A pixel is in default relationship with its immediate neighbor when it is to the right of it. Four likely spatial associations 
(00;450;900and1350 ) Were identified, described, and put into practice.

The elements of a J × J GLCM MCO for a displacement vector d(= da, db) for an assumed image L of size N × N are 
distinct mathematically as shown in Eq. (22),

Figure 6 shows how to create four symmetrical co-occurrence matrices from a 4 × 4 image that has four grayscale values 
ranging from 0 to 3. To do this, we took into account one nearby pixel (f = 1) along each of the four potential directions, 
as shown by Eq. (23),

In the GLCM, each element denotes the frequency of two grayscale pixels, landm , being adjacent in both directions (�) 
and distance (f ). For the 0◦ , Co-occurrence matrix, there are two instances of the pixel intensity values 1 and 3 adjacent 
to one another in the input image. In addition, there are two examples of adjacent pixel strengths of 3 and 1. Because of 
this, The symmetric nature of these vectors and the co-occurrence pairing that results from setting � equal to 0◦ would 
resemble those that result from setting � equal to 180◦. This idea also applies to angles of 45◦, 90◦, and135◦. The GLCM is 
calculated for each of the four possible angles while accounting for all of these variables, and it is shown in Fig. 7 below.

(22)PER =
∑N

a=1

∑N

a=1

{
1, ifL(a, b) = kandL

(
a + ga, b + gb

)
= m

0, otherwise

}

(23){[01]for0◦, [−11]for45◦, [−10]for90◦, and[−1 − 1]for135◦]}

Fig. 6  GLCM directions for 
extracting texture features

Fig. 7  GLCM [31] Construction 
based a test picture in four 
potential orientations b 0◦ c 
45◦ d 90◦ and e 135◦ with a 
distance f = 1
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# stands for the number of repetitions [28]. The feature-extracted data moved on to the crop pest and disease detec-
tion stage to detect crop diseases and pests.

The advantage of employing the Gray-Level Co-occurrence Matrix (GLCM) over other methodologies is its increased 
capacity to collect detailed texture features, which is critical for diagnosing and classifying crop diseases and pests. GLCM 
provides crucial textural properties such as contrast, correlation, energy, and homogeneity, allowing for more accurate 
separation between healthy and infected regions.

3.6  MFRNN‑based crop pest and diseases detection

From the feature-extracted data, the Crop Pests and Diseases are detected using MFRNN. The proposed MFRNN frame-
work is a combination of the MFO and RNN. The RNN is optimized through MFO algorithm.

3.7  Optimizing RNN using MFO

The structure of the suggested MFRNN model is illustrated in Fig. 8. MFO fine-tunes the RNN for enhanced performance. 
This algorithm optimizes RNN parameters, ensuring better accuracy and efficiency in processing sequential data. By uti-
lizing MFO, the RNN is dynamically adjusted to improve its ability to capture patterns and nuances, resulting in a more 
effective and finely-tuned model for various applications, including crop pest and diseases detection.

The choice of using RNN in crop disease and pest diagnosis is informed by the fact that RNN is capable of capturing 
temporal and sequential data which is paramount in this case. However, image data is not sequential; when used together 
with time series data such as disease progression or environmental conditions that affect crops, RNNs can adequately 
capture the correlation between consecutive observations.

RNNs are particularly useful in continuous monitoring and hence can be applied to real-time crop disease detection 
systems in agricultural environments where conditions vary. The integration of RNN with feature extraction techniques 
improves the system’s general performance in diagnosing crop diseases and pests.

An artificial neural network type called an RNN uses feedback connections between nodes to process data sequen-
tially. Three main layers make up RNNs, as opposed to conventional feedforward neural networks: input, hidden, and 
output. Recurrent connections found in the hidden layer are essential for preserving a hidden state that records details 
about previous inputs in a series. RNNs are well-suited for tasks involving time-series data, natural language processing, 
and other applications where temporal dependencies are important because of their capacity to maintain recollection 
of previous inputs.

Fig. 8  MFRNN Model
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The study uses an RNN for real-time illness and pest detection in dynamic systems, which has fixed coefficients in the 
hidden neurons and self-feedback connections. The RNN’s architecture, comprising input, hidden, and output layers, 
enhances its memorization capacity, leading to improved convergence precision and reduced learning time.

The RNN is used after extracting relevant characteristics from the images using the GLCM. Instead of directly processing 
raw pixel data, the RNN works with extracted feature vectors, which contain essential texture and spatial correlations in 
images. The RNN does not work directly on the images; instead, it processes the meaningful, lower-dimensional feature 
representations obtained from them, allowing it to contribute to accurate diagnosis without requiring direct image input. 
This hybrid technique ensures that RNN’s capabilities are maximized for image-based crop disease diagnosis.

3.7.1  layer 1: Input layer

Equation (24) illustrates how the node input and output are represented in the input layer.

where w and zK
k

 are the layer’s input and output, respectively, and m denotes the m − th iteration.

3.7.2  layer 2: Hidden layer

The node input and output in the hidden layer are described by Eqs. (25) and (26).

where netJ
l
andzK

k
(m)are the input and output of the hidden layer respectively,

The context layer’s output is represented by zE
t
 , and the weight matrices connecting the input layer and the hidden 

layer are YJK ∈ To×n and YJE ∈ To×o , respectively and the sigmoid function is U(z) is expressed in Eq. (27).

3.7.3  Context layer

The node input and output are represented in the context layer as indicated by Eq. (28).

where 0 ≤ 𝛼 < 1 is the expression for the self-feedback connection coefficient. When the coefficient is zero, the modified 
Elman network is identical to the original Elman network.

3.7.4  layer 3: Output layer

Equation (29) and (30) illustrate how the node input and output are represented in the output layer.
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where netQ
s

 and as(m) are the input and the output of the output layer, respectively, YQJ is the weight matrix between the 
hidden layer and the output layer, and i(z) is often taken as a linear function.

Choosing the network’s parameters is crucial while building an RNN. The MFO technique is utilized in this research 
to adjust many parameters of the RNN, including Learning Rates, Weight Matrices ( YJK ,YJE, andYQJ) and Self-feedback 
Connecting Coefficient ( �) of the RNN.

3.7.5  Hyperparameter tuning

Lastly, the MFRNN method’s hyperparameters are adjusted using the MFO methodology. The population-based 
metaheuristic method known as MFO was inspired by the sloping migrations of moths. The MFO technique func-
tions similarly to flames and moths, with the problem variable being indicated by the moth’s position in the search 
space and the moth representing the answer. In this instance, the moth designates search mediators that make an 
effort to locate a timetable within the search space. The moth group notifies the position when searching various 
locations inside the search range. In the meantime, the frames show each moth’s ideal location. The following moths 
and fames are simulated by the MFO approach using four arrays.

The goal of the 2D array N is to save the solution. The first dimension of the array can be represented by the number 
of moths (o), and the second dimension can be represented by the number of variables in the problem (e).

The goal of a 1D array called PN is to preserve each moth’s unique fitness value. The goal of the 2D array G is to 
preserve the fames that resemble the N array. The goal of the 1D array PG is to maintain the matched fitness rate for 
every optimal location. Three key elements comprise the MFO method: initiation (J), search process (Q), and termi-
nation (U). Initially, a random trial of the work was formed by the random series of jobs, and the population of the 
solution was randomly generated using Eq. (31).

where the moth objective function denoted by PN is equivalent to the fitness function (PN = fitness function (N)). After 
d, the number of jobs, the makespan is calculated using the moth’s fitness function.

Iteratively looking for the moth solution continues in the local search (also known as the search procedure) stage 
until the stopping condition (U) or predetermined termination is satisfied. The least valuable solution was given back 
at the termination point.

However, the moth’s position was improved with the application of Nj = T (Nj ,Gk), wherein Mi depicts the moth, j 
and k stand for indices, T  signifies the spiral process, and Gk stands for notoriety. The mathematical expression for 
this is shown in Eq. (32),

where c displays a logarithmic spiral in its constant form. Ej explained how far the moth was from stardom, Ej = |Gk − Nj| , 
and u denotes the value that was chosen at random between s and 1. The s value decreased linearly from − 1to − 2.

The MFO was designed to handle ongoing issues. However, it went further by proposing employment relocations 
about the discrete optimization problem. The moth is prompted to approach the famous by the name T  . The jobs 
that could migrate are denoted by the letter T  . In some cases, its worth may beyond the boundaries of the issue. 
The shift in this instance may be directed toward the arbitrary job. In contrast, the following Eq. (33) was used to 
determine the Flame_no, or fame number:

where O represents the greatest fame number, U indicates the number of iterations, and m indicates the number of 
iterations that already exist.

A fitness function (FF) that achieves better classifier results was created by the MFO method. It resolves a positive 
integer, indicating that the pest and disease detection is good. Here, Eq. (34) provides the minimal classifier rate of 
errors, which is FF.

(31)N(j) = RandomSequenceofJobs(0, e − 1)

(32)T
(
Nj ,Gk

)
= Ej ∗ f cu ∗ cos(2�u) + Gk

(33)Flameno = round
(
O −m ∗

O − 1

U

)
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In this paper, the MFO algorithm is strategically employed to fine-tune crucial parameters essential for optimizing 
the performance of RNNs in the realm of crop pest and disease detection. The parameters subject to fine-tuning include 
Learning Rates, which significantly impact the convergence speed and optimization efficiency of the neural network. 
Additionally, Weight Matrices, responsible for determining the strength of connections between different layers, are 
dynamically adjusted to enhance the network’s ability to capture intricate patterns. Furthermore, the Self-feedback 
Connecting Coefficient in the context layer is optimized through MFO, influencing the network’s capacity to retain valu-
able information about past inputs. This comprehensive approach ensures that the RNN’s configuration is finely tuned, 
optimizing its learning process and overall efficiency in recognizing patterns associated with crop health. Ultimately, 
this contributes to improved accuracy in pest and disease detection. After fine-tuning the parameters of the RNN, the 
outcome is acquired from the output layer of the network. Algorithm 2 details the MFO Optimization for RNN hyperpa-
rameter tuning.

Algorithm 2  MFO Optimization for RNN hyperparameter tuning

(34)fitness
(
yj
)
= ClassificationErrorRate

(
yj
)
=

Number ofmisclassified samples

Total number of samples
∗ 100
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4  Result and discussion

In this subsection, the results and discussion of the suggested framework are presented. This paper introduces a MFRNN 
model, consisting of MFO and RNN components. Various metrics such as sensitivity, accuracy, precision, F- Measure, MCC 
and Confusion matrix have been considered to assess the performance effectiveness of the recommended technique.

4.1  Dataset description and experimental setup

In general, the CCMT Plant Disease Dataset is a database of high-resolution images of various plants that are suffer-
ing from diseases. Every image captures the visual symptoms on different parts of the plant such as leaves, stems, 
or fruits in respect to various diseases they suffered from. Images are labeled along with disease types that include 
various subcategories of the disease. In most cases, information will include the full name of the disease and the 
plant species affected. Ancillary metadata accompanying the dataset would include information on the particular 
species of the plant, the stage of the disease, the geographic location of the sample origin, and the conditions under 
which the sample environment exists. The dataset encompasses a variety of plant species, including crops: tomatoes, 
potatoes, corn, and ornamental plants. Diseases fall into several classes, including bacterial, fungal, viral, and parasitic 
diseases. Specific diseases are then further subdivided by classes bearing their distinct symptoms.

The recommended framework has been implemented in MATLAB. The suggested framework has been evaluated 
utilizing the CCMT Plant Disease Dataset (https:// www. kaggle. com/ datas ets/ aksha jsing hbisht/ ccmt- augme nted- 
split) [Accessed Date: 2024–01-31]. 70% of the collected data has been utilized for training and 30% for testing. This 
assessment considered various metrics like sensitivity, accuracy, precision, F-Measure MCC and Confusion matrix.

4.2  Parameters of performance analysis

The suggested model’s performance was assessed utilizing the following metrics as accuracy, precision, F- Measure, 
sensitivity, MCC and Confusion matrix.

(i) Accuracy

The degree to which measurements of a quantity are closest to that quantity’s actual (true) value is measured by 
accuracy. Equation (35) is the mathematical equivalent of the accuracy formula.

(ii) Precision
Precision lies on its ability to distinguish genuine positives from anticipated positives. It calculates the percentage 
of all positive forecasts that were accurately forecasted. We may see the precision formula in Eq. (36).

(35)Accuracy =
TP + TN

TP + FP + FN + TN

(36)Precision =
TP

TP + FP

Table 2  Comparative analysis 
of performance metrics with 
existing models

Cashew

Classification Models Sensitivity Accuracy Precision F-Measure MCC

Proposed 0.9611 0.9844 0.9611 0.9611 0.9513
RNN [27] 0.9061 0.9624 0.9061 0.9061 0.8826
DNN [28] 0.8802 0.9521 0.8802 0.8802 0.8502
ANN [29] 0.8298 0.9319 0.8298 0.8298 0.7872
KNN [30] 0.7557 0.9023 0.7557 0.7557 0.6947

https://www.kaggle.com/datasets/akshajsinghbisht/ccmt-augmented-split
https://www.kaggle.com/datasets/akshajsinghbisht/ccmt-augmented-split
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Fig. 9  a, b, c, d, e: graphical 
representation of the perfor-
mance analysis: for cashew
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v) F-Measure
The F-Measure number is a tradeoff between fully identifying every data bit and guaranteeing that each definition 
correctly recognizes only one type of information item. The F-Measure’s mathematical formula is given in Eq. (37).

ix) MCC
MCC is a trustworthy statistic for evaluating the effectiveness of binary classifiers since it takes into account TP, 
TN, FN, and FP. In actuality, MCC quantifies the degree of correlation between the predictor and the labels. A 
mathematical representation of the MCC formula can be found in Eq. (38).

x) Sensitivity
The sensitivity value is calculated by dividing the total positives by the percentage of true positive predictions. A 
mathematical representation is shown in Eq. (39).

4.3  Overall performance analysis: for Cashew

In this section, overall performance analysis is presented for cashew, considering both proposed model and other existing 
models. Table 2 displays a comparative analysis of the presented framework and existing models based on performance 
metrics.

In the context of cashew agriculture, the proposed model exhibits exceptional performance compared to existing 
models. The proposed model achieves a sensitivity of 96.11%, outperforming all other models, including the RNN, which 
has the second-highest sensitivity at 90.61%. This high sensitivity underscores the proposed model’s effectiveness in 
accurately identifying true positive instances of cashew crop issues. The overall accuracy of the proposed model stands 
at 98.44%, indicating its ability to correctly classify instances across all classes. This surpasses the accuracy of the RNN 
[27], DNN [28], ANN [29], and KNN [30] models, highlighting the proposed model’s robustness and reliability in the 
context of cashew agriculture. With a precision of 96.11%, the suggested model has an exceptionally high level of false 
positive avoidance. This suggests that the model is more likely to be accurate than any other model when it forecasts a 
positive outcome, outperforming all other models in terms of precision. The F-Measure, a metric that balances precision 
and recall, is consistently high for the proposed model at 96.11%. This signifies a balanced performance in terms of both 
precision and sensitivity, showcasing the model’s efficacy in cashew crop issue diagnosis. The Matthews Correlation 
Coefficient (MCC), a comprehensive metric considering true and false positives and negatives, attests to the proposed 
model’s overall excellence with an MCC of 95.13%. This score surpasses all other models, reinforcing the proposed model’s 
suitability for reliable and efficient cashew crop issue management. In summary, the proposed Optimized Recurrent 
Neural Network-based model excels across all key metrics, including sensitivity, accuracy, precision, F-Measure, sensitiv-
ity MCC, and confusion matrix demonstrating its superiority in early diagnosis and management of cashew crop issues. 
Its heightened performance positions it as a valuable tool for precision agriculture, enabling timely interventions and 

(37)F_Score =
Presision.Recall

Presision + Recall

(38)MCC =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP)(TP + FN)(FP + TN)(TN + FN)

(39)Sensitivity =
TP

TP + FN

Table 3  Comparative analysis 
of performance metrics with 
existing models for cassava

Cassava

Classification models Sensitivity Accuracy Precision F-measure MCC

Proposed 0.9594 0.9838 0.9594 0.9594 0.9492
RNN 0.9261 0.9704 0.9261 0.9261 0.9076
DNN 0.9008 0.9603 0.9008 0.9008 0.876
ANN 0.8489 0.9395 0.8489 0.8489 0.8111
KNN 0.7929 0.9172 0.7929 0.7929 0.7412



Vol.:(0123456789)

Discover Computing           (2024) 27:43  | https://doi.org/10.1007/s10791-024-09481-2 Research

Fig. 10  a, b, c, d, e: shows the 
graphical representation of 
the performance analysis: for 
Cassava
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improved overall crop health in the cashew farming sector. The graphical depiction of the cashew performance analysis 
is displayed in Fig. 9(a), (b), (c), (d), (e).

4.4  Overall performance analysis: for Cassava

In this section, we present a comprehensive performance analysis for cashew, comparing the proposed model with 
existing ones. Table 3 illustrates a comparative assessment based on various performance metrics for cassava.

The proposed model for early diagnosis of crop pest and diseases in cassava agriculture demonstrates superior per-
formance compared to existing models. The evaluation metrics, including Sensitivity, Accuracy, Precision, F-Measure, and 
MCC, provide a comprehensive insight into the model’s effectiveness. The sensitivity of the proposed model stands out 
at 95.94%, indicating its high ability to correctly identify true positive instances of crop pest and diseases in cassava. This 
surpasses all other models, including the RNN, which has the second-highest sensitivity at 92.61%. The higher sensitivity 
of the proposed model implies a reduced likelihood of false negatives, which is crucial in agricultural applications where 
early detection of pests and diseases is essential for timely intervention. In terms of overall accuracy, the proposed model 
achieves an impressive 98.38%, showcasing its capability to correctly classify instances across all classes. This significantly 
outperforms the RNN, DNN, ANN, and KNN models, reinforcing the proposed model’s robustness and reliability. With a 
precision of 95.94%, the suggested model also has a very good capacity to prevent false positives. This implies that the 
model has a high probability of being right when it predicts a positive case. The proposed framework surpasses all other 
models in this regard, emphasizing its precision in early diagnosis. The F-Measure, which balances precision and recall, 
is consistently high for the proposed model at 95.94%. This indicates a harmonious blend of precision and sensitivity, 
further solidifying its effectiveness in crop pest and disease diagnosis. The suggested model’s overall performance is 
reflected in the MCC, a statistic that accounts for true and false positives as well as negatives. With an MCC of 94.92%, it 
outshines all other models, including the RNN, which has the second-highest MCC at 90.76%. Figure 10a, b, c, d, e shows 
the graphical representation of the performance analysis: for cassava.

4.5  Overall performance analysis: for maize

This section provides an in-depth performance analysis for cashews, juxtaposing the proposed model with existing ones. 
Table 4 delineates a comparative evaluation using various performance metrics for maize.

The proposed classification model for maize outperforms existing models across various evaluation metrics. With a 
sensitivity of 0.9474, the proposed model excels in correctly identifying positive instances (maize), surpassing the per-
formance of the RNN, DNN, ANN, and KNN models. Its accuracy, at 0.985, demonstrates its overall effectiveness in maize 
classification, outshining all other models. Precision, a measure of minimizing false positives, is highest in the proposed 
model at 0.9474. The F-Measure, which balances precision and recall, also attains the highest value of 0.9474 in the 
proposed model. Furthermore, the MCC stands at 0.9387, indicating a robust correlation between predicted and actual 
classifications. In contrast, the existing models, including RNN, DNN, ANN, and KNN, exhibit slightly lower values across 
these metrics. While they perform reasonably well, there is a noticeable trade-off between precision and recall, leading 
to lower F-measure values. The proposed model’s consistent superiority across sensitivity, precision, accuracy, F-measure, 
and MCC positions it as the most promising choice for maize classification compared to the alternatives. Overall, the 
proposed model demonstrates a compelling advantage in accuracy and reliability for pest and disease identification in 
maize. Figure 11a, b, c, d, e shows the graphical representation of the performance analysis: for maize.

Table 4  Comparative analysis 
of performance metrics with 
existing models for maize

Maize

Classification models Sensitivity Accuracy Precision F-measure MCC

Proposed 0.9474 0.985 0.9474 0.9474 0.9387
RNN 0.9033 0.9724 0.9033 0.9033 0.8872
DNN 0.8563 0.959 0.8563 0.8563 0.8324
ANN 0.7906 0.9402 0.7906 0.7906 0.7557
KNN 0.6995 0.9142 0.6995 0.6995 0.6495
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Fig. 11  a, b, c, d, e: shows the 
graphical representation of 
the performance analysis: for 
maize
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4.6  Overall performance analysis: for tomato

Within this section, we conduct a thorough performance analysis for cashews, juxtaposing the proposed model with 
existing counterparts. Table 5 outlines a comparative evaluation utilizing various performance metrics for tomatoes.

The proposed Optimized Recurrent Neural Network (RNN)-based model for early diagnosis of crop pests and diseases 
in tomato plants outperforms existing models across various metrics. With a sensitivity of 97.06%, accuracy of 98.83%, 
precision of 97.06%, F-Measure of 97.06%, and MCC of 96.33%, the proposed model demonstrates superior performance 
compared to RNN, DNN, ANN, and KNN. While RNN is a close competitor, the proposed model excels in sensitivity and 
overall accuracy. The consistent outperformance across metrics suggests the effectiveness and potential significance of 
the proposed model in enhancing agricultural diagnostics and addressing challenges related to tomato crop health. The 
graphical depiction of the performance analysis for Tomato is displayed in Fig. 12(a), (b), (c), (d), (e).

4.6.1  Confusion matrix

The confusion matrix, sometimes referred to as an error matrix, is a particular table arrangement used in the field of 
deep learning, most especially in the statistical classification problem, which enables the visualization of algorithm 
performance. It takes into account many measures, such as false positives (FP), false negatives (FN), true positives (TP), 
and true negatives (TN). The confusion matrix for cashew, cassava, maize, and tomato are illustrated below in Fig. (13).

5  Conclusion

This paper proposed a ML-based Early Diagnosis of crop disease and pests. The initial phase in the training and test-
ing procedure was to create a database with images of every component of the affected crop. The image dataset was 
augmented using rotation, flipping, and zooming during the image augmentation stage. The input image dataset was 
then sent to the preprocessing unit. During the preprocessing phase, the Adaptive Bilateral Filter was employed to lower 
noise and improve the image quality. The pre-processed pictures were resized using Lanczos interpolation and normal-
ized to scale pixel values between 0 and 1. KEWO was proposed to obtain efficient image segmentation which is the 
combination of the Kapur’s Entropy and Whale Optimization Algorithm. In this step, the sick portion was grouped into 
segments, and the characteristics were then retrieved. To extract features and assess the presence of different grey-level 
combinations in a picture, an efficient GLCM was utilized. It assessed the spatial separation between the pixels and cre-
ated a feature-based gray level matrix for the color image. Finally, the MFRNN framework was proposed to detect crop 
diseases and pests. The proposed model is the combination of the MFO and RNN. The implementation was performed 
using the MATLAB software. The proposed model was evaluated in terms of accuracy, precision, F-Measure, MCC, and 
confusion matrix. The proposed model demonstrated superior performance across four types of crops, namely cashew, 
cassava, maize, and tomato, achieving remarkable accuracy rates of 98.4%, 98.3%, 98.5%, and 96.8%, respectively. It 
also exhibited impressive precision rates of 96.1%, 95.5%, 94.7%, and 97%, outperforming previous models in this field. 
Additionally, the model showcased strong F1 measures of 96.1%, 95.9%, 94.7%, and 97%, and achieved high sensitivi-
ties of 96.1%, 95.9%, 94.7%, and 97%. Notably, it attained MCC values of 95.1%, 94.9%, 93.8%, and 96.3% for cashew, 
cassava, maize, and tomato, respectively. Furthermore, the confusion matrix for each different crop was also presented.

Table 5  Comparative analysis 
of performance metrics with 
existing models for tomato

Tomato

Classification models Sensitivity Accuracy Precision F-measure MCC

Proposed 0.9706 0.9883 0.9706 0.9706 0.9633
RNN 0.9283 0.9713 0.9283 0.9283 0.9104
DNN 0.8964 0.9585 0.8964 0.8964 0.8705
ANN 0.8333 0.9333 0.8333 0.8333 0.7917
KNN 0.7651 0.906 0.7651 0.7651 0.7064
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Fig. 12  a, b, c, d, e: shows the 
graphical representation of 
the performance analysis: for 
Tomato
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Fig. 13  Confusion matrix for 
cashew, cassava, maize, and 
tomato
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6  Future work

By focusing on expanding the dataset to encompass diverse environmental conditions and crop varieties, enhancing the 
model’s robustness. Additionally, exploring real-time implementation in the field using edge computing or on-device 
processing for quicker diagnosis is crucial. Integration of sensor data, such as weather and soil information, could further 
improve the model’s predictive capabilities. Lastly, collaborative efforts to develop a user-friendly interface for farmers to 
easily interpret and act upon the model’s findings would contribute to practical and widespread adoption in agriculture.
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