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A B S T R A C T

The most complex challenge facing the energy market is identifying effective solutions to reduce CO2 emissions
(CEs) and enhance environmental performance (EP). Coal production within the power sector is the primary
source of these emissions. In this study, we developed a novel linear programming model that accounts for
undesirable outputs to assess the EP of 15 power enterprises in eastern China from 2016 to 2020. In addition, we
employed a global non-radial Malmquist-Luenberger productivity index (GNML) to analyse the mechanisms
influencing changes in efficiency among these enterprises. Our findings indicate that, while the EP of the power
industry in eastern China improved, it remains at a relatively low level and exhibits instability. Moreover,
technological efficiency (TE) and scale efficiency (SE) play a significant role in determining production efficiency
within the sector. Therefore, it is essential for industry managers to implement standardized production man-
agement regulations, enhance technological development and scale investments, and strengthen control over
unintended emissions that could facilitate energy transition.

1. Introduction

As global temperatures continue to rise, effectively decarbonizing
the energy market has emerged as a key challenge for all countries (Tol,
2023; Bigerna et al., 2022). The recent flagship report on global
energy-related CO2 emissions (CEs) published by the IEA indicates that
energy-related CEs reached 37.4 billion tons in 2023, marking an in-
crease of 490 million tons compared to 2022 (IEA, 2023). Despite this,
global energy consumption is on the rise (Huang, 2014; Meng et al.,
2020). According to the 2024 BPWorld Energy Outlook, driven by rapid
electricity consumption growth in emerging economies, global terminal
electricity demand is projected to increase by approximately 75 % by
2050 under the “current path scenario”. For instance, the China Elec-
tricity Development Report (2023) states that China’s electricity de-
mand rose by 3.6 % in 2022, with projections indicating total electricity
consumption will reach between 9.8 trillion and 10.2 trillion KWh by
2025. Similarly, a recent research report from Bank of America Merrill
Lynch forecasts unprecedented growth in electricity demand in the
United States, expecting a compound annual growth rate of 2.8 % from

2023 to 2030. Although countries worldwide advocate for the transition
to clean energy for electricity production, the surging demand means
that clean energy sources cannot meet current needs in the short term,
leaving coal power as the dominant source. Consequently, finding
effective strategies to improve the environmental performance (EP) of
the energy market remains an urgent issue to address (Zeng et al., 2023).

In this context, the evaluation of EP in the energy market has
garnered significant academic attention. Our review of existing litera-
ture reveals that scholars primarily focus on two aspects: (1) the impact
of various policy implementations on the EP of the power industry
(Bigerna et al., 2020). Some studies argue that regulatory measures can
inhibit production efficiency and lead to heterogeneous effects across
different regions (Tang et al., 2023). Conversely, other scholars contend
that policy constraints can significantly drive reforms within the power
industry, ultimately enhancing EP (Sueyoshi & Goto, 2013). (2) EP
evaluations of the power industry from a macro perspective (Long et al.,
2018). Currently, few studies have addressed the EP evaluation of power
enterprises and the mechanisms influencing their performance from a
micro perspective. Given that power enterprises are primarily
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responsible for energy production, exploring EP at this level can effec-
tively guide the energy industry toward achieving green and
high-quality development. Therefore, we aim to advance research in this
area.

In China, energy combustion accounts for approximately 88 % of its
CEs, with the electricity market alone contributing about 41 % of
emissions from the energy sector. Therefore, improving EP in the elec-
tricity market is crucial for the sustainable development of the energy
sector. According to the latest report from the IEA, China is currently the
world’s largest electricity consumer, with average annual energy de-
mand exceeding a quarter of global demand (Fan et al., 2019). Given the
variability in production capacities among different power enterprises,
we selected 15 power enterprises in eastern China, where the power
industry is relatively advanced, as the focus of our study. These enter-
prises consume >10,000 tons of standard coal annually or produce over
26,000 tons of CEs, collectively representing more than one-third of the
region’s power production, making them highly representative for our
analysis.

Considering the differences in technical capabilities and production
scales among various power enterprises, we propose our first research
question: (1) Is there heterogeneity in the EP of different power enter-
prises? To investigate this, we employ an improved non-radial direc-
tional distance function (NDDF) approach to analyze the historical
production data of 15 power enterprises in China from 2016 to 2020.
Our findings reveal significant disparities in EP across these enterprises,
with notable fluctuations in efficiency values at different stages. How-
ever, the underlying causes of this heterogeneity in EP and the factors
influencing changes at various stages remain unclear. Therefore, we
present the second research question: (2) What mechanisms drive effi-
ciency heterogeneity and fluctuations in different power enterprises?

This study significantly contributes to both theoretical frameworks
and management practices. From a theoretical perspective, we intro-
duce several innovations in environmental production technology: (1)
To address the limitations of the radial directional distance functions
(DDF) model, which may overestimate efficiency due to non-zero
relaxation (Fukuyama & Weber, 2009), we employ a NDDF method
that integrates relaxation into the efficiency measurement. (2) Previous
practices that imposed equality constraints on undesirable outputs in
measuring the efficiency of decision-making units (DMUs) can lead to
misleading conclusions (Chen, 2014). We address this by utilizing
inequality constraints, which enable the incorporation of
Pareto-Koopman efficiency into our analysis. Furthermore, we devel-
oped an environmental production technology model that employs
non-uniform emission reduction factors, accounting for the heteroge-
neity in emission reduction technologies among different DMUs, thereby
strengthening our theoretical foundation. (3) Numerous classical ap-
proaches exist for exploring heterogeneity in the literature (Bigerna
et al., 2020). To facilitate temporal comparisons and effectively address
issues of infeasibility, we adopted a global frontier analysis approach,
which serves as a benchmarking technique for all DMUs. This method
allows for the construction of a best practice frontier based on
comprehensive observations. These innovations enhance the robustness
and applicability of environmental production technology models, of-
fering a detailed understanding of the ecological efficiency of various
DMUs.

In terms of management practice, previous studies on the power
industry have largely focused on macro perspectives, emphasizing
regional development heterogeneity (Li et al., 2024). While these con-
clusions inform government departments regarding macro allocation,
they do not directly guide production decision-making at the enterprise
level. Our analysis, based on actual production data from 15 power
enterprises, offers actionable insights for enterprise-level production
decisions. Additionally, the annual standard coal consumption of these
enterprises exceeds 10,000 tons, effectively representing the develop-
ment of the power industry in eastern China. Thus, our findings can
guide not only the power industry in China but also serve as a reference

for similarly scaled power enterprises globally.

2. Literature review

In this section, we systematically review two categories of literature
pertinent to this study: (1) EP measurement of power enterprises, and
(2) Applications of the Malmquist Productivity Index(MPI). These two
types of literature offer valuable insights that inform the foundation of
this research.

2.1. EP measurement

Due to rapid economic development and a continuous increase in
energy demand, power enterprises remain a primary source of energy
supply in China. The energy produced by these facilities predominantly
relies on fossil fuels, resulting in substantial CEs (Pan et al., 2024).
Globally, countries have set the goal of limiting the average temperature
increase to below 2.C compared to pre-industrial levels, with efforts to
restrict the rise to within 1.5.C. This underscores the urgent need to
enhance EP in the energy sector.

Wang et al. (2017) employed a validity measurement approach
based on Data envelopment analysis (DEA) to evaluate the EP of power
enterprises in China, using an efficiency index to demonstrate changes in
EP. Wu et al. (2019) developed a novel DEA method to assess the EP of
different power enterprises, revealing that nearly half of these com-
panies require significant improvement in their performance. Fang et al.
(2022) investigated the development efficiency of power enterprises
within China’s energy markets, analysing factors such as energy, econ-
omy, and environment. Zhu et al. (2022) utilized network DEA along-
side the non-parametric production DEA method to evaluate the
developmental efficiency of China’s energy sector, offering recommen-
dations for effective industry transformation. Li et al. (2022) focused on
power enterprises in China, proposing a two-stage DEA method to assess
energy production and utilization efficiency. Li et al. (2023) investigated
the EP of different power enterprises in China by employing a fixed total
pollutant framework, combining advanced DEA with an efficiency index
to explore the underlying impact mechanisms.

Existing research on the performance of power enterprises has yiel-
ded substantial results, introducing a range of classical methods such as
the DDF model and the application of equilibrium constraints on un-
desirable outputs. In this study, we propose an NDDF model and employ
unequal constraints on undesirable outputs to mitigate the inaccuracies
in efficiency measurement associated with previous methodologies.
Furthermore, we will utilize a GNMI to facilitate efficiency comparisons
among all DMUs across different stages. This enhancement will provide
business managers and researchers with a more nuanced understanding
of the environmental efficiency of various DMUs.

2.2. Study of the MPI

MPI is a valuable tool for evaluating and comparing the production
efficiency of DMUs over various time periods. By comprehensively
considering the effects of technological progress and environmental
factors, it enables managers to analyze production efficiency in depth,
making it widely applicable in fields such as environmental and eco-
nomic decision-making (Simar et al., 2002, 2011). For instance, Ali et al.
(2016) introduced a global MPI capable of addressing adverse factors in
DEA to measure the productivity and efficiency decomposition of
different manufacturing industries in China across multiple years. Wang
et al. (2024) constructed a MPI index based on an adjusted epsilon
measure to assess the total factor productivity (TFP) of heavily polluting
listed enterprises in China. Additionally, Song et al. (2018) proposed an
EP evaluation model utilizing the Ray relaxation metric, analyzing the
EP and energy consumption of various regions in China in conjunction
with the TFP.

To address the limitations of the traditional MPI method, some
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scholars have proposed revisions. For example, Du et al. (2018) devel-
oped an improved MPI based on a new directional distance function
(DDF) to resolve the infeasibility issues associated with the traditional
MPI. This method evaluates the TFP of China from a macro perspective
and assesses the EP of Chinese automobile manufacturers from a micro
perspective. Aparicio et al. (2021) built an efficiency measurement
model based on the DDF that accommodates non-proportional changes
in input and output combinations with variable returns to scale(VRS),
applying this model to measure the productivity of various types of
schools in EU countries. Bansal et al. (2022) introduced dynamic MPI
and dynamic sequential MPI indices to assess productivity changes in
dynamic network production structures, applying these methods to
evaluate productivity across different banks in India. Yu et al. (2023)
established a MPI index for a two-stage dynamic production system,
verifying dynamic changes in productivity within the airline sector and
its various stages. Du et al. (2023) proposed a new MPI method that
combines meta-frontier DEA with a cost minimization function to
evaluate TFP and efficiency decomposition in different urban water
supply industries.

This study employs the global non-radial Malmquist-Luenberger
productivity index (GNML) to measure TFP, technical efficiency (TE),
and scale efficiency (SE) of 15 power enterprises in eastern China from
2016 to 2020. It provides a reference for power industry managers to
analyze resource utilization efficiency in the production process, inform
policy decisions, and promote the industry’s green transformation.
Additionally, this methodology allows us to explore the mechanisms
affecting productivity in power enterprises from a micro perspective,
assisting managers in making more informed management decisions.

3. Methodology

3.1. DEA with undesired outputs

The Chinese Institute of Ecological and Environmental Sciences
(CIEES) provided us with input and output data for 15 power enterprises
between 2016 and 2020. For each power enterprise, three production
inputs, namely installed capacity (C), unit running time (H) and stan-
dard coal consumption (E), were converted into a single desired out-
put—power generation capacity (Y)—and one undesired output—CE.
Undesired outputs differ from desired outputs in that the DMUs (in this
case, the power enterprises) does not want to increase these outputs, but
rather reduce them. While the quality of coal used in the different power
enterprise varies, for the calculation of the EP of the power enterprise
(see Section 4.1), a standardised coal quality was applied.

Most DEA models focus on evaluating the EP of a DMU during a
single time period. However, when assessing multi-period data, it is
essential that the EP of different power enterprises remains comparable
across the various time periods. This can be achieved by employing a
global DEA technique (Oh, 2010) where all observations belong to the
same production possibility set (PPS). Moreover, when modelling a
realistic production process for power enterprises, where the DMU0
produces both desired and undesired outputs, the environmental pro-
duction technology can be defined as follows:

PPS =

{

(C,H,E,Y,CO2) :
∑T

t=1

∑n

j=1
λjtCjt ≤ Co,

∑T

t=1

∑n

j=1
λjtHjt ≤ Ho,

∑T

t=1

∑n

j=1
λjtEjt ≤ Eo,

∑T

t=1

∑n

j=1
Yjλjt ≥ Yo,

∑T

t=1

∑n

j=1
λjtCO2jt = CO2o,

∑T

t=1

∑n

j=1
λjt = 1, λjt ≥ 0, j = 1, 2,⋯, n, t = 1,2,⋯,T

}

(1)

In the above PPS (P1), both the null-jointness assumption (A1) and

the weak disposability assumption (A2) of the desired and undesired
outputs are valid. The null-jointness assumption implies that producing
desired outputs inevitably results in the production of undesired out-
puts, while the weak disposability assumption indicates that a decrease
in undesired outputs is inevitably accompanied by a decrease in desired
outputs. The two assumptions are as follows:

(A1) Null-jointness assumption:

(X,Y,0) ∈ PPS⇒Y = 0s.

(A2) Weak disposability assumption:

(X,Y,B) ∈ PPS⇒(X, λY, λB) ∈ PPS, ∀λ ∈ [0,1].

where X,Yand B represent inputs, and the desired and undesired out-
puts, respectively, while subscript s is the dimension of the desired
outputs. The uniform abatement factor employed in the PPS (P1), which
represents the heterogeneous power generation and pollution treatment
capacities of the power enterprises, fails to accurately capture the het-
erogeneity in weak disposability between the desired and undesired
outputs of the different power enterprises. Following Kuosmanen
(2005), we revised the environmental production technology under the
assumption that the VRS characterises the non-uniform abatement fac-
tors across the power enterprises and ensures the comparison of EP
across multiple periods. The specific formula used is as follows:

PPS =

{

(C,H,E,Y,CO2) :
∑T

t=1

∑n

j=1

(
λjt + μjt

)
Cjt ≤ Co,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Hjt ≤ Ho,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Ejt ≤ Eo,

∑T

t=1

∑n

j=1
Yjλjt ≥ Yo,

∑T

t=1

∑n

j=1
λjtCO2jt = CO2o,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
= 1, λjt , μjt ≥ 0, j = 1, 2,⋯, n, t = 1, 2,⋯,T

}

(2)

where λjt and μjt are weighting variables used for linearisation and
construction of the convex combination of the evaluated DMU0. How-
ever, PPS (P2) may violate the Pareto-Koopmans environmental domi-
nance. Here, the Pareto-Koopmans environmental dominance is defined
as follows: for a given (Xo,Yo,Bo) ∈ PPS, if there does not exist another
solution (X̂o , Ŷo , B̂o) ∈ PPSsuch that X̂o

<
=
Xo, Ŷo

>
=
Yo, B̂o

<
=
Bo, then

(Xo,Yo,Bo) is considered a Pareto-Koopmans environmentally dominant
solution of the PPS. Here, “<

=
” denotes component-wise inequality.

It is worth noting that the Pareto-Koopmans environmental domi-
nance is similar to the Pareto-Koopmans efficiency (Cooper et al., 2007,
pp. 45–46). Therefore, in the undesirable output constraints in the PPS
(P2), the “= ” constraints were replaced with “≤” constraints to refor-
mulate the PPS (P3). This implies that not only does the modified PPS
satisfy the Pareto-Koopmans environmental dominance but also that the
undesirable outputs can be improved independently of desirable outputs
(Ji et al., 2021; Leleu, 2013; Sun et al., 2017). The modified
Pareto-Koopmans environmental production technology is as follows:

PPS =

{

(C,H,E,Y,CO2) :
∑T

t=1

∑n

j=1

(
λjt + μjt

)
Cjt ≤ Co,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Hjt ≤ Ho,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Ejt ≤ Eo,

∑T

t=1

∑n

j=1
Yjλjt ≥ Yo,

∑T

t=1

∑n

j=1
λjtCO2jt ≤ CO2o,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
= 1, λjt , μjt ≥ 0, j = 1, 2,⋯, n, t = 1, 2,⋯,T

}

(3)

Y. Pan et al. European Journal of Operational Research xxx (xxxx) xxx 

3 



Following Chambers et al. (1996), to calculate the environmental
inefficiency of TPPo, a DDF model was constructed based on the
Pareto-Koopmans environmental production technology under the VRS
assumption as follows:

D
⇀(

x0, y0, b0, g
)

= max β

s.t.
∑T

t=1

∑n

j=1

(
λjt + μjt

)
Cjt ≤ Co + βgC,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Hjt ≤ Ho + βgH,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
Ejt ≤ Eo + βgE,

∑T

t=1

∑n

j=1
λjtYjt ≥ Yo + βgY ,

∑T

t=1

∑n

j=1
λjtCO2jt ≤ CO2o + βgCO2,

∑T

t=1

∑n

j=1

(
λjt + μjt

)
= 1,

β ≥ 0, λjt , μjt ≥ 0, j = 1, 2,⋯, n, t = 1, 2,⋯,T

(4)

where g =
(
gC, gH, gE, gY , gCO2

)
denotes the direction vectors for reducing

inputs, expanding desirable outputs and expanding undesirable outputs,
and β represents the supremum of the inputs contraction proportion,
desirable outputs expansion proportion and undesirable outputs
expansion proportion. In this study, we set

(
gC, gH, gE, gY ,

gCO2
)
= ( − C, − H, − E,Y, − CO2) according to Färe and Grosskopf

(2004). When βo = 0, TPPo is the Pareto-Koopmans environmental
efficient in the direction g, whereas if βo > 0, TPPo is the
Pareto-Koopmans environmental inefficient.

Notwithstanding this, the radial DDF described above assumes that
the inputs, desired outputs and undesired outputs scale in the same
proportion. This assumption could result in biased efficiency estimates
when slack items are non-zero. The NDDF model relaxes this assump-
tion, allowing for non-uniform proportions of input reduction, expan-
sion of desired outputs and reduction in undesired outputs (Lin & Guan,
2023; Zhang et al., 2020; Zhou et al., 2012). This relaxation addresses
the issue of slack bias and the unrealistic assumption that inputs, un-
desirable and desirable outputs must change in the same proportion,
thus improving the accuracy of the efficiency assessment. Therefore,
based on the Pareto-Koopmans environmental production technology,
we define the NDDF model as follows:

D
⇀(

x0,y0,b0,g
)
= maxwCβC+wHβH+wEβE+wYβY+wCO2βCO2

s.t.
∑T

t=1

∑n

j=1

(
λjt+μjt

)
Cjt ≤Co − βCgC,

∑T

t=1

∑n

j=1

(
λjt+μjt

)
Hjt ≤Ho − βHgH,

∑T

t=1

∑n

j=1

(
λjt+μjt

)
Ejt ≤Eo − βEgE,

∑T

t=1

∑n

j=1
λjtYjt ≥Yo+βYgY ,

∑T

t=1

∑n

j=1
λjtCO2jt ≤CO2o − βCO2gCO2,

∑T

t=1

∑n

j=1

(
λjt+μjt

)
=1,

βC,βH, βE,βY ,βCO2≥0, λjt ,μjt ≥0,j=1,2,⋯,n,t=1,2,⋯,T
(5)

where (wC,wH,wE,wY ,wCO2) represents the normalised weight parameter

of each input, desired output and undesired output. Here, the normal-

ised weight parameter is set at (wC,wH,wE,wY ,wCO2)=
(
1
9,

1
9,

1
9,

1
3,

1
3

)

in this

study with reference to Barros et al. (2012) and Zhou et al. (2012). By

solving the Eq. (2), the optimal solution β∗ =

(
βC,jt

∗, βH,jt
∗, βE,jt

∗, βY,jt
∗, βCO2,jt

∗
)T

can be obtained. With reference to

Zhou et al. (2012), the unified Pareto-Koopmans environmental effi-
ciency index (UEEI) of the TPPs can be defined as follows:

UEEIjt =
1 − 1

4

(
βC,jt

∗ + βH,jt
∗ + βE,jt

∗ + βCO2,jt
∗
)

1+ βY,jt
∗ , j = 1,2,⋯, n, t

= 1,2,⋯,T (6)

The larger the UEEI score (UEEI∈ (0, 1]), the higher the unified
Pareto-Koopmans environmental efficiency.

Theorem 1. UPEE is the Pareto-Koopmans environmental measure.

Proof. If UPEE(Xo,Yo,Bo)=1. Assume that there exists another solution
(X̂o , Ŷo , B̂o) ∈ PPS(P3), where (X̂o , Ŷo , B̂o) ∕=(Xo,Yo,Bo), with
X̂o

<
=
Xo, Ŷo

>
=
Yo and B̂o

<
=
Bo. According to the Eq. (5) and the Eq. (6), we

can deduce that UPEE(Xo,Yo,Bo)<1. Therefore, the original assumption
is not valid. This implies that for a given solution (Xo,Yo,Bo) ∈ PPS(P3)
where UPEE(Xo,Yo,Bo)=1, there exists no other solution (X̂o , Ŷo , B̂o) ∈

PPS(3) such that (X̂o , Ŷo , B̂o) ∕=(Xo,Yo,Bo), X̂o
<
=
Xo, Ŷo

>
=
Yo and B̂o

<
=
Bo. If

there exists no other solution (X̂o , Ŷo , B̂o) ∈ PPS(P3), where (X̂o , Ŷo ,

B̂o) ∕=(Xo,Yo,Bo), with X̂o
<
=
Xo, Ŷo

>
=
Yo and B̂o

<
=
Bo , then according to the

Eq. (5) and the Eq. (6), we can deduce that UPEE(Xo,Yo,Bo)= 1. In
summary, we conclude that UPEE(Xo,Yo,Bo)=1 if it is non-dominated in
the PPS(P3), that is UPPE(Xo,Yo,Bo) is the Pareto-Koopmans environ-
mentally efficient.

3.2. Global non-radial Malmquist-Luenberger productivity index(GNMI)

According to Emrouznejad and Yang (2016), we propose a GNML
index of UEEI based on the contemporaneous, and global production
technologies as follows:

GNMLG
v
(
Xt ,Yt ,Bt ,Xt+1,Yt+1,Bt+1) =

1+ DG
v (Xt ,Yt ,Bt)

1+ DG
v
(
Xt+1,Yt+1,Bt+1

)

×
SEt+1

(
Xt+1,Yt+1,Bt+1

)

SEt(Xt ,Yt ,Bt)

=
1+ Dt

v(Xt ,Yt ,Bt)

1+ Dt+1
v

(
Xt+1,Yt+1,Bt+1

)

×

(
1+ DG

v (Xt ,Yt ,Bt)
)/(

1+ Dt
v(Xt ,Yt ,Bt)

)

(
1+ DG

v
(
Xt+1,Yt+1,Bt+1

))/(
1+ Dt+1

v
(
Xt+1,Yt+1,Bt+1

))

×
SEt+1

(
Xt+1,Yt+1,Bt+1

)

SEt(Xt ,Yt ,Bt)

=
PTEt+1

PTEt ×
BPGt,t+1

t+1

BPGt,t+1
t

×
SEt+1

(
Xt+1,Yt+1,Bt+1

)

SEt(Xt ,Yt ,Bt)

= PECt,t+1 × BPCt,t+1 × SCHt,t+1

where subscript ‘v’ denotes VRS assumption on technology, subscript ‘c’
denotes CRS assumption on technology and superscript ‘G’ denotes the
global technology. Where contemporaneous benchmark technology is
calculated as Dt

v(Xt ,Yt ,Bt), Dt+1
v

(
Xt+1,Yt+1,Bt+1) and abbreviated PTEt,

PTEt+1. PTEt = 1
1+Dt

v(Xt ,Yt ,Bt)
, and PECt,t+1 = PTEt+1

PTEt denotes the pure tech-
nical efficiency (PTE) in period t and the pure efficiency change (PEC) in
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period t to t + 1. PEC measures the pure efficiency change between the
time t and t + 1. When PEC > (<)1, it means the DMU in period t + 1
catches up (lags behind) relatively to the contemporaneous benchmark
technology frontier. BPCt,t+1

t = 1
(1+DG

v (Xt ,Yt ,Bt))/(1+Dt
v(Xt ,Yt ,Bt))

denotes the

best practice gap ratio between the contemporaneous technology fron-

tier and global technology frontier. Thus BPCt,t+1 =
BPGt,t+1

t+1

BPGt,t+1
t

denotes the

best practice gap change, which measures technical change between two
time period t and t + 1. When a BPC >(<)1 implies that the contem-
poraneous technology frontier is moving closer or faraway(>(<)1) from
the global technology frontier. Variable SEt means the scale efficiency on
global benchmark in period t and SEt(Xt ,Yt , Bt) =

(
1 + DG

v (Xt ,Yt , Bt)
)

/
(
1 + DG

c (Xt , Yt , Bt)
)
. Variable SCHt,t+1 =

SEt+1(Xt+1 ,Yt+1 ,Bt+1)
SEt(Xt ,Yt ,Bt)

denotes the
scale efficiency changes (SCH) .

4. Variable selection and data description

4.1. Variable selection

Among the existing studies on performance evaluation in the energy
industry and power enterprises, several scholars have conducted in-
depth discussions on constructing indicator systems for EP evaluation
(Zha et al., 2016; Wang et al., 2018; Hadi-Vencheh et al., 2024; Pan
et al., 2024), which provide valuable references for this research.

Through a review of the literature and interviews with staff from
various power enterprises, we selected installed capacity(C), Unit
Running Time (H), and coal consumption(E) as input indicators; Power
generation capacity(Y) as the expected output indicator; and CO2
emissions(CEs) as the indicator for undesirable output. See Table 1 for
the meanings of indicators.

4.2. Data description

This study focuses on the EP of various power enterprises. To facil-
itate this analysis, we obtained production and operational data for all
major emitters within the jurisdiction of CIEES for the period from 2016
to 2020. The key emission power enterprises included in our study are
those with annual standard CEs exceeding 10,000 tons (i.e., noting that
different power plants utilize varying coal qualities, which are converted to
standard coal for calculations) or CEs exceeding 26,000 tons. This crite-
rion not only meets our research needs but also ensures strong repre-
sentativeness. The study period spans five years; however, due to
incomplete CEs records for some power enterprises in 2016 and 2017,
we excluded this data and finalized our sample to 15 power enterprises.
Descriptive statistics for the relevant indicators are presented in Table 2.

5. Results

In this section, we calculate the EP for 15 DMUs(i.e., power enter-
prises), from 2016 to 2020 based on themodel presented in Section 3. We
compare the heterogeneity of the EP values among different DMUs and
analyze the evolution of overall efficiency in the power industry across

the years. Additionally, we explore the mechanisms influencing the ef-
ficiency values of power enterprises.

5.1. EP results

Table 3 presents the EP results for 15 DMUs from 2016 to 2020. The
overall EP of these DMUs during this five-year period remains low, at
only 0.7757, indicating that none have reached an effective state. The
highest EP was recorded by DMUaq, with a value of 0.9618, while
DMUciz exhibited the lowest performance at only 0.6572. Column (6)
displays the average EP for the 15 DMUs over the past five years,
revealing that 10 DMUs (66.7 %) fell below the overall average, high-
lighting significant room for improvement in the EP of the power in-
dustry in eastern China.

Further analysis shows that the overall EP of the 15 DMUs fluctuated
between 2016 and 2020, with values of 0.7903, 0.7637, 0.7832, 0.7502,
and 0.7910, respectively, indicating clear cyclical variations (i.e., a
decline followed by a rise, then another decline followed by a rise). Notably,
only DMUwh displayed a consistent upward trend in EP throughout this
period, while the efficiency values of the remaining DMUs exhibited
fluctuations. This instability suggests that the development of the power

Table 1
Definition of different indicators.

Inputs Indicator

C Installed capacity of all units in a power enterprise, measured in MW.
H Cumulative working time of all units in a power enterprise in one year,

measured in hours.
E Standard coal consumed by power enterprises in one year, measured in tons.
Desirable output
Y Electricity produced by a power enterprise in one year, measured in MWh.
Undesirable output
CEs Carbon dioxide emitted by the production of power enterprises in one year,

measured in tons.

Table 2
Descriptive statistics.

Year Variable Obs Mean Min Max Std. dev.

2016 C 15 655 300 1000 185
H 15 7176 4679 8068 926
E 15 1,039,642 274,370 1,657,932 304,085
Y 15 3,508,483 861,972 6,158,256 1,148,656
CEs 15 3,425,097 784,226 8,989,990 1,824,485

2017 C 15 655 300 1000 185
H 15 6123 2386 8429 1552
E 15 874,677 151,875 1,409,701 340,864
Y 15 2,838,627 467,658 5,121,302 1,288,647
CEs 15 2,453,408 442,853 4,231,000 975,654

2018 C 15 655 300 1000 185
H 15 7106 6103 8494 650
E 15 948,356 476,812 1,534,678 262,410
Y 15 3,331,557 1,513,700 6,118,286 1,139,051
CEs 15 2,987,195 1,352,663 5,324,916 971,524

2019 C 15 655 300 1000 185
H 15 7251 5787 12,836 1666
E 15 945,001 473,438 1,650,646 288,433
Y 15 3,257,651 1,511,239 5,855,435 1,099,566
CEs 15 3,195,587 1,707,448 5,953,109 1,086,180

2020 C 15 655 300 1000 185
H 15 6734 2816 12,265 2135
E 15 848,472 338,098 1,329,783 263,077
Y 15 2,963,762 1,058,717 4,992,040 1,016,156
CEs 15 2,353,416 947,312 3,666,054 724,691

Table 3
EP results from 2016 to 2020.

2016 2017 2018 2019 2020 Ave
(1) (2) (3) (4) (5) (6)

DMUhf 0.7932 0.7319 0.7206 0.7023 0.7737 0.7443
DMUhb 0.6575 0.6715 0.7534 0.7492 0.8172 0.7298
DMUbz 0.9328 0.9349 0.8711 0.8642 0.6108 0.8428
DMUsz 0.7322 0.7175 0.8176 0.7603 0.7588 0.7573
DMUbb 1 1 0.8237 0.5926 0.7401 0.8313
DMUfy 0.7089 0.7871 0.7996 0.7313 0.7121 0.7478
DMUhn 0.8609 0.6836 0.6574 0.7958 0.6351 0.7266
DMUcuz 0.9081 1 0.7282 0.6796 0.8849 0.8402
DMUla 0.8080 0.8162 0.7936 0.8309 0.9089 0.8315
DMUmas 0.7628 0.7553 0.7348 0.7194 0.7701 0.7485
DMUwh 0.6393 0.7050 0.7920 0.8024 0.8264 0.7530
DMUxc 0.7234 0.7361 0.7769 0.7572 0.7995 0.7586
DMUtl 0.5717 0.5127 0.8032 0.7473 0.8900 0.7050
DMUciz 0.7559 0.4804 0.6759 0.6357 0.7380 0.6572
DMUaq 1 0.9239 1 0.8851 1 0.9618
Ave 0.7903 0.7637 0.7832 0.7502 0.7910 0.7757
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industry in the region remains uncertain, and relevant management
entities should consider implementing unified standards to regulate the
operations of power enterprises.

Additionally, the overall EP of the 15 DMUs decreased by 2.66 %
between 2016 and 2017. Analysis revealed that 7 DMUs (46.7 %)
experienced a decline in performance, with DMUhn and DMUciz
showing decreases exceeding 15 %. Conversely, between 2017 and
2018, the overall EP increased by 1.95 %, with 7 DMUs (46.7 %)
demonstrating improvements; notably, DMUtl saw an increase of nearly
30 %. However, between 2018 and 2019, EP declined for 12 DMUs (80
%), except for DMUhn, DMUla, and DMUwh, with DMUbb experiencing a
decline of over 20 %.

Finally, the overall EP of the 15 DMUs increased by 4.08 % between
2019 and 2020, representing the largest improvement in the past five
years. Further analysis indicated that 11 DMUs (73.3 %) showed upward
trends, with 5 DMUs (33.3 %) increasing by >10 %. Nonetheless, some
DMUs, such as DMUbz, experienced significant declines. This aligns with
previous findings, underscoring the necessity for a unified management
policy to standardize production management within power enterprises.

5.2. Comparison between different DMUs

Fig. 1 presents the average EP results for different DMUs from 2016
to 2020. The overall EP of the power industry in eastern China during
this five-year period is 77.57 %, indicating a noticeable gap from an
effective state. Further analysis reveals that only one DMU (6.7 %) has
EP values between 60 % and 70 %, while 9 DMUs (60 %) fall within the
range of 70 % to 80 %. Additionally, 4 DMUs (26.7 %) have EP values
between 80 % and 90 %, and only one DMU (6.7 %) exceeds 90 %. The
fact that most power enterprises have performance ratings below 80 %
underscores the need for substantial improvements in the overall
development of the power industry.

In 2016, the DMUtl exhibited the lowest EP, with an efficiency value
of only 57.17 %. In contrast, DMUbb and DMUaq achieved the highest
efficiency values, both reaching an effective state (i.e., efficiency value of
1). As indicated in Table 3, the overall EP of the 15 DMUs was 79.03 %.
Furthermore, as shown in Fig. 2, 8 DMUs (53.3 %) fell below the annual
average performance, while only 2 DMUs (13.3%) attained an efficiency
value of 1.

In 2017, DMUciz exhibited the worst EP, with an efficiency value of
only 48.04 %, representing a 27.55 % decrease compared to 2016. This
decline may be attributed to factors such as endogenous production
decision-making or technological development issues. Conversely,

DMUbb and DMUcuz demonstrated the highest EP, both achieving an
effective state (i.e., efficiency value of 1). Notably, DMUbb hasmaintained
this effective status for two consecutive years, suggesting that its inter-
nal factors, such as management decision-making and technical capa-
bilities, are relatively sound. According to Table 3, the overall EP of the
15 DMUs was 76.37 %. Furthermore, as indicated in Fig. 3, 9 DMUs (60
%) fell below the annual average performance, with only 2 DMUs (13.3
%) achieving an efficiency value of 1.

In 2018, DMUhn exhibited the lowest EP, with an efficiency value of
only 65.74 %. This represents a significant improvement of 17.7 %
compared to the lowest performance recorded in 2017, indicating an
overall enhancement in the EP of the power industry. However, some
individual DMUs experienced slight declines. DMUaq achieved the
highest EP, reaching an effective state (i.e., efficiency value of 1),
although the number of DMUs attaining this effective status decreased
compared to 2016 and 2017. According to Table 3, the overall EP of the
15 DMUs was 78.32 %. Furthermore, as shown in Fig. 3, 11 DMUs (73.3
%) fell below the annual average performance, with only one DMU (6.7
%) achieving an efficiency value of 1.

In 2019, DMUbb recorded the lowest EP at only 59.26 %, a decline of
23.11 % compared to the same period in 2018. This fluctuation un-
derscores the significant variability in EP among power enterprises over
time, highlighting the need for improved production management. The
highest EP was achieved by DMUaq, with an efficiency value of 88.51%,
which is 11.49 % lower than the best performance of the previous three
years (which was 1). Notably, no enterprise reached an effective state of
EP, indicating a significant decline in the overall performance of the
power industry that year. According to Table 3, the overall EP of the 15
DMUs was 75.02 %, marking the worst performance in the past five
years. Additionally, as shown in Fig. 3, 8 DMUs (53.3 %) had EP below
the annual average, with none achieving effective performance.

In 2020, DMUbz recorded the lowest EP at 61.08 %, a decrease of
26.03 % compared to 2019. The highest EP was again observed in
DMUaq, which reached an effective state. As indicated in Table 3, the
overall EP of the 15 DMUs improved to 79.10 %, representing the best
performance of the power industry over the past five years, (Fig. 6).

Comparative analysis of Figs. 2-5 reveals significant heterogeneity in
the EP of different power enterprises. For instance, DMUaq consistently
achieved an overall EP level exceeding 96 % over the past five years,
reaching an effective state in three of those years. Conversely, while
DMUwh’s overall performance remains modest, it has shown remarkable
growth, increasing by over 18.71 % annually from 63.93 % in 2016 to
82.64 % in 2020. In contrast, other DMUs have experienced serious

Fig. 1. EP of different DMUs from 2016 to 2020.
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declines; DMUbb’s performance dropped from an effective state of 1 in
2016 to 74.01 % in 2020, a decrease of >25 %. Similarly, DMUciz saw a
reduction of 27.55 % in its performance between 2016 and 2017. These
findings highlight the overall low development level of EP in the power

industry and indicate that individual enterprises have considerable
room for improvement regarding factors such as production decision-
making and technological advancement.

Fig. 2. EP of different DMUs in 2016.

Fig. 3. EP of different DMUs in 2017.

Fig. 4. EP of different DMUs in 2018.
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5.3. GNMI analysis

Based on the analysis in Section 5.1, we subdivide the research
period into distinct stages according to the year and further investigate
the factors influencing the production efficiency of the power industry in
eastern China over the past five years. The results are illustrated in
Fig. 7. Overall, the GNMI for eastern China’s power industry increased

from 0.9999 to 1.0571, indicating a continuous improvement in overall
productivity and a trend toward high-quality development within the
industry. Additionally, the BPC rose from 1.0008 to 1.0492, signifying
substantial efforts to control undesirable outputs, such as CEs, with an
accelerating trend in progress. Furthermore, both TE and SE of the
power industry improved by approximately 5 %.

Examining specific stages, from 2016 to 2018, the overall GNMI of

Fig. 5. EP of different DMUs in 2019.

Fig. 6. EP of different DMUs in 2020.

Fig. 7. Power industry GNMI results from 2016 to 2020.
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the power industry in eastern China increased slightly from 0.9999 to
1.0028, accompanied by improvements in TE, best practice gap, and SE.
However, from 2017 to 2019, the GNMI, TE, BPC, and SE all declined,
with GNMI falling from 1.0028 to 0.9729 (i.e., decrease of 2.99 %), TEC
from 1.0061 to 0.9761 (i.e., decrease of 3%), BPC shifting from 1.0052 to
0.9699 (i.e., decrease of 3.53 %), and SE decreasing from 1.0101 to
0.9680 (i.e., decrease of 4.21 %). This suggests a significant decline in
BPC, TEC, and SEC during this period, alongside a notable increase in
CEs.

Between 2018 and 2020, the GNMI rose from 0.9729 to 1.0571,
reflecting a substantial increase in the overall productivity of the power
industry. Our analysis indicates that TE and SE increased by 7.89 % and
8.99 %, respectively, contributing to the overall productivity enhance-
ment. Additionally, the BPC improved from 0.9699 to 1.0492 (i.e., in-
crease of 7.93 %), further demonstrating the industry’s intensified efforts
to manage CEs. In conclusion, we find that TE and SE significantly
impact the productivity of the power industry.

5.4. Comparison between different DMUs

Building on the previous analysis, we further examine the produc-
tivity changes across different DMUs over the past five years. Notably,
73.3 % of DMUs experienced productivity improvements, indicating
overall progress in the power industry’s development. Among these,
DMUwh exhibited the largest increase in the GNMI at 5.16 %.
Conversely, 26.7 % of DMUs saw declines in productivity, with DMUbz
recording the most significant drop at 3.78 %. Among the 4 DMUs with
decreased productivity, two experienced simultaneous declines in both
PEC and SEC while one DMU showed a decline in PEC and another in
SCH. This suggests that both TEC and, SEC significantly impact the
productivity of the power industry.

Additionally, within the 15 DMUs analyzed, PEC grew for 10 DMUs
(66.7 %), with DMUwh showing the largest increase at 5.78 %. Our
analysis further revealed that the GNMI improved for 9 of the 10 DMUs
with PEC growth, reinforcing our earlier findings that PEC plays a
crucial role in enhancing productivity. Thus, it is advisable for regula-
tors and industry stakeholders to invest more in technological ad-
vancements to boost EP.

Moreover, 9 DMUs (60 %) experienced growth in BPC, although the
rate of increase was slow, underscoring the need for sustained efforts to
manage CE within the power sector. Additionally, SEC increased in 5
DMUs (33.3 %), with productivity rising in four of them, highlighting
the importance of SEC for achieving high-quality development in the
industry. Enterprise managers should make informed production de-
cisions and engage in reasonable investment practices to avoid in-
efficiencies stemming from resource wastage, (Table 4).

6. Conclusion

This paper utilizes an improved NDDF model and the GNMI to
analyze the EP of 15 power enterprises in eastern China from 2016 to
2020, as well as the underlying mechanisms influencing their impact.
The findings are as follows: (1) The overall EP of the power industry in
eastern China remains low, with approximately 66.7 % of the companies
underperforming relative to the industry average; (2) The development
of EP within the sector is unstable, characterized by significant fluctu-
ations among certain enterprises; thus, a unified standard is necessary to
regulate EP across the industry; (3) Although there has been an
improvement in the overall EP of the power sector, the growth rate is
sluggish, necessitating ongoing efforts to mitigate CEs; (4) TE and SE
have a substantial impact on the productivity of the power industry.

Furthermore, based on these conclusions, we explore potential cau-
ses affecting the EP of China’s power industry and offer relevant policy
recommendations. This study focuses on specific power enterprises in
eastern China. Future research could investigate the EP of power com-
panies in various countries or regions to conduct a heterogeneity anal-
ysis. Additionally, while the power sector represents a significant
portion of the energy market, it encompasses numerous components,
warranting further examination of the EP across different energy sectors
to provide valuable insights for promoting green and high-quality
development in the energy field.
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