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Abstract: Several microtechnology devices quantify the external load of team sports using Global
Positioning Systems sampling at 5, 10, or 15 Hz. However, for short, explosive actions, such as
collisions, these sample rates may be limiting. It is known that very high-frequency sampling is
capable of capturing changes in actions over a short period of time. Therefore, the aim of this study
was to compare the mean acceleration and entropy values obtained from 100 Hz and 1000 Hz tri-
axial accelerometers in tackling actions performed by rugby players. A total of 11 elite adolescent
male rugby league players (mean + SD; age: 18.5 £ 0.5 years; height: 179.5 & 5.0 cm; body mass:
88.3 & 13.0 kg) participate in this study. Participants performed tackles (1 = 200), which were recorded
using two triaxial accelerometers sampling at 100 Hz and 1000 Hz, respectively. The devices were
placed together inside the Lycra vests on the players’ backs. The mean acceleration, sample entropy
(SampEn), and approximate entropy (ApEn) were analyzed. In mean acceleration, the 1000 Hz
accelerometer obtained greater values (p < 0.05). However, SampEn and ApEn were greater with
the 100 Hz accelerometer (p < 0.05). A large relationship was observed between the two devices in
all the parameters analyzed (R? > 0.5; p < 0.0001). Sampling frequency can affect the quality of the
data collected, and a higher sampling frequency potentially allows for the collection of more accurate
motion data. A frequency of 1000 Hz may be suitable for recording short and explosive actions.
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1. Introduction

The use of microtechnology devices to quantify the external load in team sports has
increased exponentially over the last decade [1-5]. However, most of the research about
external load has been performed using Global Positioning System (GPS)-derived variables
(e.g., distance, high-speed running, accelerations, and decelerations) [6,7]. Most of these
devices sample at 5, 10, or 15 Hz, and all of these frequencies have been validated for
measuring the movement demands of team sport [8-11]. Technological advances allow
athletes performing indoor to be monitored using a Local Positioning System (LPS), which
has an improved validity and reliability compared to GPS and can sample up to 20 Hz [12].
However, for short actions like collisions in sports such as rugby union, rugby league, or
American Football, these sampling frequencies could be a limiting. It has been reported that
GPS devices at 1 Hz may be unable to record movements that take <1 s [11]. The literature
also reports that 10 Hz devices are able to measure the smallest change in acceleration
and deceleration, while the 5 Hz units may not [8]. Furthermore, it appears that a higher
sampling rate improves the reliability of GPS measurements [13].

Microtechnological devices are multicomponent and typically contain a GPS, ac-
celerometer, gyroscope, and barometer [14]. Accelerometers may provide additional in-
formation about human movement [6,15-17]. Usually these accelerometers sample at a
frequency of 100 Hz [6] and some even at 1000 Hz [18]. The physical demands of rugby
league are characterized by short-duration, high-intensity intermittent drills with frequent
physical collisions between players, known as tackles [19-21]. Understanding the physical
demands of a tackle in real match situations is necessary for the design and development
of training drills [1,5,22]. Therefore, there is a requirement to measure short and explosive
actions like collisions [22]. Variability of athletes during the performance of a movement,
such as a collision, must be investigated as a key element, to identify the amount of pertur-
bation in a specific action [23,24]. Therefore, human movement variability may provide an
additional tool for the quantification of collision demands in team sport.

The analysis of human movement has evolved to assess the variability of a measure,
targeting the detection of changes in fluctuations and spatiotemporal characteristics of
outcomes [25,26]. Within the past 20 years, entropy analysis has become popular as a
measure of system complexity and used to describe changes in postural control [27] and
to assess running [28] and tactical behavior in soccer [29]. It has also been validated for
detecting changes in movement variability during resistance training in elite rugby union
and soccer [30-32]. In these previous studies, the accelerometer sampling frequency was
1000 Hz, and entropy was calculated via the summation of vectors of total acceleration
(AcelT) in three planes: mediolateral (x), anteroposterior (y), and vertical (z) components
of the acceleration signal. Two of the most widely used and successful entropy estimators
are approximate entropy (ApEn) [33] and sample entropy (SampEn) [34]. ApEn quantifies
the similarity probability of patterns of lengths m and m + 1. SampEn is a similar statistic,
measuring the probability of subsequences being close at two lengths, m and m + 1.
However, SampEn does not include self-comparisons, though it exhibits greater consistency
than ApEn [35].

Previous studies (analyzing actions that ranged in duration from 5 s to 10 min) have
reported decreases in SampEn as the sampling frequency increased during walking [36] or
during an isometric contraction [37]. These authors recommended sampling frequencies
between 100 and 250 Hz, similar to those also reported by Marmelat et al. [38], who
concluded that the use of sampling frequencies of 120 Hz and 240 Hz provides similar
results, but that the use of 60 Hz may alter Detrended Fluctuation Analysis (DFA) values in
gait kinematics.

The authors of a previous study found that movement variability progressively de-
creases with cumulative tackle events, particularly among backs and in defensive roles.
Entropy measures can be used by practitioners as an alternative tool to analyze the tem-
poral structure of variability in tackle actions and to quantify the load of these actions
by position [24]. Given the characteristics of the tackle, we believe that to analyze the
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variability of movement in this short, explosive action, an accelerometer sampling at a
frequency of 100 Hz or above is necessary. Therefore, the aim of this study was to compare
mean acceleration and entropy values obtained from 100 Hz and 1000 Hz like accelerometer
units in tackle actions performed by young professional rugby league players.

2. Materials and Methods
2.1. Participants

Eleven elite adolescent male rugby league players participate in this study (mean + SD,
age; 18.5 £ 0.5 years, height; 179.5 &+ 5.0 cm, body mass; 88.3 &+ 13.0 kg; six backs and
five forwards). All participants were selected from a single professional rugby league
academy based in England. Prior to volunteering, the experimental protocol was explained
to all participants both verbally and in writing, with a written statement of consent signed.
The procedures complied with the Declaration of Helsinki (2013) and were approved by the
Leeds Beckett University Research Ethics Committee (21/20118/CEICEGC). To participate
in this study, the following criteria had to be met: (i) at least 5 years of rugby-playing
experience; and (ii) no injury or illness at the time of this study or 1 month prior.

2.2. Procedures

Participants performed a drill encompassing one-on-one tackles, divided into tackling
(i.e., tackling an opponent) and tackled (i.e., being tackled by an opponent while carrying
a ball) events. The players started in front of each other, and when the coach marked the
start, the players moved two meters in the opposite directions from each other and then
changed directions to execute the tackle at the central point (Figure 1). The players were
divided by positions (e.g., forwards or backs), so that they were always paired with a
player of their same position. These drills were structured in four blocks, and each block
consisted of six tackling and six tackled activities in a random order. The experimental
protocol began with a standardized warm-up. Participants were instructed and encouraged
to tackle with maximum effort. During tackling actions, participants alternated between
shoulders (i.e., three tackles using the dominant shoulder and three tackles using the non-
dominant shoulder) within each block. Ninety seconds of passive recovery was prescribed
between each block. Professional coaches directed the sessions to ensure session safety and
ecological validity.

Figure 1. One-on-one tackle drill.
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2.3. Equipment

Two different brands of microtechnological devices were used: First, an Optimeye S5
(Catapult Innovations, Melbourne, Australia) with a built-in triaxial accelerometer capable
of recording at a maximum of 100 Hz and measuring accelerations in gravitational forces (g)
in three planes (X, y, z) of movement (anteroposterior, vertical, and mediolateral). Second,
a WIMU device (RealtrackSystems, Almeria, Spain) with a built-in triaxial accelerometer
capable of recording at a maximum of 1000 Hz, as well as measuring accelerations in
gravitational forces (g) in the three planes of movement.

Participants wore two microtechnological inertial measurement units (IMUs), one with
an accelerometer with a sampling frequency of 100 Hz, and the other with an accelerometer
with a sampling frequency of 1000 Hz. The devices were placed together inside a Lycra vest
provided by the device manufacturer, selecting the most appropriate size for each athlete.
Proper sizing for each athlete reduces artifacts from fabric movement and overestimation
of peak acceleration [6,39]. The order of the devices within the vest was switched halfway
through the protocol.

2.4. Data Analysis

The raw acceleration signal was extracted from each device (Figures 2 and 3) and pro-
cessed using a summation of vectors (AcelT) in three axes, mediolateral (x), anteroposterior
(y), and vertical (z), calculated according to Moras et al. [30].

The (AcelT) signal was cut, separating each collision in each device, obtaining 200 sig-
nals for each device. Mean acceleration, approximate entropy (ApEn), and sample entropy
(SampEn) for each signal were calculated. Entropy was calculated according to Goldberger
et al. [40] and through dedicated functions programmed in MATLAB® (MatLab 2021b, The
MathWorks, Natick, MA, USA).
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Figure 2. Raw signals from a randomly selected tackle out of the 200 signals obtained. Signal from
both devices during a tackling action; black color: 1000 Hz device; red color: 100 Hz device. This
shows the signals of the same exercise recorded with both accelerometers, one superimposed over
the other.
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Figure 3. Enlarged figure of 2 movement peaks during the tackling action; black color: 1000 Hz
device; red color: 100 Hz device.

2.5. Statistical Analysis

A comparison between the two devices was conducted using Excel [41] to calculate
the mean bias, typical error of estimation (TEE), and Pearson’s correlation, all at a 90%
confidence interval. The standardized mean bias was interpreted as trivial (<0.19), small
(0.2-0.59), medium (0.6-1.19), or large (1.2-1.99) [42]. The standardization of the typical
error of estimation was interpreted as trivial (<0.1), small (0.1-0.29), moderate (0.3-0.59),
or large (>0.59) [43]. The magnitude of the correlation was interpreted as trivial (<0.1),
small (0.1-0.29), moderate (0.3-0.49), large (0.5-0.69), very large (0.7-0.89), or nearly perfect
(0.9-0.99) [44].

A paired-samples t-test was also conducted for each of the three analyzed variables
(mean acceleration, SampEn, and ApEn) using PASW Statistics 21 (SPSS, Inc., Chicago,
IL, USA). Linear regression analysis was performed using R (v4.1.2, R Foundation for
Statistical Computing, Vienna, Austria). The alpha was set as p < 0.05 for all analyses.

3. Results

Table 1 displays the mean values of acceleration, SampEn, and ApEn for the different
analyzed devices.

In terms of mean acceleration, the 1000 Hz accelerometer yielded significantly higher
results (p < 0.05). Meanwhile, both SampEn and ApEn entropies were higher with the
100 Hz accelerometer (p < 0.05). Moderate bias was observed for mean acceleration values
when comparing data obtained at 100 Hz against those obtained at 1000 Hz, along with a
large typical error of estimation and a very large correlation. In contrast, for entropy values,
there was a moderate bias and a large typical error of estimation for both SampEn and ApEn,
with a very large correlation for SampEn and a large one for ApEn.

In Figure 4, the regression line equations for mean acceleration, SampEn, and ApEn
between the two microdevices analyzed are displayed. For all examined parameters, R?
values greater than 0.5 were observed, with a p-value of < 0.0001, indicating large to very
large significant correlations. Specifically, Figure 4A shows R? = 0.72, Figure 4B shows
R? = 0.50, and Figure 4C shows R? = 0.27.
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Table 1. Values of the mean acceleration, SampEn, and ApEn.

Parameter Accelerometer Accelerometer Bias SEE r

1000 Hz 100 Hz (90% CI) (90% CI) (90% CI)

0.85 0.62 0.85
Mean acceleration (g) 144 £0.10 1.00 £0.10* (0.78-0.92) (0.54-0.71) (0.82-0.88)
moderate large very large

6.42 1.00 0.71
SampEn (a.u.) 0.08 & 0.02 0.56 +0.13 * (5.93-7.00) (0.85-1.19) (0.64-0.76)
large large very large

2.91 1.65 0.52
ApEn (a.u.) 0.15 4+ 0.03 0.67 +0.09 * (2.69-3.17) (1.34-2.11) (0.43-0.60)
large large very large

SampEn: sample entropy; ApEn: approximate entropy; * p < 0.05 differences 1000 vs. 100; SEE: standard error of
estimation; : Pearson’s correlation; CI: confidence interval.

Mean acceleration
tsuden(198) = 22.79, p = 2.94€-57, Fogarson = 0.85, Clgss [0.81, 0.89), Npairs = 200
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SampEn
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Figure 4. Cont.
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Figure 4. (A). Correlations and linear regression equations for mean acceleration between the
two devices. CI: confidence interval. (B): Correlations and linear regression equations for SampEn
between the two devices. CI: confidence interval; SampEn: sample entropy. (C): Correlations
and linear regression equations for ApEn between the two devices. CI: confidence interval; ApEn:
approximate entropy.

4. Discussion

The aim of this study was to compare mean acceleration and entropy (SampEn
and ApEn) between two accelerometers with different sampling frequencies (100 Hz
vs. 1000 Hz) during tackling tasks performed by male adolescent rugby league players.
The present research found that for short and intense actions like tackles, the 1000 Hz
accelerometer yielded higher values in mean acceleration. However, SampEn and ApEn
were higher with the 100 Hz accelerometer. According to the data, at a sampling frequency
of 100 Hz, an acceleration signal may miss important information about mean acceleration,
especially in peaks, and may result in very high entropy values, influenced by the sampling
frequency in short and explosive actions like tackles. Despite this, the strong correlation
between devices indicates the possibility of understanding inter- and intra-subject behavior
in these exercises. This underscores the importance of not mixing data obtained at different
sampling frequencies.

In Figures 2 and 3, both signals may appear quite similar at first glance. However,
there are differences in both mean acceleration values and entropy values. To better
visualize these differences graphically, we represent the data points corresponding to all
measurements taken and zoom in to capture two of the three main peaks produced during
the movement (Figure 3). In this case, we can clearly see that the signal recorded at 100 Hz
is much more chaotic and irregular, which explains the differences observed in entropy
values, with higher values when recording at 100 Hz. Furthermore, in the zoomed-in
image, we can also observe that the 100 Hz recording does not allow for proper signal
reconstruction, especially affecting the recording of acceleration peaks at the moment of
impact in tackles.

Studies investigating the influence of the sampling frequency have analyzed various
frequencies, ranging from 25 Hz to 750 Hz. However, it is uncommon to use sampling
frequencies of 1000 Hz or similar values [37]. Raffalt et al. [36] have published a study in
which they compare entropy values obtained for the same exercise recorded simultaneously
using different sampling frequencies. In this case, the signal to which entropy calculation
was applied was a video signal recorded at 120, 240, and 480 Hz. More recently, Raffalt
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et al. [37] investigated the effect of different sampling frequencies (1000, 750, 500, 250,
100, 50, and 25 Hz) on SampEn calculated from torque data recorded during submaxi-
mal isometric contractions. The authors reported that SampEn significantly increased at
sampling frequencies below 100 Hz and remained unchanged above 250 Hz. Although
none of the previous studies were conducted with an accelerometer, the results are in line
with those reported in the present study, where higher sampling frequencies resulted in
lower entropy values and where differences exist between entropy values calculated from
different sampling frequencies. This may be due to the lower density of data points in
the time series per unit of time making entropy less predictable and consequently raising
entropy values. Therefore, for the tackle action, it is likely ideal to record at a frequency
between 250 and 1000 Hz.

When recording biological signals, it is essential to select an appropriate sampling
frequency [45,46]. According to Nyquist’s theorem, the sampling frequency should be at
least twice the size of the highest-frequency component in the signal of interest [47]. It
is worth noting that sampling at too high a frequency when observing a phenomenon
that evolves with low-frequency oscillations could lead to the collection of redundant
information [41]. Similarly, reducing the sampling rate could affect the analysis of regularity
and variability in the time domain [43]. When using continuous data, it is important to
keep in mind that the nervous system does not have an infinite resolution. Reflexes and
muscle activity modulations are controlled at a millisecond level [48]. Therefore, sampling
data at a rate beyond 1000 Hz can lead to redundant information [41].

Despite the large significant relationships between both sampling frequencies for all
the parameters analyzed, which suggest a relationship to the increase or decrease in entropy
at the two different sampling frequencies, the high values of bias and estimation errors
point to errors in absolute values. Therefore, we stress that it is crucial not to mix data
obtained at different sampling frequencies for training load analyses. Additionally, the
selection of sampling frequencies should be based on the spatiotemporal characteristics
of the movement for each task/action and the duration of those tasks. This is especially
important in short and intense exercises such as tackle actions. In these actions, not only
do entropy values change but the mean acceleration values are also substantially altered,
and 100 Hz sampling does not capture all movement peaks that could be relevant for load
control. However, subtle nuances in movement changes during tackling can be detected,
providing a more realistic and detailed reference of how athletes move during these types
of technical actions, which demand high levels of physical conditioning.

This study is not without limitations. It only focuses on one of the numerous short
and explosive actions found in team sports. Moreover, the tackling actions were performed
in controlled one-on-one situations, which may differ from the coordinative and cognitive
realities of tackling scenarios in actual gameplay. Furthermore, it compared two widely
different sampling frequencies. Additionally, only two commercial brands were compared.
It would be interesting for future studies to analyze various, more finely spaced sampling
frequencies, collected with different sensors, and across different sporting movements and
training exercises. Also, future studies should compare values obtained among sensors
with sampling frequencies ranging from 100 to 1000 Hz to determine the optimal sampling
frequency for microtechnological sensors in order to avoid losing information in short and
explosive actions.

5. Conclusions

In conclusion, given the temporal characteristics of strength tasks and explosive actions
in team sports, a sampling frequency of 100 Hz may be too low to accurately capture the
recorded phenomena, especially for entropy analyses. Nonetheless, this sampling frequency
maintains a good correlation regarding behavior over multiple repetitions. We stress that it
is crucial not to mix data collected at different sampling frequencies for result comparisons.
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6. Practical Applications

IMUs remain one of the most widely used tools in monitoring and load control in team
sports. Improving our understanding of the efficacy of data collected depending on the
sampling frequency can assist sensor manufacturers in sports applications and sport science
professionals in making data-driven decisions that allow for continuous improvement. For
instance, an improved understanding may lead manufacturers to develop sensors that
allow users to quickly and easily select the desired sampling frequency.

According to the scientific literature [9,49], the sampling frequency can affect the
quality of the data collected, with a higher sampling frequency potentially allowing for
the collection of more accurate motion data. A frequency of 1000 Hz may thus be suitable
for recording short and explosive actions. It is worth noting, however, that we consider it
important to continue research in this area, to clarify the optimal sampling frequency based
on the type of sports action being monitored. This will minimize errors in decision-making
based on load metrics obtained from these sensors. A sampling frequency that is too low
could lead to errors in interpreting load, movement variability, or the intensity of actions.
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