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 Batik is a traditional textile art form native to Southeast Asia, especially prominent in Malaysia and 
Indonesia, where unique patterns reflect significant cultural value. The intricate designs of batik, 
often embodying floral, geometric, and symbolic elements, make automated classification 
challenging and time intensive. This study presents a method for classifying Malaysian and 
Indonesian batik patterns using deep learning models. A curated dataset of 1,825 batik images 
was compiled, consisting of 949 Indonesian batik images and 876 Malaysian batik images. Three 
popular Convolutional Neural Network (CNN) architectures: MobileNet v2, YOLO-v8, and LeNet-5 
were evaluated based on classification accuracy, loss, and training efficiency. Results show that 
YOLO-v8 achieved the highest accuracy at 98.80%, followed by MobileNet v2 with 97.79%, and 
LeNet-5 with 92.94%. These findings indicate that CNN models can effectively distinguish between 
Malaysian and Indonesian batik designs, offering valuable applications in cultural preservation and 
industry documentation. Future work could focus on refining these models for real-time use and 
expanding the dataset to capture additional regional variations in batik design. 
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I. INTRODUCTION 

Batik is a traditional textile art form deeply rooted in the 

cultural heritage of Malaysia and Indonesia, renowned for its 

intricate patterns and designs created through a wax-resist 

dyeing technique. These designs often draw inspiration from 

nature, mythology, and daily life, reflecting the rich cultural 

values of the region. Despite increasing interest in batik as a 

sustainable and eco-friendly textile, the classification of batik 

designs remains a significant challenge. Traditional methods 

rely on the expertise of trained individuals to visually inspect 

and analyze these complex patterns, making the process both 

time-consuming and subjective. 

While research on Indonesian batik has benefited from the 

availability of numerous datasets, such as Batik Nitik 960 and 

other regional collections [1][2], there is a notable lack of 

comprehensive datasets for Malaysian batik. This disparity 

limits research opportunities and hinders the development of 

automated systems capable of recognizing and classifying 

Malaysian batik patterns. Addressing this gap is critical for 

advancing the understanding, preservation, and promotion of 

Malaysian batik within the broader field of cultural heritage 

studies. 

This study seeks to address these challenges by developing 

a deep learning-based classification system to distinguish 

between Malaysian and Indonesian batik designs, thereby 

contributing to the preservation and promotion of this cultural 

heritage. Manual classification demands substantial expertise 

and time, and current automated systems lack comprehensive 

datasets, particularly for Malaysian batik. To bridge this gap, 

a new dataset of batik images has been compiled, and deep 

learning techniques have been employed to facilitate accurate 

classification of these designs. 

In recent years, artificial intelligence (AI), particularly 

deep learning, has demonstrated considerable promise in 

automating and enhancing various aspects of cultural heritage 

preservation and analysis. The classification of batik patterns 

presents an ideal case for leveraging these computational 

methods due to the complexity and variety of batik designs. 

This study specifically addresses two key challenges in this 

domain: the lack of a comprehensive, standardized dataset of 

Malaysian batik designs, and the need for a reliable 

classification system capable of distinguishing between 

Indonesian and Malaysian batik styles. 

To tackle these challenges, a dataset of 1,825 batik images, 

representing both Indonesian and Malaysian designs, was 

compiled. The study implemented and compared three 
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popular Convolutional Neural Network (CNN) architectures: 

MobileNet v2, YOLO-v8, and LeNet-5, each selected for 

their unique characteristics in terms of computational 

efficiency and classification capability. MobileNet v2 was 

chosen for its efficiency in mobile and embedded vision 

applications, YOLO-v8 for its speed and suitability for real-

time classification, and LeNet-5 as a foundational benchmark 

for comparative analysis. 

This study contributes to the field by introducing a curated 

dataset of Indonesian and Malaysian batik images, addressing 

the scarcity of publicly available resources for batik 

classification research. The comparative analysis of three 

CNN architectures provides insights into their performance, 

highlighting their respective strengths and limitations in batik 

pattern recognition. Furthermore, this research demonstrates 

the potential of CNN models to accurately distinguish 

between Malaysian and Indonesian batik designs, offering 

practical applications in cultural heritage preservation, 

education, and industry documentation. By demonstrating the 

effectiveness of deep learning for batik classification, this 

study lays the groundwork for future research and the 

development of real-time classification systems. 

II. RELATED WORKS 

Batik is a traditional textile art form that holds significant 

cultural and historical value in both Malaysia and Indonesia. 

In Malaysia, batik is primarily produced in the states of 

Kelantan and Terengganu, characterized by floral and 

geometric motifs in vibrant colors. These designs are often 

simpler and larger compared to the intricate patterns of 

Indonesian batik. The creation of Malaysian batik 

predominantly uses the "canting" method, which involves 

applying hot wax onto the fabric with a small copper tool. On 

the other hand, Indonesian batik, particularly from Java, is 

renowned for its complexity and diversity. Its designs often 

incorporate motifs inspired by natural elements, folklore, and 

religious symbols. The "tjap" method, which employs copper 

stamps for repetitive patterns, is frequently used in 

Indonesian batik production. Recognizing its cultural 

importance, UNESCO inscribed Indonesian batik as a 

Masterpiece of Oral and Intangible Heritage of Humanity. 

The distinct differences between Malaysian and Indonesian 

batik extend to their motifs and color palettes. Malaysian 

batik commonly features flora motifs and bright colors, such 

as pink, purple, and green. In contrast, Indonesian batik is 

often designed with darker, earthy tones, including brown, 

gold, and black, and exhibits a broader variety of motifs 

influenced by different provinces [3]. In Malaysia, there are 

four main styles of batik design: hand-drawn batik, stamped 

batik, stenciling batik, and dip (dye) batik. Artisans often 

combine these techniques to create unique and distinctive 

patterns. A sample of Malaysian and Indonesian batik designs 

is shown in Figure 1. 

Despite the wealth of cultural and artistic diversity in batik, 

the availability of datasets for automated classification 

research is unequal. Indonesian batik datasets, such as Batik 

Nitik 960, provide a valuable foundation for image 

processing and classification studies. This dataset comprises 

960 images of 60 Nitik patterns from Yogyakarta, Indonesia, 

and has been pivotal in advancing research on Indonesian 

batik [1][2]. However, no comparable dataset exists for 

Malaysian batik, limiting the scope of research and the 

development of automated classification systems for this art 

form. Addressing this gap, this study introduces a curated 

dataset comprising 1,825 images of Malaysian and 

Indonesian batik designs to facilitate further research and 

development in batik classification. 

Previous studies highlight the effectiveness of deep 

learning techniques in classifying batik patterns. For instance, 

Tiwari [4] demonstrated that applying Convolutional Neural 

Networks (CNNs) with transfer learning achieved high 

accuracy, precision, and recall in classifying batik motifs, 

showcasing the utility of CNNs in cultural preservation and 

economic applications. However, many studies focus on 

specific types of batik, such as Nitik or Demak batik, which 

limits the generalizability of these models to diverse designs 

from other regions. This constraint hinders the broader 

application of automated classification systems across the 

batik industry [5]. 

 

 
(a) 

 

 
(b) 

Figure 1. Sample of (a) Malaysia batik and (b) Indonesia batik 

 Batik Classification Methods 

Traditional batik classification methods relied heavily on 

manual inspection by experts. While this approach provided 

valuable insights into the cultural and artistic nuances of batik 

patterns, it was labor-intensive, subjective, and inefficient for 

large-scale applications. The complexity of batik designs, 

particularly Indonesian patterns known for their intricate and 

overlapping motifs, further complicated manual 

classification. This prompted researchers to explore 

automated classification techniques to enhance accuracy and 

efficiency in distinguishing batik patterns. 

Initial attempts at automated batik classification focused on 

basic image processing techniques such as edge detection, 

texture analysis, and color histograms. These methods were 

moderately successful in identifying simple patterns but 

struggled with the intricate and diverse nature of batik motifs. 

For example, overlapping designs and complex textures 

frequently caused inaccuracies in classification, limiting the 

scalability of these techniques. 

More advanced machine learning methods were 

subsequently introduced to improve the classification of batik 

patterns. Algorithms such as Support Vector Machines 

(SVM) and k-Nearest Neighbors (KNN) utilized feature 
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extraction techniques like Scale-Invariant Feature Transform 

(SIFT) and Speeded-Up Robust Features (SURF) to analyze 

and classify batik designs. KNN, combined with Gray Level 

Co-occurrence Matrix (GLCM) features, achieved a 

maximum accuracy of 96%, demonstrating the effectiveness 

of statistical feature extraction [6]. Similarly, Minarno [2] 

compared SVM and KNN using Multi Texton Histogram 

(MTH) feature extraction, reporting an optimal accuracy of 

82% for KNN and 76% for SVM. However, both SVM and 

KNN struggled with the complex textures of batik motifs, as 

their reliance on simpler statistical features often failed to 

capture the intricacies of these designs. 

Azhar et al. [6] utilized SIFT features with an SVM 

classifier, achieving an average accuracy of 97% in 

distinguishing batik patterns. While promising, these 

methods required extensive manual feature engineering, 

limiting their adaptability to diverse or unseen batik patterns. 

Similarly, the Naïve Bayes classifier performed well in 

classifying batik motifs based on texture features, achieving 

97.22% accuracy with a 70-30 training-testing data split [7]. 

However, the Naïve Bayes approach assumes feature 

independence, which may not hold for batik designs where 

spatial relationships between features are critical, leading to 

reduced performance in complex patterns. 

The MU2ECS-LBP algorithm by Rangkuti [8] 

demonstrated exceptional accuracy in batik classification 

when combined with KNN and Artificial Neural Networks 

(ANN). While the results achieved high precision, they were 

based on specific datasets, limiting their generalizability 

across other batik designs or larger datasets with more varied 

patterns and textures. These findings highlighted a recurring 

challenge in traditional and machine learning-based methods: 

their reliance on feature extraction and dataset specificity, 

which restricts their ability to generalize across diverse batik 

styles. 

The limitations of manual feature engineering, sensitivity 

to dataset variability, and inability to capture complex spatial 

relationships in traditional machine learning methods 

underscore the need for more robust approaches. This has led 

to the adoption of deep learning techniques, which eliminate 

the need for manual feature extraction and are better equipped 

to handle the complexity and diversity of batik designs. 

 Deep Learning and CNN in Image Classification 

The advent of deep learning, particularly Convolutional 

Neural Networks (CNNs), has significantly advanced the 

field of image classification. Unlike traditional methods, 

CNNs can automatically learn hierarchical features directly 

from raw pixel data, making them especially suitable for tasks 

involving complex visual patterns, such as batik design 

classification. Deep learning models have been applied 

successfully to various cultural heritage preservation tasks, 

including the classification of traditional textile patterns. In 

the context of batik, CNNs have outperformed traditional 

machine learning methods by effectively capturing intricate 

patterns and subtle differences across various batik designs. 

Recent studies have explored different CNN architectures 

for batik classification. Agastya and Setyanto [9] employed 

data augmentation to improve the generalization of CNN 

models for Indonesian batik classification, achieving high 

accuracy even with limited datasets. Similarly, Winarno et al. 

[10] utilized a hybrid approach combining Artificial Neural 

Networks (ANNs) and supervised learning, achieving an 

accuracy of 99.76%. However, their method faced challenges 

with image misclassification due to poor image quality. 

Arsa and Susila [11] demonstrated the effectiveness of the 

VGG16 architecture combined with a Random Forest 

classifier, achieving approximately 97% accuracy, precision, 

and recall in classifying batik patterns. While effective, their 

reliance on a small dataset raised concerns about the model’s 

ability to generalize across diverse batik designs. Alya et al. 

[12] applied transfer learning using pre-trained VGG16 

models, improving accuracy and computational efficiency 

compared to training models from scratch. However, pre-

trained models trained on general datasets such as ImageNet 

might not fully capture the cultural and stylistic intricacies 

unique to batik designs. 

To address the challenges of small datasets, Khasanah et al. 

[13] implemented data augmentation, expanding their dataset 

and improving classification accuracy from 95.8% to 98.9%. 

Meranggi et al. [14] employed a patch-based method, 

achieving 88.8% accuracy. These studies underscore the 

importance of high-quality and diverse datasets for enhancing 

CNN performance in batik classification tasks. 

This study evaluates three CNN architectures: MobileNet 

v2, YOLO-v8, and LeNet-5, selected for their diverse 

characteristics in terms of network depth, computational 

efficiency, and suitability for specific applications. 

MobileNet v2 is designed for efficiency in mobile and 

embedded vision applications. It employs depthwise 

separable convolutions to reduce parameters and 

computational requirements while maintaining high accuracy 

[15]. This lightweight architecture makes it ideal for 

deployment in resource-constrained environments. Jamil et 

al. [16] demonstrated MobileNet’s effectiveness in real-time 

applications, achieving a balance between speed and 

accuracy, which aligns well with the requirements of batik 

classification. 

YOLO-v8 is a real-time object detection system that 

divides images into regions and predicts bounding boxes and 

probabilities simultaneously. Its speed and accuracy make it 

suitable for applications requiring rapid classification [17]. 

For example, Nawarathne et al. [17] applied YOLO-v8 for 

jellyfish classification, achieving 99.5% accuracy. Similarly, 

Kumar et al. [18] improved YOLOv3 by integrating 

MobileNet, achieving high precision and sensitivity for rapid 

object recognition, demonstrating its potential for batik 

classification. 

As one of the earliest CNN architectures, LeNet-5 was 

originally developed for digit recognition. Its simplicity and 

shallow architecture make it a useful benchmark for 

comparing modern CNN models. Pitsun et al. [19] compared 

LeNet with AlexNet and MobileNet for emotion 

classification, highlighting its limitations in terms of accuracy 

and efficiency compared to newer architectures. Despite its 

simplicity, Deepti and Deepthi [20] achieved 95% accuracy 

using a modified LeNet for skin disease classification, 

indicating its potential for resource-constrained applications. 

This study contributes to the existing literature by 

addressing the lack of datasets for Malaysian batik and 

conducting a comparative analysis of MobileNet v2, YOLO-

v8, and LeNet-5 for batik classification. By demonstrating the 

high accuracy achievable with these models, this research 

highlights the potential for CNNs to automate and enhance 

cultural heritage preservation. Furthermore, the introduction 

of a curated dataset of Malaysian and Indonesian batik 

designs provides a valuable resource for future research. 



Journal of Telecommunication, Electronic and Computer Engineering Vol. 16 No. 4 (2024)  

26   

III. METHODOLOGY 

The methodology for this study was structured into four 

key phases: (1) Dataset Compilation, (2) Data Preprocessing, 

(3) Model Selection and Implementation, and (4) Model 

Evaluation. Each phase was carefully designed to ensure the 

accuracy and efficiency of the batik classification system 

using deep learning algorithms. 

 Dataset Compilation 

The first phase of this study involved compiling a 

comprehensive dataset of batik designs from both Malaysia 

and Indonesia. The dataset consisted of 1,825 images, 

comprising 949 images of Indonesian batik and 876 images 

of Malaysian batik. These images were sourced from diverse 

origins, including online repositories, digital archives, and 

direct contributions from batik artisans and collectors. 

The dataset was curated to represent a wide range of batik 

patterns, with a particular focus on those created using the 

stamped method. This method was selected due to its 

prevalence in both Malaysian and Indonesian batik 

production. Additionally, efforts were made to include 

diverse designs, colors, and patterns, ensuring a robust 

training set that captured the richness and variety of batik art 

from both countries. Samples from the dataset, showcasing 

batik designs from Indonesia and Malaysia, are presented in 

Figure 2. 
 

(a) 
 

 
(b) 

Figure 2. Sample of (a) Indonesia batik dataset and 

(b) Malaysia batik dataset 

 Data Preprocessing 

Before training the deep learning models, the dataset 

underwent several preprocessing steps to enhance model 

performance and ensure consistency. These steps included 

image resizing, normalization, and data augmentation. 

All images were resized to a uniform size of 576×576 

pixels to match the input requirements of the selected CNN 

models. This resizing ensured compatibility with the network 

architectures and streamlined the training process. 

Normalization was then applied to the images by scaling the 

pixel values to the range [0, 1] through division by 255. This 

standardization improved the efficiency of the training 

process, enabling faster convergence and reducing 

computational overhead. 

To further address the limited size of the dataset and 

improve the models’ ability to generalize, data augmentation 

techniques were employed. Augmentation methods such as 

rotation, flipping, zooming, and shifting were used to 

artificially increase the dataset size by generating modified 

versions of the existing images. Following augmentation, the 

dataset size expanded to 2,507 images. This augmented 

dataset was then split into 80% for training (1,995 images) 

and 20% for validation and testing (512 images). These 

preprocessing steps not only enriched the diversity of the 

dataset but also helped mitigate overfitting by exposing the 

models to varied input conditions. 

 Model Selection and Implementation 

This study evaluated three popular CNN architectures: 

MobileNet v2, YOLO-v8, and LeNet-5. Each model was 

selected for its unique characteristics and suitability for the 

task of batik classification, providing a comparative analysis 

across varying levels of complexity and application 

scenarios. 

MobileNet v2 was chosen for its lightweight architecture, 

which makes it highly suitable for mobile and embedded 

applications. The model, pre-trained on the ImageNet dataset, 

employed transfer learning to fine-tune its parameters on the 

curated batik dataset. This approach allowed MobileNet v2 to 

leverage pre-existing feature representations while adapting 

to the specific patterns and textures of batik designs. 

YOLO-v8, renowned for its real-time object detection 

capabilities, was selected for its ability to classify batik 

patterns quickly and accurately. For this study, YOLO-v8 

was configured to treat each batik pattern as a distinct object 

within the image, enabling efficient detection and 

classification. 

LeNet-5, one of the earliest CNN architectures, served as a 

baseline model. Despite its simpler and relatively shallow 

design, LeNet-5 provided a valuable benchmark for assessing 

the performance improvements offered by more advanced 

architectures like MobileNet v2 and YOLO-v8. 

Each model was trained using a supervised learning 

approach, where batik images were labeled according to their 

country of origin (Malaysia or Indonesia). The training 

process involved backpropagation to optimize the model 

weights, utilizing categorical cross-entropy as the loss 

function to minimize classification error. This setup ensured 

that all three models were evaluated under consistent training 

conditions for a fair performance comparison. 

 Model Evaluation 

The performance of the CNN models was evaluated using 

three key metrics: accuracy, loss, and the confusion matrix. 

These metrics provided a comprehensive assessment of the 

models' effectiveness in classifying batik designs. 

Accuracy measured the proportion of correctly classified 

images out of the total number of images and served as a 

primary indicator of the model’s overall performance. For the 

loss metric, the categorical cross-entropy loss function was 

used to evaluate prediction error during training and testing. 

Lower loss values corresponded to better model performance, 

indicating the model's ability to minimize errors in its 

predictions. 

The confusion matrix was utilized to assess the 

classification performance of the models by analyzing the 

relationships between true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). This 

analysis provided insights into areas where the models 

performed well and where they struggled, allowing for the 
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identification of misclassification patterns. The confusion 

matrix is structured as shown in Table 1. 

 
Table 1 

Confusion Matrix 

 Positive (1) Negative (0) 

Positive (1) True Positive (TP) False Positive (FP) 

Negative (0) False Negative (FN) True Negative (TN) 

 

From the confusion matrix, additional metrics such as 

precision, recall, F1-score, and accuracy were calculated to 

provide further insights into the models' classification 

capabilities. These metrics are defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

These metrics provided a holistic evaluation of the models' 

classification performance by balancing precision, recall, and 

overall accuracy. 

The models were trained and tested on the compiled batik 

dataset, which was divided into training, validation, and 

testing subsets. Data preprocessing and augmentation were 

performed using Roboflow to enhance the quality and 

diversity of the dataset. This step was crucial in improving 

the models' generalization to unseen data. 

The models were implemented using Python and popular 

deep learning libraries, including TensorFlow and PyTorch. 

Training and testing were conducted in a high-performance 

computing environment equipped with GPUs to accelerate 

the learning process. The training process involved multiple 

runs with hyperparameter optimization, adjusting factors 

such as learning rate, batch size, and the number of epochs. 

Early stopping and model checkpointing techniques were 

employed to prevent overfitting and ensure that the best-

performing models were saved during training. 

Finally, the performance of MobileNet v2, YOLO-v8, and 

LeNet-5 was compared using the metrics. This comparative 

analysis aimed to identify the most effective architecture for 

automated batik classification and highlight the strengths and 

weaknesses of each model. 

IV. RESULTS AND DISCUSSION 

This section presents the outcomes of the experiments 

conducted to evaluate the performance of the three CNN 

architectures: MobileNet v2, YOLO-v8, and LeNet-5 in 

classifying Malaysian and Indonesian batik designs. The 

results are analyzed in terms of accuracy, loss, training time, 

and confusion matrices. Additionally, the implications of 

these findings are discussed in relation to the study’s 

objectives and the existing literature. 

 Model Performance Metrics 

The performance of each CNN model was assessed using 

three primary metrics: classification accuracy, loss 

(categorical cross-entropy), and training time. The models 

were trained and validated on the compiled dataset of 1,825 

batik images, with an 80-10-10 split for training, validation, 

and testing, respectively. 

The MobileNet v2 model demonstrated consistent 

improvement in both training and validation accuracy over 

the 10 epochs. The model started with a training accuracy of 

76.29% and a validation accuracy of 88.30% in the first 

epoch, and gradually improved to a training accuracy of 

97.79% and a validation accuracy of 96.78% by the 10th 

epoch. The training loss decreased from 0.449 to 0.067, while 

the validation loss decreased from 0.284 to 0.096 over the 

same period. These results indicate that the model effectively 

learned the features of the training data while generalizing 

well to the validation data. The observed reduction in loss and 

increase in accuracy over the epochs supports this conclusion. 

The results from the model are visualized into graphs as 

shown in Figures 3 and 4. 

 

Figure 3. Training and Validation Accuracy for MobileNet v2 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Training and Validation Loss for MobileNet v2 

 

The YOLO-v8 model achieved high performance from the 

initial epoch, starting with both training and validation 

accuracies at 96.47%. By the 20th epoch, these values 

increased to 98.82% for both metrics. The training loss 

decreased significantly from 0.448 to 0.004, while the 

validation loss decreased from 0.375 to 0.324 over the same 

period. These findings demonstrate the model’s efficiency in 

learning from the dataset while maintaining high accuracy. 

The training process results for YOLO-v8 are illustrated in 

Figure 5. 

The LeNet-5 model exhibited a consistent enhancement in 

both training and validation accuracy. The training accuracy 

started at 74.03%, and the validation accuracy was 80.36% in 

the initial epoch, increasing to 90.29% training accuracy and 

89.88% validation accuracy by the 20th epoch. Concurrently, 

the training loss decreased from 1.4699 to 0.2675, and the 

validation loss decreased from 0.673 to 0.231 over the 20 

epochs. These results signify the model's adeptness to learn  

the training data and generalize effectively to the validation 

data, as evidenced by the decreasing loss and increasing 

accuracy throughout the epochs. The results are shown in 

Figures 6 and Figure 7. 
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Figure 5. Training and Validation of Accuracy and Loss for YOLO-v8 

 

Figure 6. Training and Validation Accuracy for LeNet-5 
 

 
Figure 7. Training and Validation Loss for LeNet-5 

The YOLO-v8 model demonstrated the highest 

classification accuracy, achieving 98.80%, compared to 

97.79% for MobileNet v2 and 92.94% for LeNet-5. These 

results indicate that YOLO-v8 is particularly well-suited for 

applications requiring high precision and robust classification 

performance, making it a strong candidate for developing a 

batik classification system where accuracy is paramount. 

MobileNet v2, while slightly less accurate than YOLO-v8, 

offers significant advantages in terms of computational 

efficiency. Its lightweight architecture and reduced resource 

requirements make it highly suitable for mobile and 

embedded application development. This trade-off between 

accuracy and efficiency positions MobileNet v2 as an optimal 

choice for scenarios where computational resources are 

constrained or real-time processing is required. LeNet-5, 

despite being one of the earliest CNN architectures, achieved 

a respectable accuracy of 92.94%. Its simpler architecture 

provides a useful benchmark, highlighting the advancements 

made by more modern architectures like MobileNet v2 and 

YOLO-v8. While its performance is adequate for basic 

classification tasks, LeNet-5 may be less effective for more 

complex batik patterns or applications demanding higher 

precision. Table 2 summarizes the key performance metrics 

of the three models during their initial epochs, offering a 

comparative view of their baseline capabilities. 

Table 2 

Performance Metrics of CNN Models 
 

Model 

Training 

Accuracy 

(%) 

Validation 

Accuracy  

(%) 

Training  
Loss 

Validation 
Loss 

MobileNet 

v2 
76.29 88.30 0.45 0.28 

YOLO-v8 96.47 96.47 0.45 0.37 

LeNet-5 74.03 80.36 1.47 0.67 

 Confusion Matrix Analysis 

The confusion matrix provided a detailed view of the 

classification performance by visualizing the relationships 

between true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) for each model. It 

served as a valuable tool for summarizing the predictions of 

a classification model by comparing them to the actual class 

labels of the test data. In the matrix, rows represented the 

predicted class, and columns represented the actual class. 

The diagonal elements indicated true positive predictions, 

while the off-diagonal elements represented 

misclassifications. Figures 8, 9, and 10 display the confusion 

matrices for MobileNet v2, YOLO-v8, and LeNet-5, 

respectively. 

As shown in Figure 8, the confusion matrix for 

MobileNet v2 revealed a high number of true positives and 

true negatives, along with a minimal number of false 

positives and false negatives. This indicated a high level of 

accuracy and precision, with minimal confusion between 

Malaysian and Indonesian batik designs. Only a small 

number of misclassifications were observed, highlighting 

MobileNet v2’s capability in reliably distinguishing intricate 

patterns. 

For YOLO-v8 (Figure 9), the confusion matrix showed 

slightly higher misclassification rates compared to 

MobileNet v2. Although the model maintained a high level 

of accuracy, some overlap was observed in distinguishing 

similar patterns. This was expected, as  YOLO-v8 was 

primarily optimized for object detection rather than pure 

classification tasks. Despite this, the model remained 

effective, particularly in scenarios requiring rapid 

classification. 

In contrast, the confusion matrix for LeNet-5 (Figure 10) 

demonstrated a higher rate of misclassifications, particularly 

for complex batik designs with intricate patterns. The model 

struggled to accurately distinguish between certain 

Malaysian and Indonesian batik designs, reflecting its 

limitations due to a simpler architecture and lower capacity 

to capture complex features. These challenges reinforced the 

need for more advanced CNN architectures when addressing 

complex classification tasks like batik design differentiation. 

The results highlighted that advanced CNN architectures, 

especially MobileNet v2 and YOLO-v8, significantly 

outperformed traditional models like LeNet-5 in terms of 

accuracy and reliability. MobileNet v2’s efficient balance 

between precision and recall made it suitable for real-world 
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applications, especially those requiring resource efficiency 

and accurate classification. Table 3 summarizes the 

performance of the three models in terms of precision, recall, 

and F1-score, metrics derived from the confusion matrices. 

 

 
Figure 8. Confusion Matrix for MobileNet v2 

 
Figure 9. Confusion Matrix for YOLO-v8 

 
Figure 10. Confusion Matrix for LeNet-5 

Table 3 

Performance Metrics based on Precision, Recall and F1-score  

of CNN Models 
 

Model Precision Recall F1-score 

MobileNet 

v2 
0.994 0.994 0.994 

YOLO-v8 0.988 0.988 0.985 

LeNet-5 0.899 0.964 0.997 

 

Precision measured the proportion of correctly predicted 

positive cases relative to the total predicted positives. 

MobileNet v2 achieved the highest precision of 0.994, 

indicating its reliability in minimizing false positives. YOLO-

v8, with a precision of 0.988, also demonstrated strong 

performance. However, LeNet-5, with a precision of 0.899, 

exhibited a higher tendency for false positives, reflecting its 

limitations in discerning complex patterns. 

Recall, or sensitivity, measured the proportion of correctly 

identified positive cases relative to the total actual positives. 

LeNet-5 achieved the highest recall at 0.964, emphasizing its 

sensitivity in detecting positive cases. However, this came at 

the cost of increased false positives. MobileNet v2 and 

YOLO-v8 demonstrated more balanced recall values of 0.994 

and 0.988, respectively, maintaining high sensitivity while 

minimizing misclassifications. 

F1-Score, the harmonic mean of precision and recall, 

provided a comprehensive measure of model performance. 

LeNet-5 achieved the highest F1-score at 0.997, driven by its 

high recall. However, MobileNet v2, with an F1-score of 

0.994, emerged as the most balanced model, excelling in both 

precision and recall. YOLO-v8’s F1-score of 0.985 

demonstrated its robustness, especially in real-time scenarios 

requiring speed and accuracy. 

 Implication of Findings 

The findings of this study underscore the effectiveness of 

advanced deep learning models in automating the 

classification of Malaysian and Indonesian batik designs. 

MobileNet v2, with its balanced precision (0.994), recall 

(0.994), and F1-score (0.994), emerged as the most suitable 

model for general-purpose classification tasks. Its lightweight 

architecture and high accuracy make it an ideal candidate for 

deployment in real-world applications, particularly in 

scenarios where computational efficiency is critical, such as 

mobile or embedded systems.  
YOLO-v8, while slightly lower in precision (0.988) and 

recall (0.988) than MobileNet v2, demonstrated robust 

performance, achieving an F1-score of 0.985. Its real-time 

processing capabilities make it particularly suitable for 

applications that require rapid classification, such as 

interactive cultural exhibitions or dynamic cataloging 

systems. Despite its slightly higher misclassification rates 

compared to MobileNet v2, YOLO-v8 remains highly 

effective in distinguishing between batik patterns.  
LeNet-5, with its simpler architecture, achieved a recall of 

0.964 and an F1-score of 0.997. These results highlight its 

sensitivity in detecting positive cases, making it a potential 

candidate for scenarios, where identifying as many batik 

patterns as possible is more important than minimizing false 

positives. However, its lower precision (0.899) suggests 

limitations in handling intricate designs, reinforcing the need 

for more advanced architectures for tasks demanding high 

accuracy.  
The high accuracy achieved by the models, particularly 

MobileNet v2, demonstrates the potential of deep learning in 

supporting cultural preservation efforts. Automated 

classification systems can significantly enhance the 

documentation, analysis, and promotion of traditional art 

forms, reducing reliance on manual expertise and providing 

scalable solutions for cataloging diverse batik designs. These 

tools can also be integrated into educational platforms to raise 

awareness about the cultural significance of batik, thereby 

contributing to its preservation and appreciation in the 

modern era.  
Despite the promising results, several limitations should 

be acknowledged. The dataset, while comprehensive, does 

not fully capture the diversity of batik patterns found in 

Malaysia and Indonesia. Additionally, the models were 

trained on static images, which may not entirely reflect the 

nuances of batik created using different techniques and 

materials. Future research should focus on expanding the 

dataset to include a broader range of designs and exploring 

the use of ensemble models or advanced architectures, such 

as transformers, to further improve classification accuracy. 
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Moreover, integrating interpretability techniques, such as 

feature visualization, could provide deeper insights into how 

the models distinguish between batik patterns, paving the way 

for more refined and culturally informed classification 

systems. 

V. CONCLUSION 

This study developed a deep learning-based framework to 

classify Malaysian and Indonesian batik designs, utilizing a 

dataset of 1,825 images and evaluating three CNN 

architectures: MobileNet v2, YOLO-v8, and LeNet-5. 

Among these, YOLO-v8 achieved the highest accuracy at 

98.80%, while MobileNet v2 balanced accuracy (97.79%) 

and computational efficiency, making it ideal for lightweight 

applications. LeNet-5, despite its simpler architecture, 

achieved 92.94% accuracy, demonstrating its utility in 

resource-constrained environments. However, the study has 

certain limitations. While the dataset is comprehensive, it 

could be further expanded to include more diverse batik 

patterns from various regions to enhance model 

generalization. Additionally, real-world deployment may 

introduce challenges such as variations in lighting, image 

quality, and pattern diversity, which could impact the models' 

performance. 
This research lays the groundwork for future exploration 

into automated systems for batik classification. Future work 

could focus on integrating the models into a fully automated 

system with a graphical user interface (GUI) for practical 

applications in the batik industry. Additionally, the dataset 

could be expanded, and advanced techniques such as 

transformers, hybrid models, or transfer learning could be 

explored to improve classification performance and 

efficiency. These efforts will further facilitate the 

documentation, study, and promotion of batik art, ensuring its 

relevance and preservation in the modern era. 
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