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BACKGROUND: Researchers often use composite variables (e.g., BMI and change scores). By combining multiple variables (e.g.,
height and weight or follow-up weight and baseline weight) into a single variable it becomes challenging to untangle the causal
roles of each component variable. Composite variable bias—an issue previously identified for exposure variables that may yield
misleading causal inferences—is illustrated as a similar concern for composite outcomes. We explain how this occurs for composite
weight outcomes: BMI, ‘weight change’, their combination ‘BMI change’, and variations involving relative change.
METHODS: Data from the National Child Development Study (NCDS) cohort surveys (n= 9223) were analysed to estimate the
causal effect of ethnicity, sex, economic status, malaise score, and baseline height/weight at age 23 on weight-related outcomes at
age 33. The analyses were informed by a directed acyclic graph (DAG) to demonstrate the extent of composite variable bias for
various weight outcomes.
RESULTS: Estimated causal effects differed across different weight outcomes. The analyses of follow-up BMI, ‘weight change’, ‘BMI
change’, or relative change in body size yielded results that could lead to potentially different inferences for an intervention.
CONCLUSIONS: This is the first study to illustrate that causal estimates on composite weight outcomes vary and can lead to
potentially misleading inferences. It is recommended that only follow-up weight be analysed while conditioning on baseline weight
for meaningful estimates. How conditioning on baseline weight is implemented depends on whether baseline weight precedes or
follows the exposure of interest. For the former, conditioning on baseline weight may be achieved by inclusion in the regression
model or via a propensity score. For the latter, alternative strategies are necessary to model the joint effects of the exposure and
baseline weight—the choice of strategy can be informed by a DAG.

International Journal of Obesity; https://doi.org/10.1038/s41366-025-01732-6

INTRODUCTION
Observational research frequently involves composite variables
—i.e., algebraically derived variables that are created by adding,
subtracting, multiplying, or dividing two or more distinct
variables [1]. In obesity research, a common study outcome,
body mass index (BMI), is an inherently composite variable that
incorporates both height and weight components and is derived
by dividing body weight (in kilograms) by height (in metres)
squared. Researchers in the field of obesity can also construct
composite variables such as changes in body weight or size (by
subtracting baseline weight or size from follow-up weight or
size) [2–6], or relative change in body weight or size (a more
convoluted ratio variable construct that derives a ratio measure
of a weight or size change-score with respect to the baseline
outcome value) [7]. While change scores such as weight change
or relative weight change may not always be viewed by applied
researchers as composite variables in the same way as BMI, they
are nevertheless composite because, in these cases, they are

derived by the subtraction or division of two or more distinct
variables.
In observational studies, including in the field of obesity

research where researchers wish to identify factors that contribute
to weight gain or weight loss, causal inferences are often sought.
However, most observational studies fail to employ appropriate
causal inference methods. Where causal inference methods are
deployed, it is necessary to treat composite variables very
carefully, including those that are either inherently composite
(such as BMI) or constructed to be composite (such as weight
change or relative change). The goal of this article is to highlight
issues regarding the use of such composite variables—a concern
for obesity researchers given the widespread use of measures
such as BMI and weight change—as well as recommending
alternative approaches to using BMI or weight change scores as
outcomes.
It has been recognised previously that analysing composites as

an exposure is problematic, with study estimates suffering
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composite variable bias [1]; we extend this to scenarios where
composite variables are analysed as outcomes. The problem is
inferential bias made by the researcher in what they anticipate to
be true, when in reality there is a mismatch between what is asked
(estimand) and what is answered (estimate) because the statistical
machinery deployed for the composite outcome returns the
wrong answer [8].
Many concerns over the use of change scores (such as weight

change from baseline to follow-up) and/or conditioning on
baseline outcomes (such as weight) have been made in the
statistical literature that are often ignored [9, 10]—perhaps
because the statistical literature is less accessible or less well
read. We offer an alternative way to understand these problems
using directed acyclic graphs (DAGs), which are based on complex
mathematical theory that has undergone rigorous development
and thorough evaluation within the technical literature of
statistics, mathematics, and computer science [11]. Many powerful
algorithms have been developed using probabilistic graphical
models, enabling a DAG to identify which statistical process
delivers robust causal insight without the need to be an expert in
graph theory [12]. Since problems with composite exposures have
been discussed already [1], we examine the causal effect of
multiple variables on composite outcomes using a DAG to
illustrate how different analyses are needed to answer different
causal questions, and explain why estimands involving a
composite outcome cannot be reliably estimated. We examine
the phenomenon of composite variable bias for outcome
measures of body weight and BMI, although the same issues
apply to other measures of body size (such as waist-to-hip ratio,
WHT; or the body roundness index, BRI).
We might for instance ask how factors such as diet, physical

activity, and mental health influence body weight over time—
perfectly legitimate causal questions (estimands). To estimate our
estimand we must ensure that the quantification (causal effect) is
accurate, i.e., if we intervene on a factor, we know by how much
body weight is (on average) affected. When examining changes in
body weight, we might proceed in many ways; for instance, we
may calculate a change-score of weight (follow-up minus baseline)
and use that as an outcome; alternatively, we might use body
mass index (BMI) and could similarly construct a change-score
outcome for BMI (follow-up BMI minus baseline BMI); or we might
prefer a relative measure of change in body weight (relative
change in either weight or BMI relative to baseline weight or
baseline BMI). All of these introduce methodological issues that
arise because the outcome is composite.
The issue with any composite, whether change-score (follow-up

minus baseline), ratio (BMI) or other fraction (relative change), is that
composite values have a one-to-many relationship with their
components: i.e., the same change-score corresponds to an infinite
combination of follow-up and baseline values; the same BMI
corresponds to an infinite combination of weight and height values;
and the same relative change corresponds to an infinite combina-
tion of baseline and follow-up values. It is then impossible to unpick
the separate causal relationships associated with each component,
and the causal effect estimated may no longer correspond to
changes observed were an intervention undertaken. This study
outlines why and relates this to examples in the obesity research
literature that examine body weight changes over the study period.
Change scores conflate two measures at a single time point

[1, 8, 13]. This can yield misleading causal inferences that distort
the causal effect estimated. The exposure may be related to the
baseline outcome as well as the follow-up outcome, making it
challenging to unpick the causal relationships that occur for both
outcome measures simultaneously. BMI also has two components
that stabilise (i.e., when values no longer vary due to growth) at
different times—height stabilises around the end of adolescence,
whereas weight may continue to alter and stabilise for shorter
periods around when measured. BMI conflates the separate causal

relationships associated with height and weight, making it difficult
to unpick the causal relationship for just weight (Supplementary
Section 1). In all instances, the one-to-many correspondence of
composite values and the multiple possible values of all
components is the root cause of inferential biases that emerge.
This is more pronounced in obesity research because outcomes
are often built around BMI and/or changes in BMI, and samples
with near-identical BMI distributions may possess different joint
distributions of height and weight due to differences in sample
composition by sex, ethnicity, or any trait associated with height
or weight. Adjustment for sex and ethnicity or any trait associated
with height or weight may then further confuse the interpretation
of average causal effect of an exposure on BMI. In general, reliable
analytical approaches need to focus on the individual components
of a composite outcome to avoid misleading causal inferences.
There are also problems when an exposure precedes baseline

assessments of body weight and interest remains in the
assessment of this exposure in relation to body weight changes.
For instance, Katsoulis et al. [14] sought to identify adult
individuals who are more likely to gain weight by using Electronic
Health Records (EHR) to assess the relationship between changes
in BMI and demographic factors such as age, sex, and ethnicity.
Their findings suggested that the youngest age range (18–24
years) were more prone to weight gain in comparison to those in
the oldest age group (65–74 years). However, birth variables (e.g.,
sex) can only be evaluated as exposures for follow-up weight and
not changes in weight (or changes in BMI), since baseline weight
(part of baseline BMI) mediates their exposure.
To assess the impact on weight change, it remains necessary to

model follow-up weight conditioned on baseline weight, but it is
inappropriate to include baseline weight in the regression analysis
(either directly or via a propensity score) [15], because this invokes
conditioning on baseline weight as a mediator. This alters the
causal effect estimate from total to direct effect (Supplementary
Section 2) [16] and risks collider bias, which arises from
inappropriate conditioning on a mediator downstream of the
exposure (a variable that causes the outcome but is also caused by
the exposure and many other unknown causes of the outcome)
[17–20]. As noted half a century ago, ‘prognostic variables should
not themselves be influenced by treatment, otherwise in correcting
for differences in prognostic variables one may unwittingly remove
some of the treatment effect’ [21]. This is why alternative
approaches to examine birth variables in relation to weight
change must be considered; this may involve causal mediation
analysis [22–27], which determines the joint causal effects of the
birth variable and baseline weight in a manner that remains
reliable for causal effect estimation. It is still viable to examine
birth variables in relation to follow-up weight only, but this does
not answer any questions in relation to weight change.
It is worth noting that some weight-loss studies examine weight

change in relation to baseline weight to evaluate the hypothesis
that heavier individuals at the start of a study lose more weight
than lighter individuals [28, 29]. Such analyses are also proble-
matic because this type of analysis invokes a mathematical
tautology, where the baseline measure of interest is on both sides
of the regression equation, leading to misleading causal
inferences [29, 30]. Studies also investigate time-varying out-
comes, time-varying exposures, and time-varying confounding—
such situations warrant the use of g-methods [31].
All studies outlined illustrate what is typically observed across

the literature for many investigations into body weight and factors
that might affect their changes. Studies that seek causal insights
using composite body weight measures as outcomes are
ubiquitous, yet few yield reliable causal insights due to
methodological oversights. Where these studies are used to
inform decisions made by health practitioners and/or policy-
makers [32–34], there is potential for misguided decisions
informed by a misleading evidence base.
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METHODS
Illustrating these issues through a causal perspective
To illustrate the inferential bias that arises from incorrect application of
statistical machinery to the analysis of composite outcomes, we identified
candidate datasets in the public domain that had the following
characteristics (inclusion criteria): (1) longitudinal study design to obtain
baseline and follow-up body size measures; (2) comprised adults, as
heights would have stabilised in early adulthood (i.e., no more growth,
which might lead researchers to believe that BMI comprises only weight
changes within individuals, whereas methods used contrast height
differences between individuals—Supplementary Section 3); (3) baseline
measures (e.g., sex, ethnicity) as confounders for key exposures of interest;
(4) baseline height and weight, for confounding of the key exposures and
to create composite outcomes when combined with follow-up measures
(e.g., change in BMI); (5) at least one suitable ‘exposure’ (i.e., whose causal
effect is to be estimated) that could causally impact weight changes over
time; (6) follow-up height and weight to generate composite outcomes;
and (7) <10% missingness, as statistical analyses are likely biased with
more missingness [35].
Of the 18 datasets accessed through the UK Data Service, only the

National Child Development Study (NCDS) cohort surveys at ages 23 and
33 met most inclusion criteria, though missingness due to loss-to-follow-up
at age 23 remained a problem. What follows is therefore illustrative only
(see Supplementary Table S1 for datasets considered, reasons for
exclusion, and discussion around loss-to-follow-up). The NCDS documen-
ted the lives of children who were born in Britain during a week in 1958
[36]. Heights and weights of cohort members were self-reported (with
potential for inaccuracies and bias) at age 23, whereas at age 33 they were
measured by medical staff [37]. There are thus two measures for height
across this 10-year period (Supplementary Section 4). Table 1 defines all
variables from the NCDS surveys used for our analyses. Supplementary Fig.
S1 shows the participant flow chart. A more detailed overview of the
dataset (summary statistics, frequency, etc.) are provided in Supplementary
Fig. S2.

DAG-informed analyses
A directed acyclic graph (DAG) is a causal path diagram based on graph
theory [12] used to visually encode hypothesised or established causal
relationships among variables [38–44]. When estimating causal effects,
DAGs provide the identification of confounders that causally precede both

the exposure and outcome, and which should be included in the statistical
model directly (or via propensity scores) to minimise confounding bias.
DAGs also identify which variables are mediators (i.e., that occur after the
exposure, except for the outcome variable) which should not be included
in the model, as this introduces collider bias [19, 21, 38–43]. Observed
variables are depicted in squares or rectangles in the DAG while
unobserved (latent) variables are depicted in circles or ellipses. Each
variable in a DAG is assumed to be a possible cause of all future variables
except for variables involved in fully deterministic relationships (e.g., BMI is
fully determined by height and weight), or where there is a theoretical
basis or convincing evidence of no causal relationships.
Figure 1 shows the DAG codifying how variables were assumed to be

causally associated with each other in the NCDS data, with outcomes often
considered in observational studies denoted in light blue (e.g., follow-up
weight). The order of the variables and the direction of the arrows were
determined by the temporal order in which variables stabilised. Ethnicity
and sex stabilised at birth, and baseline height and baseline weight were
used to calculate the fully determined baseline BMI, hence they preceded
this composite variable. From the perspective of post-adolescence, weight
change temporarily follows height stabilisation, hence we chose height to
causally precede weight within adults. Although true height at age 33 is
likely identical to true height at age 23, height was self-reported at age 23
while measured by researchers at age 33. We treated measured height as
true height, though in many instances measured height may contain
measurement error. For the purposes of our study, we treated self-reported
height as the fully determined combination of unobserved true height and
unobserved self-report error. This distinction was necessary because of
discrepancies between self-reported and measured heights—we adopted
measured height as the reliable (i.e., ‘true’) value for height at both age 23
and age 33.
Malaise score was obtained from a self-administered questionnaire that

participants completed at age 23 to assess psychiatric morbidity (e.g.,
depression) at that time, and, in the DAG, this occurs after economic status
(also measured at age 23) since early adult economic status stabilised
earlier and over a longer period than did malaise score—psychological
status is likely more transient than economic status over the lifecourse.
Both exposure variables are composite but capture a latent measure. It is
therefore not necessary to deconstruct these measures, and they are
treated as observed variables. All other composite variables are fully
determined by other variables and denoted by double-outlined nodes; no
other variables have arcs into a fully determined variable (e.g., ethnicity
may cause height and weight but not BMI); and there are no forward arcs
from any fully determined variable, as their causal contribution is captured
by the variables that determine them [1].
Various exposures of interest are denoted in different colours to

clearly show the arrows coming out of them. All variables in different
colours are potential exposures of interest and a different model maybe
needed for each exposure of interest, informed by the DAG [16]. This is
illustrated as we examine the causal role of each potential exposure
variable in the DAG.
Multiple DAG-informed linear regression models were generated to

explore the role of each variable for its causal impact on body size at age
33. Depending on where each variable sits in relation to baseline measure
of body size at age 23, the exposure either impacts follow-up body size (at
age 33) or change in body size (from age 23 to age 33). For example, to
estimate the causal effect of economic status (at age 23) on follow-up
weight, we condition on ethnicity (determined at birth), sex (determined at
birth), baseline height (age 23), and baseline weight (age 23) because
these are the indicated confounders for the causal relationship examined
(e.g., ethnicity is a potential common cause of both economic status and
follow-up weight). We do not condition on the malaise score as it is a
mediator (i.e., malaise score is on the causal path between economic status
and follow-up weight; Supplementary Fig. S3). Adjusting for baseline
weight is essential to seek the causal effects of an exposure on change in
weight, because we must condition on baseline weight to remove the
component of follow-up weight that is not baseline weight. Adjusting for
baseline weight alters the interpretation of the causal effect estimated—a
mathematical exposition of this is provided in Supplementary Section 5.
Causal questions about birth variables (that precede baseline weight),

such as ethnicity and sex, can only be evaluated with respect to follow-up
weight and not weight change because adjusting for baseline weight
involves adjusting for a mediator. To ask causal questions about birth
variables in relation to weight change it is necessary to use alternative
strategies, such as mediation analysis [22–27], which determines the joint
causal effects of birth variable(s) and baseline weight. Such strategies are

Table 1. Data summary (variables with their definitions).

Variable Definition

Ethnicity Value: 0 (White)
Value: 1 (Non-white)

Sex Value: 0 (Female)
Value: 1 (Male)

Baseline height Height at age 23

Baseline weight Weight at age 23

Baseline BMI BMI at age 23

Economic status (measured at
age 23)

Value: 0 (Full-time education or
employed)
Value: 1 (Unemployed or
economically inactive)

Malaise score (dichotomised
by the study and measured at
age 23)

Value: 1 (Normal= score 0–7)
Value: 0 (Depressed= score 8–24)

Follow-up weight Weight at age 33

Follow-up height Height at age 33

Follow-up BMI BMI at age 33

Change in BMI Follow-up BMI− Baseline BMI

Relative change in BMI (Follow-up BMI− Baseline BMI) �
Baseline BMI

Change in weight Follow-up weight− Baseline
weight

Relative change in weight (Follow-up weight− Baseline
weight) � Baseline weight
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beyond the scope of this study, but a brief description of mediation
analysis is provided in Supplementary Section 2.
Inevitably, analyses of different outcomes are anticipated to give

different estimates, but the only outcome analysis that is interpretable
from a causal perspective is that for follow-up weight. For exposures after
baseline weight their causal impact on weight change is estimated by
adjusting for baseline weight. For exposures before baseline weight (i.e.,
birth variables) their causal impact on follow-up weight only is estimated.
Alternative outcome analyses—BMI, (relative) weight changes, (relative)
BMI changes—are all composites and yield inferences that cannot be
interpreted causally. We illustrate these outcome analyses because they
are so often considered in the obesity literature. DAG-informed linear
models were generated for six weight outcomes (follow-up weight, follow-

up BMI, BMI change, relative BMI change, weight change, and relative
weight change) to show the effect sizes for the reliable (follow-up weight)
and misleading (e.g., follow-up BMI) analyses, summarised visually in Fig. 2
(with detailed results provided in Supplementary Table S3).
All analyses were conducted using the lm regression package in R

(version 4.4.2; R Development Core Team) using the RStudio (version
2024.09.1) interface platform (all the code is publicly available at https://
github.com/RiddaAli/Composite-Variable-Bias-IJO.git).

RESULTS
It is important to note that we are interested in causal effect sizes
for clinical significance, not statistical significance, as it is the

Fig. 1 Directed acyclic graph (DAG) illustrating the temporal order of the variables. Observed variables are depicted in squares or
rectangles while unobserved (latent) variables are depicted in circles or ellipses. The socioeconomic (economic status) and psychological
(malaise score) variables in the NCDS data are composite measures of a latent construct that are treated as observed variables; they lie
between height/weight at baseline and weight at follow-up. All other composite variables are fully determined by other variables and
denoted by double-outlined nodes. True unmeasured height occurs at age 23, when observed as self-reported height, including potential
unobserved errors, while height at age 33 is the error-free measured height identical to unobserved true height at age 23.

Fig. 2 A comparison of the results for different weight outcomes for different exposure variables of interest—the dotted vertical line
separates the birth variables from the baseline (age 23) variables (see Supplementary Table S2 for explanation of differences in causal
interpretation). The effect of ethnicity and sex differences on follow-up weight were ten-fold greater than the coefficients shown in the plot
and were rescaled to make the plot more readable.
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magnitude of purported change in the outcome for a given
change in the exposure that we seek.

Birth variables
Follow-up weight (kilogram) was lower in the Non-White group
compared to the White group (−3.088; 95% confidence interval
(CI), −5.121 to −1.054). Follow-up BMI showed no substantial
difference between White and Non-White groups (−0.002; 95% CI,
−0.679 to 0.674). The remaining four outcome measures (weight
change (1.075; 95% CI, −0.273 to 2.423), BMI change (0.534; 95%
CI, 0.047 to 1.021), relative weight change (0.024; 95% CI, 0.004 to
0.044) and relative BMI change (0.023; 95% CI, 0.002 to 0.045))
were higher in the Non-White group than the White group. The
composite nature of follow-up BMI, relative weight change, and
relative BMI yielded estimates close to the null and all other
outcomes yielded estimates that were sign-reversed from the only
reliable causal effect estimate (i.e., follow-up weight as the
outcome)—this reflects how follow-up BMI is different from
follow-up weight because BMI conflates weight and height, with
the latter differing by ethnic background (i.e., the white group is
taller than non-white group).
Males were substantially heavier than females at follow-up

(14.851; 95% CI 14.299 to 15.403), which is not surprising given
how mean body size differences between males and females
begin at birth and this population-level sex difference is
maintained throughout life. The estimated sex difference was
diluted for follow-up BMI as the outcome. When change scores or
relative change measures were analysed, estimates were smaller
or close to zero for BMI change and relative BMI change, and sign-
reversed for relative weight change (−0.014; 95% CI, −0.020 to
−0.009) compared to all other estimates.
For later exposures (baseline height, baseline weight, economic

status, and malaise score), ethnicity and sex are confounders and
their model parameter estimates cannot be interpreted [16].

Baseline height and weight
It may seem of little interest to examine the estimated causal
impact of baseline height and baseline weight on various weight
outcomes, yet the analysis of weight change with respect to
baseline weight is sometimes erroneously considered a viable
research question [28].
The causal effect of height on weight at follow-up was

unsurprisingly positive, revealing its adjustment as a confounder
to be important. Self-reported height (age 23) and measured
height (age 33) were two versions of the same baseline variable
and each caused weight at follow-up (self-report: one centimetre
more reported baseline height corresponded to 0.668 (95% CI,
0.630 to 0.707) kilograms more weight at follow-up; measured:
one centimetre more measured baseline height corresponded to
0.694 (95% CI, 0.655 to 0.734) kilograms more weight at follow-
up), whereas similar estimates were either diluted for all the other
outcomes or sign-reversed, and sensitivity analysis revealed that
small differences were found if measured height was used in place
of self-reported height.
Unsurprisingly, baseline weight (adjusted for self-reported

baseline height) was related to follow-up weight (one kilogram
more baseline weight resulted in 1.059 (95% CI, 1.038 to 1.080)
kilograms more weight at follow-up). The estimated causal effect of
weight on BMI was substantial (one kilogram more baseline weight
resulted in 0.359 (95% CI, 0.351 to 0.366) higher BMI at follow-up),
which is expected given that BMI comprises weight. Estimates for
the causal impact of baseline weight on all other weight outcomes
were close to zero. Sensitivity analysis again revealed small
differences if adjustment was made instead for measured height.

Economic status and malaise score
When examining economic status and malaise score as key
exposures for their impact on follow-up weight, baseline weight is

a confounder, meaning causal evaluation was in terms of their
impact on weight change. Economic status and malaise score are
binary variables, providing less information than a more granular
continuous measure, leading to effect dilution due to dichotomi-
sation [45]. In the NCDS data, the effect sizes of both binary
measures were small, yet their analyses revealed subtle differ-
ences for different weight outcomes.
It is important to note that change score models (e.g., BMI

change as the outcome) and follow-up models (e.g., follow-up BMI
as the outcome) are mathematically equivalent when adjusting for
the baseline outcome variable (e.g., baseline BMI; more examples
are provided in Supplementary Table S4 and Supplementary
Section 6). This only illustrates how similar (or identical) estimates
may arise, but where only one has theoretical underpinnings from
a causal perspective—it is knowledge (or theory) not present in
the data but encoded in the DAG that informs which analysis
reliably estimates a causal effect.
We did not adjust for the baseline composite variable (baseline

BMI) when analysing the BMI change and follow-up BMI outcomes
(as informed by the DAG containing these variables as fully
determined with no onward arcs); we instead adjusted for
baseline height and baseline weight (as informed by the DAG).
Therefore, the estimates for these outcomes are not mathemati-
cally equivalent. However, the estimates for follow-up weight and
weight change outcomes are mathematically equivalent for
malaise score and economic status because we did adjust for
baseline weight (as informed by the DAG).
The effect of economic status on follow-up weight and weight

change (adjusting for baseline weight and self-reported height)
was slightly higher than all other weight outcomes. The effect of
malaise score on follow-up weight and weight change was slightly
lower than all other weight outcomes. Sensitivity analysis revealed
that using measured height instead of self-reported height yielded
slightly different results (Supplementary Fig. S4), indicating the
importance of correctly measuring height as a confounder.
Additionally, not adjusting for baseline height and baseline
weight resulted in larger differences (even sign reversal) for the
various weight outcomes (Supplementary Fig. S5). For the only
meaningful causal estimates (i.e., follow-up weight as the outcome
while conditioning on baseline weight) we observed no sizeable
effect estimates for either key exposure on change in weight.

DISCUSSION
Findings show that model estimates differ across outcomes to the
point where different conclusions might be drawn for each
outcome, even when the outcomes seem conceptually relatively
similar (e.g., BMI change and weight change).
To understand causal relationships involving weight change,

analyses should use follow-up weight adjusting for baseline
weight (using appropriate causal inference methods) rather than
follow-up BMI, weight change, BMI change, or any other
composite measure of body size and body size changes. The
necessity to examine change this way is indicated by graphical
model theory that underpins DAGs, since the DAG can only
indicate variables to be conditioned on (for confounding
adjustment) if they are probabilistic (not deterministic) else the
underpinning graphical model theory cannot work [1]. Further, to
analyse outcome change, it is necessary to isolate all aspects of the
outcome follow-up measure that is not determined by its baseline
measure, which can only be achieved by conditioning follow-up
on baseline [8]. Where attempts are made to draw meaningful
inferences from composite outcomes, most model estimates will
not quantify cause and effect, and estimates may not relate to
observed consequences in the outcome following an intervention
on the exposure.
BMI may be useful for describing a population, but it cannot

provide reliable causal insights at the individual level. Many

R. Ali et al.

5

International Journal of Obesity



consider BMI to be a proxy for adiposity (Supplementary Section
1), but it is worth noting that there is no height-invariant measure
of body composition; and attempts to ‘standardise’ weight
through dividing it by height squared cannot achieve a height-
invariant measure. This only leads to BMI variance being on
average two thirds height and one third weight for most adult
populations. The statistical challenges with constructed ratio
variables have been extensively discussed many times since the
inception of modern statistics [46–48]. The only reliable way to
examine weight as if it were height-invariant is to condition on
height in the modelling process, as illustrated in this study.
Statistical adjustment for confounding can be challenging when

the composite outcome spans a period in which some important
variables are both a confounder for one parent of the composite
(e.g., adulthood diet confounds weight for the outcome BMI) while
also a mediator of another parent of the composite (e.g.,
adulthood diet mediates height for the outcome BMI)—this
prohibits statistical adjustment and is sufficient reason to
deconstruct composite variables and analyse their distinct
component variables.
If baseline weight precedes the exposure of interest, investiga-

tion of the impact of an exposure on weight changes is achieved
by conditioning on baseline weight—either directly including it in
the model or via propensity scores [15]. If baseline weight follows
the exposure of interest, conditioning on baseline weight is still
required, but this will involve more complex analytical strategies
[22–27]. The choice of method may be informed by the
development of an appropriate DAG. DAGs are useful to consider
deterministic variables and their components [1], to identify and
avoid issues in the analysis of composite variables (as outcomes
and/or exposures), indicating which strategies yield reliable causal
effect estimates for the components of each composite (since
graph theory underpinning DAGs does not work for deterministic
variables). Analyses of follow-up outcomes conditioned on base-
line outcomes nevertheless require careful consideration to obtain
valid standard errors [49, 50].
Occasionally, estimated coefficients may appear similar or even

identical, prompting the question, is our worry about composite
outcomes a major concern? The key issue is that, irrespective of
whether estimates for different analytical strategies are similar or
not, the only analysis that is generally reliable is that informed by
external knowledge (or theory) as encoded in a DAG. It then
emerges that the only generally reliable causal effect estimate is
that for follow-up weight as the outcome while conditioning on
baseline weight. All other strategies of analysis may mislead in
some or most other instances, and the occurrence or extent of this
is generally unknown. Where reliable causal inference approaches
are not considered, research practices risk generating misleading
findings that may lead to erroneous policy decisions.
Although Stevens et al. [51] discuss inconsistencies in the

definition of weight maintenance across studies, stating that
percentage change in BMI is the same as percentage change in
weight in adults because their height is stable—this is inaccurate
as this is only true for within-person analyses. The regression
methods deployed make both within- and between-person
contrasts (Supplementary Section 3). It is thus incorrect to assume
that examining BMI is equivalent to examining weight among
individuals with stable height for most contexts and most
analyses. Intriguingly, we demonstrated that when presented
with two assessments of (stabilised) height (self-reported versus
measured by the research team), it is possible to use either, but
differences in causal effect estimates arose. This shows how
measurement error and/or self-report bias was likely present for
the self-reported measure.
It is worth emphasising that the same analytical challenges arise

for all composite outcomes and issues arise if we use composite
body size measures as exposures [52], since regression methods
make both within- and between-person contrasts for the exposure

as well as the outcome. In general, analysis of composite measures
as either exposure or outcome (except for proxy measures of
latent variables) runs the risk of estimating misleading estimates
of causal effect. We should be wary of all composite measures and
question the utility of new ones. For instance, Wu et al. [53]
recently created a new anthropometric index—the body round-
ness index (BRI)—which seeks to capture the percentages of total
and regional fat by merging height and waist circumference. The
authors concluded that BRI trends as an exposure were linked to
an increased probability of developing cardiovascular disease,
particularly among adults who were younger. Similarly, Krakauer
and Krakauer [54] created a body shape index (ABSI) based on
waist circumference adjusted for height and weight to assess
abdominal adiposity. They concluded that ABSI as an exposure is a
‘risk factor’ for early mortality. Unfortunately, model estimates
derived using BRI or ABSI as exposures or outcomes suffer
composite variable bias and any causal estimates will not be
reliable.

CONCLUSION
Composite variables are commonly used in health research
despite their interpretational challenges [1, 13, 29]. Although
illustrated for body size outcomes used in obesity research, the
issues raised here for composites as outcomes or exposures are
applicable to all composites (e.g., GDP per capita, adverse
childhood experiences, frailty index). BMI may be a useful
indicator of health at the population level, but not at the
individual level, and serves no reliable role in causal inquiry. Future
studies aiming to estimate causal effects should avoid using
composites as outcomes or exposures and instead use only non-
derived variables. DAGs provide a useful strategy to identify and
understand these issues [55, 56]. Thinking causally is essential to
avoid erroneous conclusions and to meaningfully inform policy.
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