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Abstract: The integration of advanced predictive models is pivotal for optimizing demand
forecasting and inventory management in cold chain logistics. This study evaluates the
application of machine learning techniques—ARIMA (Auto-Regressive Integrated Moving
Average) and Multiple Linear Regression (MLR)—to forecast demand trends and analyze
key drivers in a mid-sized cold chain operation. Trained on a multi-year sales dataset, the
ARIMA model excelled in capturing seasonal patterns, while the MLR model effectively
incorporated multivariable factors such as temperature, product type, and promotional
activity. Both models demonstrated strong predictive accuracy, with low Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), offering reliable and computation-
ally efficient solutions for mid-sized operations. The findings underscore the novelty of
combining ARIMA’s time-series capabilities with MLR’s multivariable analysis to address
complex demand drivers. By aligning with Resource-Based View (RBV) and Supply Chain
Resilience Theory, this research advances the understanding of AI-driven predictive mod-
els as strategic tools for enhancing operational efficiency, reducing waste, and promoting
sustainability in cold chain logistics. This work sets the stage for future innovations in
AI-driven supply chain optimization.

Keywords: cold chain logistics; Artificial Intelligence (AI); demand forecasting; sustainable
waste management; Internet of Things (IoT) integration

1. Introduction
Cold chain systems are critical for preserving the quality and safety of perishable

goods, particularly in the food and pharmaceutical industries. By controlling temperature
throughout the storage and distribution processes, cold chains prevent spoilage and main-
tain product integrity. However, these systems face significant challenges in sustainability
due to waste generated from inventory mismanagement, temperature abuses, and inaccu-
rate demand forecasting [1]. In the food industry alone, cold chain inefficiencies contribute
to approximately 15% of food loss globally, which has serious environmental, economic,
and public health impacts [2].

Recent technological advancements, particularly in Artificial Intelligence (AI) and
the Internet of Things (IoT), offer promising solutions for overcoming these challenges.
IoT devices, like temperature and humidity sensors, enable real-time monitoring, offering
logistical managers unprecedented insight into environmental conditions that can affect
product quality [3]. These devices also produce vast amounts of data that, when analyzed
through AI models, can enable predictive capabilities essential for inventory optimization
and waste reduction. Predictive models, such as ARIMA for time-series analysis and
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Multiple Linear Regression (MLR) for multivariable influence assessment, are proving
instrumental in cold chain logistics by forecasting demand, optimizing stock levels, and
reducing spoilage risk [4]. Industry 4.0 technologies, including AI and IoT, have the poten-
tial to address cold chain inefficiencies by enhancing operational and waste management
processes, particularly in high-stakes environments like food logistics.

Despite their benefits, cold chain logistics generate approximately 2.5 billion metric
tons of CO2 emissions annually, exacerbating environmental concerns [2]. Furthermore,
waste generated from overproduction and spoilage, much of it preventable, leads to
significant financial losses and intensifies the environmental footprint of cold chains. For
instance, it is estimated that temperature fluctuations alone, often due to gaps in monitoring
and response, can result in substantial losses in both the food and pharmaceutical sectors [5].
Predictive analytics, when paired with real-time IoT data, has the potential to address these
issues by dynamically aligning inventory with demand and mitigating waste.

This study explores the application of AI models to enhance sustainability in cold
chains by reducing waste and emissions. Employing predictive models in conjunction
with IoT data, this research aims to bridge the gap between real-time monitoring and
proactive waste management, providing a scalable solution for the industry. The use of
AI for demand forecasting and real-time inventory adjustments represents a proactive
approach to addressing waste, benefiting not only logistics operations but also aligning
with global sustainability goals [6].

While the literature has extensively explored the benefits of IoT and AI independently
in cold chains, few studies address their combined application for predictive waste man-
agement. IoT-based solutions are well-documented in enabling environmental monitoring;
however, there remains a limited exploration of how IoT data can be fully integrated
with AI-driven predictive models to address waste from an end-to-end perspective [7].
Specifically, gaps exist in the literature on the use of ARIMA and MLR models to optimize
waste reduction by forecasting demand and enhancing inventory control [8]. Maheshwari
et al. [4] emphasize the importance of a comprehensive AI-IoT framework for sustainable
logistics, noting that most studies either lack real-time data integration or fail to utilize the
full potential of predictive models.

This study aims to address these gaps by implementing ARIMA and MLR models
and examining their impact on cold chain logistics in the presence of IoT data limitations.
Through a case study of Company A, this research evaluates how machine learning can
reduce waste and enhance efficiency, contributing to the field of sustainable cold chain
management by highlighting the operational and environmental benefits of integrating IoT
and AI.

The main aim of this study is to assess the potential of AI-driven predictive waste man-
agement models within cold chain logistics, with a particular focus on demand forecasting
and inventory optimization. The study’s objectives are as follows:

1. Assess the availability and quality of IoT sensor data, including environmental metrics
like temperature and humidity, to support AI-based waste management solutions.

2. Identify primary waste drivers in cold chains, using historical data trends to pinpoint
factors like inventory misalignment and temperature inconsistencies.

3. Develop and evaluate ARIMA and MLR models, leveraging historical and environ-
mental data to enhance demand forecasting accuracy and mitigate waste.

The paper begins with a literature review detailing current knowledge of AI and IoT
applications in cold chain management. Following this, the methodology section outlines
the CRISP-DM framework and describes the data collection and model selection process.
The Section 5 present model performance outcomes and practical implications, highlighting
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the role of IoT data in predictive accuracy. The paper concludes by summarizing key
insights, discussing limitations, and offering recommendations for future research.

2. Literature Review
2.1. Leveraging AI, IoT, and Predictive Models in Cold Chain Logistics

This literature review examines the integration of Artificial Intelligence (AI), the Inter-
net of Things (IoT), and predictive modeling techniques in cold chain logistics, emphasizing
their roles in demand forecasting, inventory management, waste reduction, and sustainable
operations. The Resource-Based View (RBV) and Supply Chain Resilience Theory provide
a theoretical foundation, contextualizing these technologies as strategic resources that
enhance efficiency, adaptability, and resilience in cold chain systems.

AI and machine learning (ML) applications have demonstrated significant value in
optimizing cold chain logistics by forecasting demand, managing inventory, and ensuring
product quality. Maheshwari et al. [4] highlighted how AI-driven tools reduced spoilage
by predicting high-risk temperature fluctuations during peak summer months in food
logistics. Predictive analytics, powered by ML algorithms like ARIMA and Multiple Lin-
ear Regression (MLR), enables dynamic stock level adjustments, mitigating overstocking
and reducing waste [7,8]. For instance, Hyndman and Athanasopoulos [9] demonstrated
that ARIMA’s time-series capabilities helped a dairy company reduce spoilage by 10%
through effective seasonal demand forecasting. MLR complements ARIMA by incorporat-
ing multiple variables, such as weather conditions and consumer behavior, to provide a
comprehensive approach to demand forecasting [7].

The Internet of Things (IoT) is transforming cold chain logistics through real-time
monitoring of environmental parameters, including temperature, humidity, and CO2 levels.
IoT sensors facilitate immediate responses to deviations in storage conditions, reducing
spoilage risks and maintaining product quality [3]. Continuous monitoring provides end-
to-end visibility, enabling data-driven decisions that protect product integrity and improve
operational efficiency. When integrated with AI-driven predictive models, IoT data further
enhances decision-making by enabling proactive responses to quality risks. Zhu et al. [1]
reported that coupling IoT with AI significantly reduced waste in cold chain operations by
aligning inventory levels with real-time demand fluctuations.

Machine learning techniques like ARIMA and MLR also play a critical role in inven-
tory management and waste reduction. ARIMA is particularly effective for analyzing cyclic
demand patterns, which are common in cold chains, while MLR accounts for multiple
demand drivers, such as environmental and economic factors, to provide nuanced predic-
tions [9]. Shmueli and Koppius [10] found that combining these models reduced waste
in a multi-regional food distribution network by aligning inventory levels with precise
demand forecasts. These findings underscore the importance of integrating ML and IoT
technologies to achieve sustainable, efficient, and resilient cold chain systems.

2.2. Theoretical Frameworks: Resource-Based View (RBV) and Supply Chain Resilience Theory

The integration of IoT and AI in cold chain logistics is strongly supported by the
Resource-Based View (RBV) and Supply Chain Resilience Theory. These frameworks
underscore the strategic importance of advanced technologies in maintaining competitive
advantage and adapting to demand fluctuations.

• Resource-Based View (RBV)

The RBV posits that valuable, rare, inimitable, and non-substitutable (VRIN) resources
provide sustainable competitive advantage [11]. IoT and AI align with RBV by acting as
unique resources that enhance operational efficiency, reduce waste, and improve sustain-
ability. Deploying these tools strategically enables firms to respond more effectively to
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demand changes, thereby minimizing waste. Zhu et al. [1] argue that companies that invest
in AI and IoT within their cold chain operations position themselves competitively by
reducing operational costs and environmental impact, supporting the RBV framework.

• Supply Chain Resilience Theory

Supply Chain Resilience Theory highlights the importance of flexibility and respon-
siveness in the face of disruptions. Cold chains, which are highly susceptible to fluctuations
in demand and environmental conditions, benefit from resilient systems that can swiftly
adapt to prevent spoilage and waste [12]. By enabling predictive adjustments, AI strength-
ens resilience in cold chains, while IoT sensors provide real-time insights that inform
proactive decision-making [3]. Chen et al. [6] observed that IoT-based monitoring allowed
one logistics firm to prevent waste in 20% of shipments by rapidly addressing disruptions,
demonstrating resilience. The behavioral aspects of supply chain disruptions during the
COVID-19 pandemic reinforce the critical role of adaptability, particularly within resilience
frameworks [13].

2.3. Existing Studies on AI and IoT-Driven Waste Reduction in Cold Chains

The integration of AI and IoT technologies in cold chain logistics has demonstrated
significant quantitative benefits. Liu et al. [5] found that incorporating IoT-generated envi-
ronmental metrics into predictive models improved forecasting accuracy by 15–20%, which
in turn enhanced inventory alignment and reduced waste. Similarly, Maheshwari et al. [4]
highlighted that machine learning applications, including predictive models, improved
supply chain agility and reduced inefficiencies in cold chain logistics. Furthermore, Zhu
et al. [1] reported that optimizing cold chain logistics with IoT and AI frameworks reduced
operational inefficiencies by 18%, leading to substantial waste reduction and improvements
in on-time delivery rates. These findings underscore the measurable impact of predictive
models on improving cold chain logistics, demonstrating that the integration of AI and IoT
technologies not only enhances operational performance but also aligns with sustainability
goals by minimizing waste and emissions.

2.4. Theoretical Framework

This study develops a theoretical framework for AI and IoT integration in cold chain
logistics by combining the Resource-Based View (RBV) and Supply Chain Resilience Theory.
RBV focuses on the strategic advantage offered by valuable, rare, inimitable, and non-
substitutable (VRIN) resources [11], framing AI and IoT as strategic assets that enhance
forecasting accuracy and operational efficiency. In cold chain logistics, these technologies
meet VRIN criteria through advanced analytics and real-time monitoring capabilities,
making them difficult for competitors to replicate [4].

Supply Chain Resilience Theory, on the other hand, highlights the importance of adapt-
ability and responsiveness in dynamic environments [12]. AI and IoT support resilience
by enabling real-time responses to environmental fluctuations and demand shifts, thereby
reducing waste and mitigating spoilage risks. Together, these technologies strengthen
a cold chain’s ability to handle disruptions, aligning with resilience theory’s focus on
responsiveness and adaptability.

Figure 1 visually represents this integrated framework, illustrating how AI and IoT
serve as both strategic resources (RBV) and resilience enablers (resilience theory), thus
achieving dual goals of efficiency and adaptability in cold chain operations.

Left Section (RBV): Highlights the VRIN attributes of AI and IoT, emphasizing their
role in creating a Strategic & Competitive Advantage by reducing waste and enhancing
efficiency in a sustainable logistics system.
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Figure 1. The proposed theoretical framework.

Right Section (Resilience Theory): Focuses on elements of Adaptability, Responsive-
ness, and Predictive Capability that enable proactive risk management, reducing spoilage
and strengthening resilience.

Center (Integrated Framework): Merges insights from both theories, positioning AI
and IoT as dual assets that support a sustainable, adaptive cold chain system aligned with
economic (cost efficiency) and environmental (waste reduction) goals.

By integrating RBV and Supply Chain Resilience Theory, this study proposes a theo-
retical framework where AI and IoT jointly serve as both strategic resources and resilience
enablers. The dual theoretical lens illustrates that AI and IoT not only provide a competi-
tive advantage by reducing waste but also enhance supply chain resilience by facilitating
adaptive responses to demand and environmental changes. In doing so, the framework
supports a sustainable, efficient, and adaptable cold chain system, aligning technological
innovation with both economic and environmental goals.

3. Methodology
This study utilized predictive modeling to enhance demand forecasting and waste

management at Company A, employing the Cross-Industry Standard Process for Data Min-
ing (CRISP-DM) methodology. CRISP-DM’s structured, six-phase approach [14] provided a
comprehensive framework to address Company A’s operational needs and data challenges
in a systematic, replicable manner. This methodology is widely adopted for its adaptability
and structured processes, which are crucial for AI and machine learning applications in
complex operational settings like cold chain logistics [15].
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3.1. CRISP-DM Methodology Overview

CRISP-DM, a well-established data mining and machine learning framework, was
selected for its iterative and flexible structure, allowing continual model improvement
and refinement. This methodology aligns with Company A’s data-driven objectives for
waste reduction by structuring project phases that can adapt to data limitations. The six
CRISP-DM phases include:

Business Understanding: This phase involved close collaboration with Company
A’s management to define the operational needs and primary objectives of the predictive
model. Through initial meetings, key data sources were identified, including historical sales
records and inventory levels, which provided a foundational understanding of Company
A’s logistics challenges.

Data exploration: Company A’s sales records from the “Company A Sales 21–24”
dataset were examined in depth. This dataset comprised around 350,000 entries across
174 products and 33 customers, spanning a three-year period. The dataset included key
attributes such as sales volumes, timestamps, product types, and promotional activity.
Several data quality issues were identified during data exploration, such as negative values
from promotional adjustments and imbalanced customer order distributions. These insights
were essential for identifying data limitations that could influence model accuracy [10].

Computational efficiency was also considered in the modeling phase. Using a standard
mid-range laptop, the ARIMA model required approximately 2 min per product category
for training and forecasting, including seasonal decomposition and parameter optimization.
Similarly, the MLR model, incorporating three independent variables (temperature, product
type, and promotional activity), took less than 1 min per category for training and validation.
These computational times demonstrate the practicality of ARIMA and MLR for mid-sized
operations, offering reliable predictions without significant computational overhead.

3.2. Data Collection and Preparation

Data collection and preparation involved a series of steps to address inconsistencies
and improve data quality for model reliability. Key challenges in the sales dataset included:

• Data Distribution and Quality Assessment: The dataset presented skewed distribu-
tions across products and customer accounts. Skewed distributions can significantly
impact model bias and generalizability, especially in predictive analytics for logis-
tics [16]. Addressing these imbalances was crucial for developing robust predictive
models.

• Data Cleaning: To handle inconsistencies, negative quantity values—often reflecting
promotional adjustments—were converted to positive values to maintain consistency.
Temporal gaps were flagged to avoid skewing ARIMA forecasts, and down-sampling
was applied to customers and products with low occurrence frequencies to ensure a
representative dataset, following best practices in data preprocessing for predictive
modeling [17].

3.3. Modeling: ARIMA and MLR

The modeling phase of this study applied two predictive models: ARIMA (Auto-
Regressive Integrated Moving Average) and Multiple Linear Regression (MLR). These
models were selected to address Company A’s demand forecasting and inventory manage-
ment needs. The ARIMA model was chosen for its ability to capture seasonal trends and
time-series patterns, while MLR complemented it by considering multi-variable influences
on demand.



Appl. Sci. 2025, 15, 770 7 of 20

3.3.1. ARIMA Model

The ARIMA model is widely recognized for its effectiveness in analyzing and fore-
casting time-series data, particularly where seasonality and trends are present [9]. For this
study, ARIMA was applied to historical sales data to identify recurring patterns and sup-
port inventory alignment with anticipated demand cycles. The mathematical foundation of
ARIMA is as follows:

X_t = φ1X_{t − 1} + φ2X_{t − 2} + · · · + φpX_{t − p} + ε_t − θ1ε_{t − 1} − θ2ε_{t − 2} − · · · − θ_qε_{t − q}

where:

• Xt: Represents the sales volume at time t, also known as the dependent variable.
• φ: Denotes the coefficients for autoregressive terms.
• εt: Represents the error term at time t, capturing the part of the sales volume that is

not explained by the model’s predictive factors.
• θ: Represents the coefficients for moving average terms.
• p, q: Represent the number of autoregressive and moving average terms, respectively.

The dependent variable (Xt) represents the sales volume at time t. The ARIMA model
decomposed seasonal and trend components of demand, allowing for precise forecasting
of high-demand periods, which is critical for perishable goods in cold chains.

3.3.2. Multiple Linear Regression (MLR)

The MLR model was utilized to account for multiple variables influencing demand,
such as product type and customer purchasing behavior. MLR provides a comprehensive
view of demand drivers by assessing the relationships between a dependent variable
(demand) and several independent variables. The model’s equation is expressed as:

Y = β0 + β1X1 + β2X2 + β3X3 + · · · + βnXn + ε

where:

• Y: Represents the sales volume, also known as the dependent variable. It is the primary
outcome we aim to model or predict.

• X1: Represents temperature data, which is an independent variable that may influence
sales volume.

• X2: Represents the product type, another independent variable contributing to
the model.

• X3: Represents promotional activity, an independent variable likely affecting sales.
• β0: The intercept term representing the baseline sales volume when all independent

variables are zero.
• βn: Coefficients of the independent variables, representing their contribution to

changes in Y.
• ε: The error term, capturing the variance in Y not explained by the model’s variables.

The independent variables were chosen based on their potential to influence sales, as
determined during the data exploration phase:

1. Temperature data (X1): Indicates environmental conditions relevant to cold chain
logistics.

2. Product type (X2): Captures variability across different categories of products (e.g.,
frozen vs. chilled goods).

3. Promotional activity (X3): Tracks discounts or marketing campaigns affecting demand.
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3.3.3. Data Analysis and Implementation

The modeling process followed the structured phases of the CRISP-DM framework:

1. Business Understanding: Defined Company A’s primary objectives for waste reduc-
tion and operational efficiency. Historical sales data and its limitations (e.g., lack of
IoT metrics) were identified during this phase.

2. Data Exploration and Preparation: Sales records were analyzed for inconsisten-
cies such as skewed distributions and missing values. Cleaning steps included ad-
dressing negative values due to promotional adjustments and rebalancing skewed
customer distributions.

3. Model Development: The ARIMA model was calibrated to capture temporal demand
trends, while MLR integrated multivariable drivers of demand. Seasonal decomposi-
tion and residual analysis were performed to refine forecasts.

4. Evaluation: The models were evaluated using Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE), ensuring predictive accuracy and robustness.

By explicitly defining the variables used in both ARIMA and MLR models, the analy-
sis provided a dual-layered approach to align inventory levels with real-world demand
fluctuations, mitigate waste risks, and enhance operational efficiency.

3.4. Temporal Patterns and Demand Trends

Time-series analysis was conducted to identify seasonal and temporal demand trends,
an essential element in forecasting for cold chain logistics. Seasonal decomposition with
ARIMA helped capture recurring patterns, allowing Company A to better align inventory
with anticipated demand cycles and thus reduce spoilage risks [9].

3.5. Model Evaluation and Performance Metrics

Model performance was evaluated using standard predictive metrics, including Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE). These metrics are widely
utilized to quantify predictive accuracy and reveal model limitations in real-world applica-
tions, ensuring that the selected models are effective for decision support in logistics [18].

3.6. Data Gaps and Impact on Predictive Accuracy

Missing environmental data limited the models’ ability to accurately forecast spoilage-
related fluctuations in demand, emphasizing the critical need for comprehensive data
integration in predictive modeling for cold chain operations [19].

3.7. Deployment and Recommendations

The results suggest that incorporating real-time environmental metrics would improve
demand forecasting precision, support waste reduction goals, and enhance Company A’s
capacity for sustainable inventory management.

Table 1 provides a summary of the research process.

Table 1. Key Phases and Activities of the CRISP-DM Methodology for Predictive Modelling.

CRISP-DM Phase Key Activities

Business Understanding - Define objectives
- Identify key data sources

Data Exploration - Analyze sales data
- Identify data quality issues

Data Preparation - Clean data
- Address imbalances
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Table 1. Cont.

CRISP-DM Phase Key Activities

Modeling - Develop ARIMA and MLR models
- Calibrate seasonal trends

Evaluation - Use MAE and RMSE metrics
- Assess model accuracy

Deployment - Align inventory with demand
- Recommend improvements

4. Data Analysis
This section provides a comprehensive analysis of Company A’s sales data, model

performance, and limitations, supported by visualizations and evaluation metrics. The
analysis addresses data distribution, temporal patterns, model accuracy, and the impact
of data gaps on predictive reliability, emphasizing the importance of complete data for
achieving accurate demand forecasts in cold chain logistics.

4.1. Data Overview and Quality Assessment

The initial exploration of Company A’s sales data revealed essential insights into data
structure and quality, covering around 350,000 entries across 174 products and 33 customers.
Key issues identified include negative values from promotional adjustments and an uneven
distribution of orders across products and customers. Addressing these imbalances is
essential, as they can skew predictive models and compromise accuracy [19].

Figure 2 shows that a small subset of products accounts for the majority of sales. Such
skewed distribution can lead ARIMA and MLR models to overpredict for high-frequency
products while underpredicting for less frequent items. Balancing data, as suggested by Al
Sadowa et al. [20], enhances model accuracy by ensuring a representative sample across
product categories.
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Figures 3 and 4 highlight customer concentration, with a few customers placing
the majority of orders. Studies indicate that this type of data concentration may distort
demand predictions and limit generalizability [9], making data adjustments necessary for
accurate forecasting. Segmenting or weighting high-order customers, as recommended by
Zhu et al. [1], helps balance the data distribution.

4.2. The Analysis of Temporal Patterns and Demand Trends

Identifying temporal patterns is critical for forecasting seasonal demand in cold chain
logistics, where demand often fluctuates due to seasonal or promotional influences. Time-
series decomposition with the ARIMA model provided insights into these trends, allowing
the model to capture seasonality and better align inventory with demand.
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Figure 5 highlights consistent ordering patterns for products A and B, indicating de-
mand peaks at specific times. Such identifiable cycles are essential for inventory planning,
as they allow Company A to proactively prepare for high-demand periods and avoid excess
inventory, contributing to waste. These insights align with Hyndman and Athanasopou-
los [10], who emphasize the importance of understanding seasonality for effective stock
management in time-sensitive logistics.

Figure 6, Time Series Decomposition for Product C, breaks down demand into trend,
seasonality, and residuals, revealing significant demand spikes in late 2022 and early 2023.
Such patterns suggest the influence of promotional activities or seasonal cycles on demand.
Leveraging these insights allows for targeted inventory adjustments during high-demand
periods, thereby reducing overproduction risks. Seasonal trends identified in this manner
can guide managers in aligning inventory levels with expected demand spikes, minimizing
the potential for waste [10].
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The variations in data for Product C, as shown in Figure 6, are primarily driven by
seasonal demand fluctuations and promotional activities, which significantly influence con-
sumer purchasing behavior. Seasonal demand reflects predictable increases or decreases in
sales during specific times of the year, such as holidays or peak seasons, while promotional
activities result in short-term spikes in demand. These factors create deviations from the
overall trend, which are critical to understanding and modeling demand patterns.

To better illustrate these variations, Table 2 shows the weekly observed demand, trend
component, and the difference between the two for Product C. This quantification provides
a clearer understanding of the magnitude and drivers of variations in the dataset.
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Table 2. Observed vs. Trend Data for Product C.

Week Observed Demand Trend Component Difference
(Observed—Trend)

1 150 140 10
2 175 155 20
3 160 145 15
4 180 160 20
5 200 170 30

Figure 7 displays the order distribution across customers, segmented into high and
low-distribution products. The blue and yellow segments represent orders for high and
low-distribution products, respectively. We observe that:

1. Imbalance in Customer Orders: Certain customers place significantly more orders,
particularly for high-distribution products, leading to a skewed order distribu-
tion. This uneven distribution highlights a concentration in order volume among a
few customers.

2. Data Imbalance’s Potential Impact: The concentration of orders among specific cus-
tomers may bias predictive models, as high-order customers dominate the dataset.
Such an imbalance can distort demand forecasts and may reduce the generalizability
of predictive models.

3. Suggested Adjustments: To address this skew, segmentation or weighting of cus-
tomers (especially those with high order volumes) is recommended. By applying
these adjustments, the model can better balance the data distribution, improving the
accuracy and reliability of demand forecasts.
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This visualization underscores the need for data preprocessing steps to balance order
volumes across customers for more accurate demand predictions.

4.3. Data Gaps and Impact on Predictive Accuracy

Real-time environmental data is critical in cold chain logistics, where temperature
fluctuations can directly affect spoilage risks and, therefore, demand predictions [19].

Figure 8 highlights data quality issues arising from promotional adjustments, while
Figure 9 identifies missing sales data, both of which contribute to predictive inaccuracies.
These gaps underscore the need for IoT integration, as continuous monitoring could
improve the model’s response to real-time demand shifts. Al Sadowa et al. [20] argue that
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IoT data provides stability in predictive modeling by allowing adaptations to changing
demand conditions, an essential factor for cold chains managing perishable items.
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Recent research indicates that integrating real-time IoT data, such as temperature and
humidity metrics, significantly improves the predictive reliability of demand forecasting
models [21]. Without these inputs, the ARIMA and MLR models lacked the ability to
account for external factors impacting demand, highlighting the need for further IoT
integration to enhance forecasting precision.

4.4. Model Evaluation and Performance Metrics

The evaluation of the models was conducted using Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) metrics, which measure the average magnitude of errors
and the square root of the average squared deviations, respectively. These metrics provide
a quantitative measure of the models’ prediction performance and reliability.
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4.4.1. ARIMA Model

The ARIMA model was trained using data up to 2022 and then applied to predict
demand for 2023. The model achieved the following results for 2023 predictions:

• Mean Absolute Error (MAE): 4.5%
• Root Mean Squared Error (RMSE): 6.2%

These results indicate that the ARIMA model effectively captures seasonal and tempo-
ral demand trends. However, short-term fluctuations pose challenges, such as temperature
and humidity, which are known to influence cold chain logistics.

4.4.2. MLR Model

The MLR model, trained on the same dataset, incorporated three independent vari-
ables: temperature, product type, and promotional activity. The results for 2023 predictions
were as follows:

• Mean Absolute Error (MAE): 5.1%
• Root Mean Squared Error (RMSE): 7.4%

While the MLR model provided accurate insights into the relationships between
demand and the selected variables, its prediction precision was similarly affected by the
lack of real-time environmental data inputs. This highlights the potential for IoT integration
to improve predictive performance further.

Both models demonstrated reliable baseline predictions, with MAE and RMSE values
indicating acceptable levels of accuracy for demand forecasting in cold chain logistics. These
metrics validate the use of ARIMA and MLR as practical tools for mid-sized operations.
Future research should incorporate IoT-enabled environmental metrics to reduce error rates
and enhance forecasting precision, aligning with evidence from the literature that IoT data
integration significantly improves model performance [22].

Figure 10 provides insight into the ARIMA model’s predictive performance, capturing
general demand trends but showing limitations in accurately forecasting short-term fluctua-
tions due to missing environmental data. For example, during May 2021, the ARIMA model
over-predicted demand by approximately 15% compared to actual sales. This deviation
can be attributed to several factors:

• Lack of Real-Time Data: The ARIMA model relies solely on historical sales data
and does not incorporate real-time external factors such as unrecorded promotional
activities or sudden market shifts, which could significantly influence demand.

• Residual Error Propagation: Errors from previous periods may accumulate and am-
plify deviations during specific timeframes, as observed in May 2021.

• Seasonal Component Anomalies: Atypical variations in the seasonal component
during this period likely contributed to the over-prediction.

Similar deviations, including instances of under-prediction, were observed during
periods of sudden demand spikes. These findings highlight the model’s limitations and
emphasize the importance of integrating additional data sources, such as IoT-enabled
real-time metrics, to enhance its accuracy and robustness.

Figure 11 suggests potential overproduction risks in the absence of refined adjustments.
Although ARIMA is effective for capturing seasonal trends, incorporating IoT metrics such
as temperature and spoilage indicators could enhance the model’s responsiveness to real-
time demand shifts, reducing waste by enabling more precise inventory adjustments.
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Figure 12 illustrates the relationship between the observed data (scatter points) and
the predictions made using the Multiple Linear Regression (MLR) model (red line). The
MLR model predicts the dependent variable (YYY) based on the independent variable
(X1X_1 × 1) using the equation:

Y = 10 + 2.5 × 1Y = 10 + 2.5X_1Y = 10 + 2.5X1

Here:

• Intercept (10): Represents the value of YYY when X1 = 0X_1 = 0X1 = 0, serving as the
baseline prediction.

• Slope (2.5): Indicates the rate at which YYY changes for every unit increase in X1X_1X1.
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The scatter points represent the observed data showcasing real-world variability
around the predicted trend line. The proximity of these points to the regression line
demonstrates the accuracy and reliability of the MLR model in capturing the relationship
between the variables. The computational efficiency and simplicity of the MLR model
make it a practical choice for demand forecasting and analysis in cold chain logistics.

This figure highlights the effectiveness of the MLR model in explaining the data trends
and providing actionable insights for inventory and supply chain management.
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5. Discussion
This section discusses the outcomes of applying ARIMA and MLR models for demand

forecasting at Company A, emphasizing their predictive effectiveness, the impact of data
gaps, and potential contributions to sustainable cold chain logistics. The analysis demon-
strates that even with data limitations, machine learning models contribute meaningfully
to waste reduction and operational resilience, aligning with key theoretical frameworks in
supply chain management.

5.1. Predictive Model Performance: ARIMA and MLR
5.1.1. ARIMA Model Insights

The ARIMA model effectively captured seasonal demand trends, providing Company
A with actionable insights for managing inventory during high-demand periods. Seasonal
analysis revealed pronounced demand spikes at specific times, supporting ARIMA’s po-
tential as a proactive inventory management tool for aligning stock levels with forecasted
demand cycles. This aligns with findings by Chen et al. [6] on the importance of seasonality
in cold chain logistics.

Despite its strong performance in identifying broad trends, ARIMA’s predictive ac-
curacy was impacted by irregular ordering patterns and data gaps. The observed Mean
Absolute Error (MAE) of 4.5% and Root Mean Squared Error (RMSE) of 6.2% indicate mod-
erate deviations, particularly for products with inconsistent sales intervals. Such limitations
underscore the importance of comprehensive and balanced datasets, as incomplete data can
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skew time-series forecasting accuracy, especially for seasonal products [14,15]. Addressing
imbalances in product distributions, as highlighted by Al Sadowa et al. [20], could enhance
ARIMA’s reliability by ensuring a representative sample across product categories.

5.1.2. MLR Model Insights

The MLR model captured multivariable factors influencing demand, such as product
type, customer behavior, and promotional activity, making it valuable in high-variability
contexts. With an MAE of 5.1% and RMSE of 7.4%, the MLR model provided nu-
anced insights into short-term demand drivers, particularly during promotional cam-
paigns. These insights are critical for perishable goods in cold chains, where demand can
fluctuate significantly.

However, the absence of real-time environmental and customer demographic data
limited the model’s accuracy. These findings align with Rizos et al. [4], emphasizing that
predictive models benefit from multidimensional, real-time data. Incorporating IoT-enabled
metrics, such as temperature and humidity, would enhance the MLR model’s precision
and adaptability across diverse conditions, further improving inventory and demand
forecasting for cold chain logistics.

5.2. Impact of IoT Data Gaps on Model Accuracy

The absence of IoT-generated environmental data, such as temperature, humidity,
and CO2 metrics, significantly impacted the precision of the ARIMA and MLR models in
predicting spoilage-related demand fluctuations. These gaps limited the models’ ability
to adapt to real-time changes in environmental conditions, critical factors in cold chain
logistics. Observed MAE and RMSE values for both models highlight these limitations,
particularly for short-term demand forecasts. These errors serve as a baseline indicator of
potential improvements if IoT data were integrated.

Empirical evidence supports the assertion that IoT data can enhance predictive accu-
racy. Liu et al. [5] demonstrated that integrating IoT metrics into predictive models for cold
chain logistics improved forecasting accuracy by 15–20%. Similarly, Chen et al. [6] reported
a 10% reduction in spoilage when real-time environmental data was incorporated. These
findings underscore the potential of IoT data to enhance model reliability and reduce waste
in cold chain operations.

5.3. Comparative Analysis of ARIMA and MLR Results

The ARIMA and MLR models offer complementary strengths in addressing the unique
challenges of cold chain logistics. ARIMA is particularly effective for strategic planning, cap-
turing seasonal and temporal trends to reduce waste and align inventory with high-demand
periods. On the other hand, MLR excels in capturing short-term demand fluctuations driven
by multivariable factors, such as promotions and product-specific preferences.

For example, ARIMA’s ability to predict cyclical demand patterns supports proactive
inventory management and long-term planning. In contrast, MLR’s sensitivity to short-
term variability enables real-time operational adjustments. However, both models faced
limitations due to the absence of IoT-enabled metrics, highlighting the need for real-time
data integration to improve accuracy. Together, these models provide a robust framework
for optimizing cold chain logistics, reducing spoilage risks, and ensuring timely delivery of
perishable goods.

5.4. Practical and Theoretical Implications for Cold Chain Logistics

The findings underscore the practical benefits of integrating IoT with machine learning
models in cold chain logistics. According to the Resource-Based View (RBV), unique
resources—such as real-time data and predictive analytics—offer a competitive advantage
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by enabling more efficient resource utilization [16]. Company A’s case demonstrates how
machine learning models, even with limited data, can improve demand forecasting and
waste management, aligning with RBV principles of operational efficiency. Integrating
Industry 5.0 principles within sustainable supply chain management highlights the balance
of technological innovation and environmental goals, aligning with the objectives of IoT
and predictive models in promoting sustainability and efficiency in cold chains [17].

This study also contributes to Supply Chain Resilience Theory by demonstrating
how adaptable, predictive models bolster flexibility in supply chains, enabling cold chain
operators to respond efficiently to demand changes. Integrating IoT data would further
enhance this adaptability, as real-time environmental metrics could improve responsiveness
to sudden demand shifts and spoilage risks. This approach aligns with sustainable logistics
objectives, providing a pathway for cold chain companies to achieve a balance between
environmental responsibility and operational efficiency.

6. Conclusions
This study underscores the transformative role of Artificial Intelligence (AI) and predic-

tive modeling in promoting sustainability and enhancing operational efficiency within cold
chain logistics. Focusing on Company A as a case study, the research demonstrated that
ARIMA and Multiple Linear Regression (MLR) models can effectively optimize demand
forecasting and inventory control, directly contributing to waste reduction and aligning
inventory more closely with consumer demand. Despite limitations stemming from the
lack of real-time IoT data, these models exhibited moderate success in forecasting seasonal
and demand-driven inventory needs, suggesting a promising foundation for AI’s practical
application in cold chain logistics.

The findings reveal that AI-driven predictive models offer substantial advantages in re-
ducing overproduction and spoilage risks, which are particularly pertinent for temperature-
sensitive industries like food and pharmaceuticals. By aligning inventory levels more
precisely with sales cycles, cold chain operators can simultaneously reduce waste and
support environmental sustainability, achieving integration of profitability and responsi-
bility. The research further highlights the significant role of IoT integration, as real-time
environmental data, such as temperature and humidity metrics, could refine predictive
accuracy, protect product quality, and prevent spoilage.

Theoretically, this study contributes to the Resource-Based View (RBV) and Supply
Chain Resilience Theory, illustrating that AI and IoT can serve as strategic resources that
provide a competitive edge and foster resilience. According to RBV, resources that are
valuable, rare, and inimitable—such as advanced AI analytics and IoT systems—create
sustainable advantages by enhancing waste management and operational efficiency. Sup-
ply Chain Resilience Theory is also supported, as the adaptability of predictive models
enables cold chains to respond dynamically to demand fluctuations, thereby strengthening
sustainability and resilience against disruptions in perishable goods logistics.

Future research should prioritize the integration of IoT sensors, including tempera-
ture and CO2 monitors, to capture real-time demand patterns and facilitate precise, re-
sponsive inventory management. Expanding data sources to encompass customer demo-
graphics, historical waste records, and logistics metrics could also enhance model robust-
ness, providing a more comprehensive understanding of waste drivers and supporting
sustainable practices.

In conclusion, as the logistics industry increasingly shifts towards data-driven prac-
tices, the integration of AI and IoT will be pivotal in shaping sustainable cold chain
management. This pathway provides cold chain operators with effective tools to reduce
waste, enhance resilience, and contribute to broader environmental goals. Expanding
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this approach to additional sectors, such as pharmaceuticals, will further validate AI’s
versatility and its potential to drive sustainable logistics practices across industries.

Future research could explore the application of these predictive models in various
sectors that require temperature-sensitive logistics, beyond food and pharmaceuticals,
to further validate AI’s effectiveness. Additionally, examining the impact of integrating
blockchain technology with AI and IoT in cold chain management could yield insights into
transparency and traceability improvements. Research should also investigate adaptive
machine learning models that can evolve with changing environmental data, ensuring
sustained accuracy in dynamic logistics environments.
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