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A B S T R A C T

Battery management systems (BMS) are critical in ensuring the performance, reliability, and safety of battery
systems through accurate estimation of the State of Charge (SOC) of batteries. As on-board SOC estimation,
together with other functionalities by the BMS can result in its high design complexity, high cost, and high
energy consumption, this study explores a data-driven estimation of a Lithium battery state of charge (SOC)
while discharging, using simple linear regression, ensemble methods, and neural networks respectively to ensure
an accurate low time complexity solution as compared to existing methods. A known dataset of 835,248 records
from Li [NiMnCo]O2 (H-NMC)/Graphite + SiO battery was used to train and test each model to determine the
best fit. This study determined that neural networks are the models of choice for SOC prediction instead of linear
and ensemble regression. Still, also the wide tri-layered feed-forward neural network proposed in this study
showed great results by having a maximum error percentage of less than 1 %, and a mean squared error (MSE) of
1e-08, which is similar to or better than what is obtainable in other more complex deep neural network variants
such as the Gated recurrent unit recurrent neural network (GRU-RNN), with an MSE of 1e-06 and similar load
classifying neural network models with an error percentage of 3.8 %. The FFNN proposed in this study also has
the advantage of having lower technical and time complexity computational costs required for active fault
estimation in thin client devices such as a BMS.

1. Introduction

Battery management systems, simply regarded as BMS in literature
as well as in practice are critical systems deployed in electric vehicles
and other related battery-powered systems. The major function of the
BMS is to evaluate the state of charge (SOC), predict system health,
thermal control, charge equalization, protection, optimal power con-
sumption, and energy utilization [1]. The State of charge (SOC) is a
critical output estimated by the BMS, as it signifies a direct relationship
between the overall battery capacity and the remaining battery capacity
under different load and charge/discharge conditions. A mathematical
representation of the SOC of a battery, estimated using the battery
current, battery voltage, and battery temperature is defined as

SOC =
QRemaining
QRated

(1)

where the remaining charge in the battery is depicted QRemaining, while
QRated depicts the battery-rated-capacity when a battery is put under

different load conditions and various charge/discharge cycles, QRated
never remains the same throughout the lifetime of the battery as non-
uniformities during the manufacturing process of the battery, as well as
external conditions not limited to aging, ambient temperature, and state
of health all contribute to the variability in QRated.

Climatic concerns as well as the energy crisis prevalent in many
climes, have increased the demand for clean energy provisions. Green
agriculture, green infrastructure, sustainable transport, and other net
zero carbon and sustainability initiatives are poised to sustain an energy
utilization paradigm shift in the next few decades. Electric vehicles and
their hybrid counterparts have the potential to play a key role in this
shift as systems driven by energy storage systems (ESS) offer fewer
possibilities for environmental degradation as opposed to fossil-based
options.

Energy storage systems (ESS) have evolved, with active research
currently underway to develop far better solutions with attractive fea-
tures such as a long lifespan of energy source, low battery self-discharge,
high energy density, high voltage, and a lot more features. The Lithium-
ion battery currently offers the best performance related to the desired

* Corresponding author.
E-mail address: e.ofoegbu@leedsbeckett.ac.uk.

Contents lists available at ScienceDirect

Journal of Energy Storage

journal homepage: www.elsevier.com/locate/est

https://doi.org/10.1016/j.est.2025.115833
Received 18 September 2024; Received in revised form 8 January 2025; Accepted 11 February 2025

mailto:e.ofoegbu@leedsbeckett.ac.uk
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2025.115833
https://doi.org/10.1016/j.est.2025.115833
https://doi.org/10.1016/j.est.2025.115833
http://creativecommons.org/licenses/by/4.0/


Journal of Energy Storage 114 (2025) 115833

2

characteristics expected for an energy storage system (ESS) [2]. Many
devices beyond electric vehicles utilize Lithium-ion batteries as their
main power source and thus managing the operational and specification
characteristics of Lithium-ion batteries to ensure optimal performance
and safety is a key service that battery management systems provide.

Battery management systems (BMS) in Electric vehicles, as depicted
in Fig. 1, are the primary means of managing the power components that
drive electric vehicles. They are well-designed circuits that monitor the
charge/discharge current, voltage, and temperature of each cell in the
battery pack.

This study investigates the application of ensemble methods and
artificial neural networks for predicting the state of charge (SOC) of the
Lithium-ion battery, by the battery management system deployed in
electric vehicles. Fault tolerance within the system can be achieved, if
possible, where faults that could cause fires are detected earlier based on
the predictive estimation of the state of charge of the deployed battery
system. MATLAB and its associated applications are used for the
training, testing, and validation of the results of this study.

2. Literature review

State-of-charge (SOC) estimation has long been a subject of intensive
research driven by the difficulties in its accurate estimation. Estimating
the state of charge traditionally encounters problems such as long-term
state divergence, offset, and drift [4]. The authors in [4] introduced a
nonlinear predictor based on the extended Kalman filter for estimating
the state of charge in a lead-acid battery utilized in hybrid electric ve-
hicles. The proposed technique was chosen as it offered promise to
overcome the challenges of state divergence, offset, and drift, and by
determining the SOC based on the voltage present in a bulk capacitor
when the value of the surface capacitor is kept constant, the study was
able to achieve an estimation accuracy of 3 %. Variations of the Kalman
filter were also used as was observed in [5], for which an unscented
Kalman filter was used to reduce the errors due to a neural network-
based SOC estimation model. The neural network was used to model
the SOC as a function of system measurements, with an attempt to
eliminate the open circuit voltage and state of charge relationship (OCV/
SOC) benchmarked in most studies to date. These sampled studies above
represent the various estimation methods currently used in recent
studies for estimating the state of charge of a Lithium-ion battery. The
SOC of batteries used in electric vehicle design, specifically the lithium-
ion battery is an integral energy storage component utilized by the BMS
for moderating the internal state of the overall system. SOC estimation
has always been done at the same time or in the same context as a state
of health (SOH) estimation, which is moderated by the resistance (R
measured in Ω) and capacity (E measured in Ah) of a battery. However

wrong or inaccurate estimation of state of charge (SOC) has been linked
to performance decay, accelerated aging, and hazardous incidents in
Lithium-ion batteries used in electric vehicles [6].

There are therefore different methods for estimating the SOC of a
battery. The modeless approach which predominantly features the
Coulomb counting method [7] and model-based observers [8] actively
utilizes different versions of the Kalman filter, while the data-driven
non-linear method [6] consists mainly of neural network-based predic-
tive models. The neural networks are used on experimental data on
battery systems, generated in various charge/discharge conditions. The
applicability of neural networks as a possible technique for the estima-
tion of SOC, based on the known dynamic behaviors of Li-ion battery
types was explored in [9], Related neural network or deep network
prediction studies such as in [6] utilized a load-classifying neural
network on three pre-categorized battery operation modes, namely idle,
charge, and discharge modes. The Parallelized neural network devel-
oped in the study was able to give an average estimation error of 3.8 %
which according to the authors, compares sufficiently with the results of
the model and modeless approaches earlier discussed.

Data-driven models are deemed a good option for estimating SOC as
they are simple to implement and yet powerful due to their dependence
not only on the quality of training data available but also on the small
computation cost of its implementation. The aging of battery systems
plays a key role in the SOC of the battery as well as in the ability to
accurately estimate the SOC as demonstrated in [10], who utilized a
radial basis function neural network model based on the life cycle model
of a 6 Ah Lithium-ion battery to show that there exists a direct rela-
tionship between the rate of battery aging and the accuracy of the SOC
estimate obtained. The study also implied that the accuracy would differ
based on different temperatures and loading profiles.

SOC has a relationship with the open circuit voltage (OCV) of a
lithium battery and neural networks can express this relationship as was
discussed in [11], where an artificial neural network (ANN) was trained
with current and voltage as direct input to the neural network, while the
SOC was the output of the network. The study further highlighted the
fact that single-layered neural networks can capture the non-linear
characteristics of a battery. The impact of temperature on the accurate
estimation of SOC was also expressed by [12] who utilized a time delay
neural network algorithm optimized with an improved firefly algorithm
to estimate the SOC of the Lithium Nickel Cobalt Manganese (LiNiMn-
CoO2) battery in different temperatures and Electric vehicle drive cycles.
The study determined that optimized neural networks performed better
in SOC estimation than un-optimized variants, with the study obtaining
a root mean square error (RSME) below 1 %. Similar studies have ob-
tained error rates that validate the accuracy of the neural network as an
appropriate technique for the estimation of SOC, as [13] utilized a non-
linear autoregressive with external input (NARX) neural network to
estimate the SOC of battery systems in Electric vehicles under different
drive conditions. The Mean square error of estimates was observed in the
study to lie less than 1e-6, for all the tested drive cycles. The mean
square error and the root mean square error have been used as a measure
to determine the accuracy of the different models tested in diverse
studies to date for the estimation of SOC through data-driven methods.
To achieve high accuracy of prediction, optimization methods have also
been considered in numerous studies such as the use of the recurrent
neural network with gated recurrent units for accurate estimation of the
SOC of batteries with sophisticated dynamics and changing ambient
conditions [14]. Where the results of the study based the choice of the
algorithm on the proliferation of easy access to high computing facil-
ities, specifically graphical processing units. An RMSE of 3.5 % was
obtained for untrained temperature considerations in this study, which
further demonstrated the capacity of neural networks to estimate the
SOC of a battery. A few studies have combined the different estimation
methods, such as [15], which used an artificial neural network (ANN) to
estimate the SOC of a LiFePO4 battery based on its current and voltage
readings, and the resultant open circuit voltage (OCV) relationship,

Fig. 1. Illustration of a battery management system [3].
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while a scented Kalman filter was utilized to reduce the errors in the
estimated SOC values. Deep neural networks (DNN), gated recurrent
unit recurrent neural networks (GRU-RNN) and an artificial neural
network (ANN) were used in [16] to compare the SOC values obtained
from simulation and those obtained from experimentation, where re-
sults in different load conditions showed a minimum error rate of 0.5 %,
which in comparison with a Deep neural network proved its efficiency as
an estimator of the SOC of a lithium-ion battery. Other neural network
variants and techniques such as Deep neural networks [17], autoen-
coders, and long short-term memory neural networks [18], feedforward
neural network (FFNN) used together with an extended Kalman filter
(EKF) [19], deep feed-forward neural network (DFFNN) with LSTM [20]
are all different techniques that have been applied for the estimation of
SOC with differing results. This study is aimed at first comparing the
neural network performance with standard ensemble regression
methods to validate its performance as a better option in SOC estimation
and to validate the potential of neural networks and their optimized
variants as the technique of choice for data-driven estimation of the state
of charge of Lithium-ion batteries.

Some of the gaps in literature can be seen from the work in [17],
where the authors suggest that the optimal number of layers for a deep
neural network should lie between three and four layers, where the tri-
layered network in their view performed best in training, but the four-
layer DNN performed best in testing in different drive cycles, thus
they were of the view that higher number of layers or epoch values did
not necessarily improve the model performance but rather increased the
error rate, the optimal number of nodes required or the layers was also a
research focus in [6], who in their opinion determined that the number
of nodes in each layer did not have any beneficial effect on the perfor-
mance of the model, but also observed that the number of layers played a
role in how accurate the results of the neural network would be, the
study also settled on the possibility that a Tri-layered network per-
formed best with an average SOC estimation error of 3.8 %. However
other studies presented results with models using a higher number of
layers.

State of charge (SOC) can be estimated in isolated and combined
operational modes, thus a model’s performance is dependent on the
battery operational mode being considered in each study. While this
study focuses on the state of charge estimation in discharge mode, it

must be mentioned that the introduction of additional variables such as
driving conditions, combined idle/charge/discharge mode, and
consideration of extreme operational temperatures affect the perfor-
mance and overall accuracy of the model. Advanced methods such as
improved singular filtering-Gaussian process regression-long short-term
memory model [21], which achieved excellent whole life cycle capacity
estimation considering fast charging and multi-current variations is an
example of the above. The result of the study was based on the equally
excellent results obtained in [22] which established the strengths of anti-
noise adaptive long short-term (LSTM) models in useful life prediction
for Lithium batteries. LSTM as a method is proving itself a great candi-
date for state-of-charge estimation in combined mode as verified by the
results of very recent studies in [23], who proposed a novel random
search-optimized LSTM model, that combined the search strengths of
the random forest algorithm to improve the accuracy of the LSTM
model.

Optimized variants of the LSTM models are also being seen with
innovations proposed in [24], which used particle swarm optimization
on an LSTM network to good effect once again highlighting the future
possibilities LSTM offers for combined mode estimation with varying
operational considerations in battery systems. The main contributions of
this work are highlighted below

• An accurate comparison of non-neural network models and neural
network models was made on experimentally measured data relating
to the Li [NiMnCo]O2 (H-NMC)/Graphite + SiO battery in fast and
normal charge current conditions.

• The proposed non-neural and neural network models for SOC esti-
mation were trained using the large experimental data, and the
models were compared using metrics such as RMSE, MSE, MAE, and
R2.

• Comparison between the non-neural and neural network models
demonstrated the superiority of neural network models (wide-FFNN)
as an ideal candidate for data-driven SOC estimation in a battery’s
discharge state.

• A comparison of the FFNN model obtained here and the results of
comparative studies such as various variants of LSTM, RNN, and
Kalman filter-based estimators, gated recurrent unit recurrent neural
network (GRU-RNN), etc. were also compared. A key highlight was

Fig. 2. Training dataset profile describing the features of (a) voltage, (b) current, (c) temperature, (d) average voltage, (e) average current, and (f) state of charge.
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in the GRU-RNN study, where results showed that the proposed
wide-FFNN network in this study performed better with a mean
squared error (MSE) of 1e-08 as opposed to 1e-06 obtained in [25]. A
load-classifying neural networks in [6] was also benchmarked, and it
was seen that while it had an average error rate of 3.8 %, the pro-
posed wide-FFNN model had an average error rate of less than 1 %.

3. Method

Estimating the SOC using a data-driven method first involves
sourcing an appropriate dataset that contains the predictors of SOC
derived from a standardized experimental exercise of the Lithium-ion
battery. The LG 18650HG2 Li-ion Battery Dataset [26] consists of
measurements from a 3 Ah LGHG2 cell tested in a thermal chamber with
a 75amp, 5-volt Digatron Firing Circuits Universal Battery Tester
channel with a voltage and current accuracy of 0.1 % of full scale. The
battery is a Li [NiMnCo]O2 (H-NMC)/Graphite + SiO battery with a
nominal voltage of 3.6 V, fast and normal charge current (CC-CV) of
range 1.4 A, 4 A, 4.2 A, 50 mA and 100 mA respectively. The parame-
ters/features in the data set consist of Time (time in seconds), Time
Stamp (timestamp in MM/DD/YYYY HH:MM: SS AM format), Voltage
(measured cell terminal voltage), Current (measured current in amps),

Ah (measured amp-hours, with Ah counter, typically reset after each
charge, test, or drive cycle), Wh (measured watt-hours, with Wh counter
reset after each charge, test, or drive cycle), Power (measure power in
watts), Battery_Temp_degC (battery case temperature, at the middle of
battery, in degrees Celsius measured with an AD592 +/-1degC accuracy
temperature sensor). Four pulse discharge HPPC tests were carried out
at six (6) different temperatures (1, 2, 4, and 6C discharge and 0.5, 1,
1.5, and 2C charge, with reduced values at lower temperatures), 0.5C,
2C, and two 1C discharge tests, series of four - eight drive cycles per-
formed, in the following order: UDDS, HWFET, LA92, and US06. The
drive cycle power profile was then calculated for a single LG HG2 cell in
a compact electric vehicle with all experimental data expressed in
combined normalized forms. The combined normalized data for all
resulting parameters is shown in Fig. 2.

3.1. State of charge (SOC) estimation methods

Linear regression is first considered for use in the estimation of state
of charge (SOC) in this study. It is defined based on the simple regression
model in Eq. (2), which relates one predictor to another.

yi = bo +
∑p

j=1
bjxij + ei (2)

where, i ∈ {1,…….., n}, yi ∈ ℝ is the real-value response for the i-th
observation, bo ∈ ℝ, is the regression intercept, bj ∈ ℝ, is the j-th pre-
dictor’s regression slope, xij ∈ ℝ, is the j-th predictor for the i-th obser-
vation and the Gaussian error term is defined using Eq. (3):

ei ∼ N
(
0, σ2

)
(3)

The decision tree is another model considered for predicting the state
of charge (SOC) of a Lithium-ion battery in this study. It is a hierarchical
structure that consists of nodes connected by edges [27], where entropy
typically determines the measure of impurity or the heterogeneity of
each node.

Decision trees are built top-down starting from a root node. It in-
volves data partitioning of subsets into homogenous instances. Standard
deviation is then used to estimate the homogeneity of an estimated
numerical sample with the mean square error (MSE) being a related
metric for consideration.

Fig. 3. Conventional feed forward neural network structure [29].

Table 1
Model performance under training and test conditions.

Model MAE MSE RMSE R-
squared

Training
Linear regression 0.032948 0.0019538 0.044202 0.98
Tree 0.0044787 0.00010445 0.01022 1.00
Ensemble (bagged)
tree

0.0040595 0.0000734553 0.0085705 1.00

Ensemble (boosted)
tree

0.036311 0.0017021 0.041256 0.98

Testing
Linear regression 0.034487 0.0020742 0.045543 0.97
Tree 0.015548 0.00064398 0.025377 0.99
Ensemble (bagged)
tree

0.014091 0.00052991 0.02302 0.99

Ensemble (boosted)
tree

0.036976 0.0019484 0.044141 0.97

E.O. Ofoegbu
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MSE =
1
n
∑n

i=1
(yi − ŷi)2 (4)

yi is the actual value of the measurement and ŷi is the prediction/pre-
dicted value of the measurement. Trees try to reduce the mean square
error (MSE) at each child node rather than the entropy and this is a clear
difference between regression and classification trees.

Neural networks are the third model considered in this study for
estimating the SOC of a Lithium-ion battery (Fig. 3). Neural networks
with an activation function, are deemed to have an equivalence and not
an approximation to a decision tree [28].

State of Charge (SOC) is thus estimated in a neural network in line
with the expression in Eq. (5),

Fig. 4. RMSE and MSE comparison for the different models (training data).

Fig. 5. RMSE and MSE plots for the different models (test data).
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SOC = T

[
∑

K
Wj, k×Oj+ θj,K

]

(5)

whereWj,k, θj,K all denote the bias and weights from the hidden layer to
the output layer respectively. The output of the output layer is denoted
by Oj and T refers to the activation function deployed in the neural
network. When the ANN has multiple layers between the input and the
output layers, then such a network is regarded as a deep neural network
(DNN) [30]. Deep neural networks have long demonstrated that they
could model complex non-linear relationships, where different DNN
architectures can generate compositional models of objects expressed as
a layered composition of primitives [30]. Common DNN algorithms are
the recurrent neural networks (RNN) primarily used for language

modeling [31], long-short-term memory (LSTM) neural networks are
also particularly effective for the same purpose, while convolutional
neural networks (CNN) are commonly used in computer vision and
imaging applications. The activation functions that are considered for
the different layers in the neural network due to being monotonic, and
differentiable would be the sigmoid as per Eq. (6), the Tanh as per Eq.
(7), and the ReLU as per Eq. (8) respectively.

∅(z) =
1

1+ e− z
(6)

f(x) = tanh(z) =
2

1+ e− 2z
− 1 (7)

R(Z) = Max (0, z) (8)

The estimated SOC values by the different predictive models to be
applied in this study would be compared with their real values using the
maximum standard error (MSE), mean absolute error (MAE), and the
root mean square error (RMSE) as per Eqs. (4), (9) and (10) respectively.

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)2

√

(9)

MAE =
1
n

∑n

i=1
|yi − ŷi | (10)

The real values (yi) refer to the SOC values estimated in the LG
18650HG2 Li-ion Battery dataset used in training the model, while the
predicted values (ŷi) refers to the output values obtained during the data
predictive estimation of different modeling techniques. MATLAB soft-
ware and a personal computer with a core i7 CPU were used in system
training and testing. The data from the dataset was already in normal-
ized form (− 1, 1) as observed in Fig. 2, 70 % of the data was used for
training, while 30 % was used for testing for the neural network models,
linear regression models, and the regression tree models.

Fig. 6. OCV as a function of state of charge [32].

Fig. 7. Residual of predicted response.
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4. Result and discussion

4.1. SOC estimation using linear regression and regression trees

Five (5) cross-fold validation was used in the models to ensure an
easy assessment of the model performance was possible while ensuring

Fig. 8. Single layer FFNN.

Fig. 9. Tri-layered neural network.

E.O. Ofoegbu
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robustness and bias minimization. This is particularly useful since the
train-test split method was being used in all cases. The robust option for
the linear regression model was not selected and a regression tree, as
well as its ensemble variants of bagged trees and boosted trees were
selected for training. Principal component analysis (PCA) was disabled

for all models as optimization for each model was not being considered
at this stage. Minimum leaf sizes of 8 and 30 learners were adopted for
each tree and a learning rate of 0.01 was used in the boosted ensemble
regression tree. Table 1 depicts the MAE, MSE, and RSME obtained for
the different machine-learning models.

Table 2
Training results for model on dataset.

Training

Model Activation function MAE MSE RMSE R-squared

Narrow neural network ReLU 0.014677233 0.000596285 0.024418942 0.994627014
Tanh 0.014601409 0.000599853 0.024491895 0.994594862
Sigmoid 0.015107251 0.000623069 0.024961358 0.994385663

Medium neural network ReLU 0.012842963 0.000514496 0.022682511 0.995363991
Tanh 0.014153716 0.00057365 0.023950991 0.994830971
Sigmoid 0.01525317 0.000625499 0.025009978 0.994363771

Wide neural network ReLU 0.011080935 0.000453449 0.021294351 0.995914071
Tanh 0.014824104 0.000601364 0.024522724 0.994581246
Sigmoid 0.015912847 0.000675248 0.025985533 0.993915495

Bi-layered neural network (FFNN) ReLU 0.01240777 0.000500136 0.022363713 0.995493391
Tanh 0.013362049 0.000544578 0.023336186 0.995092935
Sigmoid 0.015265527 0.000623625 0.024972478 0.99438066

Tri-layered neural network (FFNN) ReLU 0.012048151 0.000489752 0.022130348 0.995586953
Tanh 0.013001267 0.000525526 0.022924345 0.995264608
Sigmoid 0.015087228 0.000622973 0.024959418 0.994386536

Table 3
Testing results for model on dataset.

Testing

Model Activation function MAE MSE RMSE R-squared

Narrow neural network ReLU 0.013104009 0.000289125 0.017003677 0.995268057
Tanh 0.011522578 0.000240913 0.01552138 0.996057111
Sigmoid 0.011459703 0.000255885 0.015996406 0.995812077

Medium neural network ReLU 0.011909586 0.000265727 0.01630114 0.995650995
Tanh 0.011226793 0.000230147 0.015170582 0.996233323
Sigmoid 0.013138933 0.000315092 0.017750818 0.994843078

Wide neural network ReLU 0.009008496 0.000165083 0.012848447 0.997298188
Tanh 0.012908862 0.000294475 0.017160276 0.995180495
Sigmoid 0.013941495 0.000345229 0.018580335 0.994349837

Bi-layered neural network (FFNN) ReLU 0.011390927 0.000269233 0.016408312 0.995593622
Tanh 0.011919245 0.00024363 0.01560864 0.996012653
Sigmoid 0.01427445 0.000358725 0.018940031 0.994128957

Tri-layered neural network (FFNN) ReLU 0.009867597 0.000189458 0.013764363 0.996899255
Tanh 0.010050675 0.000198091 0.014074471 0.996757962
Sigmoid 0.014246918 0.000367847 0.01917933 0.993979664

Fig. 10. Comparison amongst all trained and tested neural network models.
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The four models examined with performance values detailed in
Table 1, Figs. 4, and 5 respectively show that they can all be used to
estimate the SOC of a lithium-ion battery with an MAE in the range of
0.032948 to 0.0044787, an MSE in the range 0.0000734553 to
0.0019538, and an RMSE in the range 0.0085705 to 0.044202 during
the training phases, while in the test phase, the MAE is in the range
0.014091 to 0.036976, the MSE is in the range 0.00052991 to
0.0020742 and the RMSE is in the range 0.02302 to 0.045543 respec-
tively. Ensemble bagged trees have the best performance with an RSME
of 0.0085705, MSE of 0.0000734553 in the training phase, an RMSE of
0.02302, and MSE of 0.00052991 in the test phase. The bagged
ensemble tree model performed better in this case because bagging at-
tempts to reduce the chance of overfitting the complex models,
enhancing prediction stability through the aggregation of multiple re-
gressor outputs. This is evidenced in the model’s improved performance

on the test set, which demonstrates how bagged trees could capture a
battery’s non-linear dynamic performance while retaining past infor-
mation. While the bagged tree (ensemble) is a good model, there still
exists concerns about a vast difference in training and testing metrics for
the model, it would likely not be great in practical applications due to
high residuals (errors) occurring within the non-linear open circuit
voltage (OCV) range (20 % SOC and 80–90 % SOC) of a typical lithium-
ion battery as seen in Figs. 6 and 7 respectively.

4.2. SOC estimation using neural networks

The Neural networks shown in Figs. 8 and 9 respectively are trained
and tested with the dataset, where Tables 2 and 3 represent the details of
their performance under varying activation conditions (ReLU, Tanh, and
Sigmoid).

Fig. 11. Residual plot of predicted response for the wide neural network.

Table 4
Training and testing results for FFNN (tri-layered).

Model Parameters MAE MSE RMSE R-squared

Training
Tri-layered neural network (FFNN) ReLU, layer sizes (100:100:100), 1500 epoch 0.009437887 0.000389889 0.019745604 0.9964868
Tri-layered neural network (FFNN) ReLU, layer sizes (100,200,100), 2000 epochs 0.008860954 0.000350872 0.018731588 0.996838369
Tri-layered neural network (FFNN) ReLU, layer sizes (100:100:100), 1000 epochs 0.009856033 0.000414515 0.02035964 0.9962649

Testing
Tri-layered neural network (FFNN) ReLU, layer sizes (100:100:100), 1500 epochs 0.010097748 0.000223275 0.014942393 0.996345784
Tri-layered neural network (FFNN) ReLU, layer sizes (100,200,100), 2000 epochs 0.00948967 0.000210216 0.014498819 0.996559519
Tri-layered neural network (FFNN) ReLU, layer sizes (100:100:100), 1000 epochs 0.009546607 0.000186722 0.013664617 0.996944032
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Algorithm 1. Training algorithm.

The input to the neural network is a vector X = [Vk, Ik,Tk], which
denotes the combined battery normalized voltage, combined battery
normalized current, and temperature respectively as depicted in Fig. 2,
while Y = SOCk. The input vector is fed to the input of the FFNN, and the
output is the SOC. To yield Yk, the input Xk is multiplied many times
using matrix multiplication, where the activation for each layer (h) is
estimated as

hlg = σ
(∑(

wl
f,g h

l− 1
g − blg

))
(11)

where wl denotes the weights on each layer (l), σl denotes the activation
of layer (l), and bl denotes the bias in each layer (l). The activation
functions defined in Eqs. (6), (7), and (8) relating to the Tanh, Sigmoid,
and ReLU activations are applied to the different layers of the FFNN and
the training result in each case as seen in Table 2.

The narrow neural network with a first layer size of 10 processing
units and one fully connected layer at a maximum epoch size of 1000
was trained and tested with the ReLU, Tanh, and Sigmoid activation
functions respectively with MAE in the range of 0.014601409 to

Fig. 12. Residual plot for tri-layered network.

Fig. 13. Single layer FFNN validation performance.

1: Procedure BACK PROPAGATION (D, n)

2: Load Training Set, D = (x, y), where k =1, learning rate (n)

3: Initialize FFNN weights to H0

4: Model Initialization 

5: While Early stopping Patience <= 15, do

6: For (( , ) ∈

7: Compute 

8: Compute 

9: Compute 

10: Compute 

11: N = 0.1 * n. 
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0.015107251 in training, and 0.011459703 to 0.013104009 in the test
phase, MSE in the range 0.000596285 to 0.000623069 in training, and
0.000240913 to 0.000289125 in testing, and RMSE in the range
0.024418942 to 0.024961358 in training, and 0.01552138 to
0.017003677 in testing phase, where the most accurate of them was the
narrow neural network with the Tanh activation function, with an MSE
of 0.000240913 and RMSE of 0.01552138.

The first layer size was increased to 25 with a single fully connected
layer to generate a medium neural network, which was also trained and
tested at a maximum epoch of 1000 with the ReLU, Tanh, and Sigmoid
activation functions respectively. This has an MAE in the range
0.012842963 to 0.01525317 in the training phase, 0.011226793 to

0.013138933 in the test phase, MSE in the range 0.000514496 to
0.000625499 in training, and 0.000230147 to 0.000315092 in testing,
and RMSE in the range 0.022682511 to 0.025009978 in training, and,
0.015170582 to 0.017750818 in testing. Where the most accurate was
the Medium Neural Network with a Tanh activation function, with an
MSE of 0.000230147 and RMSE of 0.015170582. The result obtained
demonstrated that the Tanh activation function provided good accuracy
for a single-layer neural network with a small to medium number of
processing elements.

A further increase was made to the first layer size to realize an
increment of 100 with a single fully connected layer to generate a wide
neural network, which was trained and tested at a maximum epoch of

Fig. 14. Single layer FFNN training and test performance.

Fig. 15. 3-Layer FFNN validation performance.
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1000 with the ReLU, Tanh, and Sigmoid activation functions respec-
tively. This has an MAE in the range 0.011080935 to 0.015912847 in
training, 0.009008496 to 0.013941495 in testing, MSE in the range
0.000453449 to 0.000675248 in training, and 0.000165083 to
0.000345229 in testing, and RMSE in the range 0.021294351 to
0.025985533 in training, and 0.012848447 to 0.018580335 in testing.
The most accurate was the wide neural network with the ReLU activa-
tion function, with an MSE of 0.000165083 and RMSE of. 0.012848447.

A Feedforward neural (FFNN Bi-layered) network with two fully
connected layers, each of its two hidden layers with ten processing units,
was trained and tested at 1000 epochs with the ReLU, Tanh, and Sigmoid
activation functions respectively. These gave an MAE in the range of
0.01240777 to 0.015265527 in training, and 0.011390927 to
0.01427445 in the test phase, an MSE in the range of 0.000500136 to

0.000623625 in the training phase, and 0.00024363 to 0.000358725 in
the test phase, an RMSE in the range 0.022363713 to 0.024972478 in
training, and 0.01560864 to 0.018940031 in testing. Where the most
accurate was the Bi-layered Neural Network (FFNN) with a Tanh acti-
vation function, with an MSE of 0.00024363, and RMSE of 0.01560864.
It should be noted that the Bi-Layered neural network with a ReLU
activation function, had a better performance/accuracy during the
training phase of the model. Thus, a Tri-layered network with three fully
connected layers, where each of the three layers had ten processing units
respectively was trained and tested at 1000 epochs with the ReLU, Tanh
and Sigmoid activation functions respectively. Where the most accurate
was the tri-layered neural network (FFNN) with ReLU activation func-
tion, with an MSE of 0.000189458, and RMSE of 0.013764363. Upon
Comparison between all the models, it is observed that the wider the
neural network, the more accurate its prediction of the state of charge
(SOC). Fig. 10 depicts the RMSE plot for all tested models.

Fig. 16. 3-Layer FFNN training and test performance.

Fig. 17. Error histogram of single-layer FFNN.

Fig. 18. Error histogram of 3-layered FFNN.
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The wide area neural network is compared with the bagged trees
response in the previous analysis, where the residuals generated as
depicted in Figs. 7 and 11 respectively, show that the bagged trees had a
residual range of − 0.09 to 0.19, while the wide neural network had a
residual range of − 0.05 and 0.079 all lying within the non-linear OCV
range for a lithium battery. The wide neural network is thus deemed to
outperform the bagged trees model.

However, the wide area network could still be improved by adding
more layers to it and utilizing the ReLU activation function, which has so
far demonstrated its ability to outperform the Tanh and Sigmoid func-
tions. Thus, a wide Tri-layered feed-forward neural network was trained
and tested on the same dataset with training and test results shown in
Table 4.

The neural network was made wide with a minimum of 100 pro-
cessing elements in each layer and training for more than 1000 epochs
(1500 and 2000 respectively). The model with the best performance in
the training and test phases was the Tri-layered feed-forward neural
network with MSE of 0.000350872 and 0.000186722, and RMSE of
0.018731588 and 0.013664617 respectively. These indicate the impact
of having many processing units in the neural network and how the ratio
of these impacts the obtained result. In the training phase, the network
training at 2000 epochs with a 1:2:1 number of processing elements
performed better, however, in the test phase, the wide area network had
better performance and produced residuals ranging between − 0.1 and
0.1 as shown in Fig. 12. The wide network depicted in Fig. 9, still out-
performed the Tri-layered network, thus showing that for the prediction
of the state of charge of lithium-ion batteries, the wider the neural
networks rather than its depth (deep neural networks), the more accu-
rate the model will be for fault detection in battery management
systems.

4.3. Model validation

The validation of the single-layer FFNN and a Tri (3)-layer feed-
forward neural network are shown in Figs. 13, 14, 15, and 16, respec-
tively with varying activation functions applied at each layer (Tanh
&Sigmoid -Hidden, and in the ReLU - Output) with simulated test data.
The results are:

The single-layer FFNN converged after 491 epochs, with an MSE of
0.00050654. However, the entire prediction had an error bias of 0.0031,
as seen in Fig. 13. The FFNN was extended to three (3) layers and its
performance is depicted in Figs. 15 and 16.

The three-layer FFNN was able to achieve some convergence at 1000
epochs, which took a far longer time to train the model as opposed to a
single-layer FFNN. However, it can be clear that it has an MSE of
3.7103e-09. Both network models had acceptable R-squared values of
above 0.99 in each case (training and testing). The key feature for State
of charge prediction is measured by the ability of a model to achieve

some accuracy within the non-linear range of the Li-ion battery, which
can be seen in Fig. 6. Which shows the open circuit voltage (OCV)
relationship with the state of charge of a Li-ion battery, between 20 %
SOC and 93 % SOC there exists a non-linear relationship and this is
where the estimation of SOC poses challenges. While the SOC is
reducing, the open circuit voltage (OCV) tends to remain constant, till
SOC drops below 20 %. The FFNN was able to accurately model and
predict the SOC for the entire data range except at the higher values of
100 % in the dataset for the single layer FFNN as seen in Fig. 12.

The Error histograms for the single-layer and 3-layer FFNN are seen
in Figs. 17, and 18, respectively.

5. Conclusion

Battery management systems are designed to not only manage the
operations of the battery pack providing power to a system (electric
vehicles, autonomous robots, etc.), but to also provide a means for early
detection of faults in the battery system. State of charge estimation
provides a simple metric for estimating the state of health of a battery-
powered system. However, the estimation of SOC is itself a challenge
occasioned by the open circuit voltage (OCV) characteristics of a
lithium-ion battery in charge and discharge conditions. Data-driven
solutions utilizing neural networks have been long considered and uti-
lized for this estimation, however, much focus has been placed on the
depth of the neural network, and while deep neural networks offer a
good solution to SOC estimation there is an absence of works to support
or validate its choice nor the ability for the simple feed-forward neural
network to offer competitive performance. This study demonstrates the
ability of the simple linear regressor, ensemble methods (boosted and
bagged trees), and various neural network structures to estimate their
predictive ability on a known dataset. While all the models were able to
predict the SOC with varying degrees of accuracy, it was observed the
bagged trees ensemble model outperformed all other consideredmodels,
in comparison with neural networks, it was observed from the results
obtained that neural networks are the ideal candidate for such pre-
dictions as opposed to linear regressors or ensemble regressors (trees).
Amongst the neural networks selected, it was observed that the network
had high accuracy and minimal residuals when it was made wider
instead of deeper (more than 3 layers). The more processing units
adopted at each layer, the better the performance of the network. To
further prove this, multilayered feed-forward neural networks were
made wider, with more processing units added, and trained at higher
epoch values of 1500 and 2000 respectively.

The performance of the FFNN model was compared to different
models as seen in Table 5. The MAE metric was used to consider related
studies, and all studies were estimated using battery datasets repre-
senting discharge operating mode. The proposed model was only out-
performed by the particle filtering method, which is understandable as
the dataset used in that study was not as large as that used in this study,
and particle filtering is an optimization model. However, in-depth
analysis revealed that the more mainstream methods such as various
variants of the Kalman filter had a best performance of 0.96 % at the low
end and 7.26 % on the high end, DNN and CNN had error rates of 1.1 %
and 1.5 % respectively, while recurrent neural networks and some
variants of it had error percentages ranging from 1.59 % on the low end
to 2.50 % on the high end. These all represent good to acceptable per-
formances for the neural network in which the worst-performing models
outperformed the linear regression and ensemble methods also consid-
ered in this study. However, the results obtained in this study provide a
definite answer in the author’s opinion as to what is the optimal number
of layers to apply to an FFNN for SOC estimation, which was established
at three (3), at 1000 epochs. There was no significant improvement
when the number of layers was either increased or the epochs increased.
While this report disagrees with the position established in [6] which
stated that the number of nodes does not have any marked effect on the
accuracy of the model, however, the result of this study shows that the

Table 5
Performance of different related SOC methods in discharge mode.

Method Error Error
method

Reference

Kalman filter (UKF) 1.05 % MAE [34]
Kalman filter (CDKF) 0.96 % MAE [34]
Particle filtering (PF) 0.2 % MAE [34]
Kalman filter (AEKF) 7.26 % MAE [35]
Adaptive particle filtering (APF) 4.62 % MAE [35]
Proposed FFNN (wide) 0.88 % MAE
Deep neural network (DNN) 1.10 % MAE [36]
Convolutional neural network (CNN-
UNET)

1.5 % MAE [37]

Long short-term memory (LSTM) 2.36 % MAE [38]
LSTM-AHIF 1.18 % MAE [38]
Recurrent neural network (RNN) 2.50 % MAE [39]
GRU-RNN 2.53 % MAE [39]
DAE-GRU 1.59 % MAE [39]
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wider the network (more nodes), the better the minimization of the loss
function and overall accuracy. This can be seen also in the work using
parallel neural networks to achieve a wide and powerful neural network
in [33] which was used in battery pack state of charge estimation with
an MSE of 0.0268 % which outperformed other models compared to
combined operations SOC estimation.

The results of this study also demonstrated a marked improvement
over the default neural network structure (single layer FFNN), which
further justifies the position that while deep networks are good candi-
dates for the estimation of SOC, wide feed-forward neural networks
would also provide similar performance at less computational costs
required for integration into thin clients of hardware such as the battery
management system.
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