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Abstract: Blood platelets are anucleate cells that play a vital role in haemostasis, innate
immunity, angiogenesis, and wound healing. However, the inappropriate activation of
platelets also contributes to vascular inflammation, atherogenesis, and thrombosis. Platelet
activation is a highly complex receptor-mediated process that involves a multitude of
signalling intermediates in which Reactive Oxygen Species (ROS) are proposed to play an
important role. However, like for many cells, changes in the balance of ROS generation
and/or scavenging in disease states may lead to the adoption of maladaptive platelet
phenotypes. Here, we review the diverse roles of ROS in platelet function and how ROS are
linked to specific platelet activation pathways. We also examine how changes in disease,
particularly the plasma oxidised low-density lipoprotein (oxLDL), affect platelet ROS
generation and platelet function.

Keywords: platelet ROS; oxidative lipid stress; oxLDL

1. Introduction
Blood platelets play a critical role in the prevention of blood loss and wound healing

upon vascular injury. In circulation, the combination of shear stress and their size ensures
that platelets are marginalised to the periphery of vessel where they scan for the integrity
of the vessel wall. Under normal conditions, platelets are in a constant state of inhibition
as a consequence of continual exposure to endothelial-derived inhibitors, prostacyclin [1],
and nitric oxide [2], which prevent platelet activation through cyclic adenosine monophos-
phate (cAMP) and cyclic guanosine monophosphate (cGMP) signalling, respectively. Upon
vascular injury, tonic inhibition of platelets is overcome to promote rapid activation and
thrombus formation. The precise mechanism of platelet activation at areas of vascular dam-
age is complex and involves a number of adhesive and soluble ligands, working through
both tyrosine kinase and G-protein coupled receptor (GPCR) signalling cascades [3].

Vascular damage exposes collagen and tissue factor to the circulation, tissue factor
induces the extrinsic coagulation cascade, resulting in the localised generation of the
potent platelet agonist thrombin. The combination of collagen and thrombin drives platelet
exocytosis of dense granules containing adenosine diphosphate (ADP), and generation
of thromboxane A2 (TxA2), that act to further enhance recruitment of platelets into the
growing thrombus [4]. Activated platelets also release α-granules, which translocate
membrane-bound receptors to the platelet surface and assist in propagation of activation
and adhesion through receptors such as P-selectin and CD40L, or soluble factors such as
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fibrinogen. These two receptors promote platelet-endothelial cell and platelet-leukocyte
adhesion via interaction with P-selectin glycoprotein ligand 1 and CD40, enabling vascular
adhesion and bridging of immune complexes to the site of injury [5].

The adhesion of platelets to the vessel wall is mediated by the interaction of previously
inactive or cryptic adhesive ligands including von Willebrand factor (vWF), collagen,
laminin and fibronectin [6]. Interaction between these factors and numerous glycoprotein
and integrin receptors facilitates platelet accumulation at the vessel wall. Of particular
interest are GPIbα, part of the larger GPIb-V-IX complex, and GPVI, which act to tether
and activate platelets through vWF and collagen, respectively. Activated platelets within
a thrombus differ in their morphology and function based primarily on an activation
gradient [7]. Canonically, thrombi possess a sustained and potent phenotype of platelet
activation in the core, with the appearance of procoagulant platelets, characterised by
the redistribution of phosphatidylserine (PS) from the inner leaflet of the platelet plasma
membrane to the outer leaflet [8].

In this review, we summarise the diverse roles of Reactive Oxygen Species (ROS) in
platelet function and how it is linked to specific platelet activation pathways. We also
examine how changes in disease, particularly hyperlipidaemia, affect ROS production and
platelet function.

2. Reactive Oxygen Species and Platelet Activation
ROS consist of a range of oxidant species containing oxygen free radicals, such as

superoxide anion (O2
•), hydroxyl radical (•OH), peroxyl radicals (ROO•), and non-radical

oxidants such hydrogen peroxide (H2O2), lipid peroxides (LOO•), and singlet oxygen
(O−). The production of these ROS occurs during the physiological process of platelet
activation. Early studies from Marcus and colleagues demonstrated the capacity of platelets
to synthesise O2

• [9]. Subsequently, it was established that platelet activation led to the
endogenous generation of both O2

• and H2O2, potentially •OH, and that quenching of ROS
diminished platelet activation [10]. Stimulation of platelets with physiological agonists,
such as collagen and thrombin, produces ROS, which are required for effective platelet
activation [11]. In addition, in vitro inhibition of ROS generation blocks collagen- and
thrombin-mediated platelet aggregation [12]. It is widely accepted that ROS play a critical
role in the signal transduction mechanisms that drive platelet activation.

2.1. ROS Generation in Platelets

Several sources of ROS have been identified in platelets, these include enzymatic
processes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX),
cyclooxygenase-1 (COX-1), xanthine oxidase (XO), and the mitochondrial respiratory chain.

2.1.1. NADPH Oxidases (NOX)

NOXs are a family of enzymes responsible for the majority of the non-mitochondrial
ROS production in platelets [13]. While the NOX family is composed of seven different
isoforms, including NOX1–5 and dual oxidase 1–2; to date only NOX1 and NOX2 have
been shown to be expressed in both human and murine platelets [14]. Both NOX1 and
NOX2 are composed of subunits that come together to form complexes upon platelet
activation. The activated form of NOX1 includes the assembly of the catalytic subunit
NOX1 with regulatory subunits of p22phox, NOX organiser 1 (NOXO1, a homologue of
p47phox), NOX activator 1 (NOXA1), and Rac. Similarly, the activated NOX2 is composed
of the catalytic subunit gp91phox, and the regulatory subunits of p22phox, p40phox, NOXO1,
p67phox (NOXA1 homologue), and Rac [15]. Activation of these enzymes is driven by
protein kinase C (PKC)-mediated phosphorylation of cytosolic p47phox (or its homologue
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NOXO1), which facilitates its interaction with membrane bound p22phox and the formation
of holoenzymes [16]. The binding of GTP-Rac-p67phox or GTP-Rac-NOXA1 completes the
active enzyme. The activated NOX complexes then transfer electrons from NADPH to
molecular oxygen, producing O2

•.
NOX1/2/4 triple knockout exhibit impaired platelet aggregation, adhesion, activation,

and thrombus formation, and diminished O2
• production in response to collagen and

thrombin [17]. These mice were protected against FeCl3-induced carotid artery thrombosis
and collagen/epinephrine-induced pulmonary embolism; however, tail bleeding time and
procoagulant PS exposure were unaffected. Elevated ROS production reduces the threshold
for platelet activation and modulates endogenous inhibitory pathways [18]. Platelets from
the triple knockout mice had significantly higher levels of intracellular cGMP, suggesting a
link between NOX-induced ROS and platelet inhibitory signalling [17].

Many of the studies examining the role of ROS in platelets have focused on the individ-
ual NOX isoforms, which are now proposed to be activated in an agonist-specific manner
and play functionally discrete roles in platelet activation, although contradictory findings
have been reported (summarised in Table 1). The role of GPVI-mediated platelet activation
and ROS generation is likely via NOX, although the precise NOX isoform involved remains
unknown. Early studies with platelets isolated from X-linked chronic granulomatous dis-
ease (CGD) patients with genetic NOX2 (gp91phox) deficiency show significantly less ROS
generation after collagen activation [19]. More recently GPVI-mediated activation has led
to the generation of extracellular vesicles that contain NOX1, which are able to bind to and
activate platelets [20]. Using NOX1- and NOX2-deficient mice, Delaney et al., demonstrated
NOX1 involvement in thrombin/GPCR-induced signalling, while NOX2 was responsive to
cross-linked collagen-related peptide (CRP-XL)/GPVI-induced signalling [21]. In contrast,
pharmacological studies using NOX1 inhibitor ML171, combined with NOX2-deficient
mice, suggest that NOX2 is not required for GPVI-mediated platelet activation [22]. To add
further conflicting evidence, the simultaneous measurement of platelet aggregation with
intracellular or extracellular oxygen radicals using electron paramagnetic resonance (EPR),
combined with NOX-specific inhibitory peptides, suggested that NOX1 and NOX2 were
linked to collagen- and thrombin-mediated activation, respectively [23].

Table 1. Discrepancies in the roles of NOX downstream GPCR and GPVI signalling pathways.

Agonists Mice/
Inhibitor

Observations Conclusions Ref.

CRP (0.5 µg/mL)

Thrombin (0.018 or 0.025 U/mL)

NOX1−/− ROS
Aggregation
ATP secretion
Ca2+ mobilisation

Thrombin ↓
CRP ↔

NOX1 is involved in
GPCR-induced platelet
activation

[21]

NOX2−/− ROS
Aggregation
ATP secretion
Ca2+ mobilisation

Thrombin partial
CRP ↓

NOX2 is involved in GPCR-
and GPVI-induced platelet
activation

NOX1−/− and
NOX2−/−

Carotid artery
occlusion

Tail bleeding

NOX1−/− ↔
NOX2−/− ↓

NOX1−/− ↔
NOX2−/− ↔

NOX2 is involved in thrombosis

NOX1 and NOX2 are
dispensable for haemostasis

Collagen (3 µg/mL)

Thrombin (0.1 U/mL)

NOX1−/− Aggregation Thrombin ↔
Collagen ↓

NOX1 is involved in
GPVI-induced platelet
activation

[23]

NOX2−/− Aggregation Thrombin ↓
Collagen ↔

NOX2 is involved in
GPCR-induced platelet
activation



Cells 2025, 14, 500 4 of 18

Table 1. Cont.

Agonists Mice/
Inhibitor

Observations Conclusions Ref.

NOX1−/− and
NOX2−/−

Carotid artery
occlusion

Tail bleeding

NOX1−/− ↓
NOX2−/− ↔

NOX1−/− ↔
NOX2−/− ↔

NOX1 is involved in thrombosis

NOX1 and NOX2 are
dispensable for haemostasis

2-APT (NOX1
inhibitor)

Superoxide anion

Aggregation

Static adhesion over
collagen

Thrombus formation
under flow

Carotid artery
occlusion

Tail bleeding

Thrombin ↓
Collagen ↓

Thrombin
marginally↓
Collagen ↓

↓

↓

↓

↔

NOX1 inhibition impairs
GPVI-induced platelet
activation without affecting
GPCR responses

Collagen (10 µg/mL)

CRP (5 µg/mL)

Thrombin (0.25U or 1U/mL)

NOX1/2/4−/− Superoxide anion
Aggregation
αIIbβ3

P-selectin
PS exposure

Carotid artery
occlusion

Tail bleeding

Thrombin ↓
Collagen
/CRP ↓

Thrombin ↔
CRP ↓

↓

↔

NOXs are critical for
GPVI-induced platelet
activation.
GPCR-associated integrin
activation and platelet
aggregation are
NOX-dependent, whilst
P-selectin and PS exposure are
NOXs independent

[17]

NOX1−/− Aggregation

Thrombus formation
over collagen

Thrombin ↔
Collagen ↓

↔

NOX1 is involved in GPVI- and
GPCR-induced platelet
activation

NOX2−/− Aggregation

Thrombus formation
over collagen

Thrombin ↓
Collagen ↔

↓

NOX2 is involved in
GPCR-induced platelet
activation

NOX4−/− Aggregation

Thrombus formation
over collagen

Thrombin ↔
Collagen ↔

↔

NOX4 has negligible role in
platelet regulation

↓, decreased upon agonist stimulation; ↔, unaffected; 2-APT, 2-Acetylphenothiazine; ATP, adenosine triphosphate;
CRP, collagen-related protein; GPCR, G protein-coupled receptor; GPVI, glycoprotein VI; NOX, NADPH oxidase,
PS, phosphatidylserine; ROS, reactive oxygen species.

Pharmacologically, in vivo administration of NOX1 inhibitors diminished murine
platelet aggregation, oxygen radical production, thrombus formation, and carotid artery
occlusion, without impacting haemostasis. NOX1 inhibition could, therefore, be a viable
strategy to control collagen-induced platelet activation and reduce thrombosis without
deleterious effects on haemostasis [22,23].
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As with many platelet studies, the use of different pharmacological inhibitors, reliance
on animal models, and the limited capacity to study long-term effects in in vitro models
can limit study conclusions. Whilst discrepancies exist (summarised in Table 1) and further
studies are needed to better understand the role of NOX isoforms downstream of specific
agonists, it is clear that NOX enzymes play key roles in platelet activation and have
subsequent targeting potential for the prevention of thrombosis.

2.1.2. Cyclooxygenase-1 (COX1)

Generation of TxA2 from membrane arachidonic acid (AA) is a critical element of
platelet activation. The AA liberated from membrane phospholipids, by the action of
phospholipase A2 (PLA2), is metabolised through COX-1 [24]. COX is found in human
platelets with 10,000 copy number per platelet [25]. The conversion of AA to the intermedi-
ate prostaglandin H2 leads to the generation of O2

• [26]. Platelet O2
• production by AA

was almost completely suppressed in patients with inherited deficiency of gp91phox, the
catalytic core of NOX2 [27].

2.1.3. Xanthine Oxidase (XO)

XO is involved in the purine metabolic pathway, which catalyses the oxidation of
hypoxanthine, a breakdown product of ATP, to xanthine, and subsequent oxidation of
xanthine to uric acid producing O2

• and H2O2, respectively [28]. Studies using allopurinol,
an XO inhibitor, demonstrate inhibition of platelet activation and modulation of throm-
bosis in dogs [29]. Although XO is not detected in the human platelet proteome studies
performed by Burkhart et al. [25], XO activity ranging from 0.65 to 25.2 mU/mL was
detected in platelets from healthy volunteers [30]. Additionally, increased levels of XO have
been observed in platelets isolated from unstable angina patients, compared to healthy
individuals, indicating that cardiac ischaemia is linked to ROS production by platelets [31].
Further studies with XO-deficient mice would be required to confirm a role in vivo.

2.1.4. Mitochondrial Respiratory Chain

Mitochondria are a major source of O2
• in all cells utilising oxidative phosphoryla-

tion (OXPHOS). Mitochondrial ROS production is important for redox signalling, which
links mitochondrial function to overall cell biology, but can also induce cell dysfunction
in situations of mitochondrial stress. Mitochondrial ROS serve as signalling molecules in
response to evolving microenvironmental changes, including coordinating the resistance
and adaptation to hypoxia, activating cell survival mechanisms and regulating cellular
differentiation [32]. However, excessive mitochondrial ROS production can lead to cell
damage and contribute to disease pathology. Complexes I and III of the electron transport
chain (ETC) are the two major loci of production of O2

• [33], which is then dismutated to
H2O2 by mitochondrial manganese superoxide dismutase (MnSOD or SOD2) and subse-
quently to H2O by glutathione peroxidase (GPx). However, mitochondrial O2

• can also be
released into the cytosol through the opening of the inner membrane anion channel [34],
triggering elevated ROS production in neighbouring mitochondria, termed ROS-induced
ROS release [35].

Platelets require high levels of ATP, and these are sourced from both glycolysis and
mitochondrial aerobic respiration [36]. Several research groups have demonstrated that
platelet activation by collagen and thrombin induces a rapid and transient increase in the
mitochondrial membrane potential (∆Ψm) and OXPHOS, likely via Ca2+ mobilisation [37].
The increase in ∆Ψm is associated with increased ROS generation in mitochondria, and
hyperpolarisation of the membrane reduces the ETC, resulting in leakage of electrons from
the chain, followed by upregulation of O2

• production [38]. The loss of ∆Ψm causes the
opening of the mitochondrial permeability transition pore, and release of cytochrome c
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from the mitochondrial matrix to the cytosol, which may play a role in apoptosis-dependent
PS exposure [39].

Numerous studies have demonstrated that platelet ROS produced by the mitochondria
have a significant impact on platelet function. Increased mitochondrial ROS production
correlates with increased platelet activation in sickle cell disease patients, where elevated P-
selectin and integrin αIIbβ3 activation were attenuated with mitochondrial uncoupling and
mitochondrial ROS scavenging [40]. In addition, hyperglycemia-induced ROS generation
in diabetic patients was prevented in the presence of thenoyltrifluoroacetone, an inhibitor
of mitochondrial ETC complex II and carbonyl cyanide m-chlorophenylhydrazone, an
uncoupler of OXPHOS, suggesting that in this condition, ROS arise from the mitochondrial
ETC [41]. Recently, mitoquinone, a mitochondria-targeted antioxidant, has been shown
to significantly decrease mitochondrial ROS generation, subsequently inhibiting platelet
expression of P-selectin and CD63 (α- and dense granule secretion, respectively), platelet
aggregation induced by collagen, convulxin, PAR1, and phorbol 12-myristate 13-acetate,
and platelet adhesion and spreading on collagen [42]. This new study suggests that
mitochondrial ROS generation is important to many basic platelet functions.

2.2. Platelet Antioxidant Systems

Platelets possess a range of antioxidant systems that act to control passive and exces-
sive ROS production, preventing potential ROS-induced platelet dysfunction. The most
prominent of these endogenous antioxidant systems are superoxide dismutase (SOD),
catalase, and glutathione peroxidases (GPx).

2.2.1. Superoxide Dismutase (SOD)

SOD is a class of enzymes that catalyses the dismutation of the highly reactive O2
•

into molecular oxygen and hydrogen peroxide. Platelets express two intracellular SOD
enzymes: SOD1 and SOD2, with 13,300 and 29,500 copy numbers per platelet in human,
respectively [25]. SOD1, which is found in the cytosol, is a homodimeric metalloprotein,
which has a copper-zinc active site for dismutation of O2

• [43]. In contrast, SOD2, which is
present in the mitochondrial matrix, has a manganese-iron active site [44], and, hence, it is
also known as MnSOD. Human platelets contain approximately 1 fg of SOD/platelet, and
of this approximately 77% is SOD1 [45]. Thrombus formation on collagen is significantly
attenuated in the presence of SOD [46]. Several studies have assessed the potential role of
SOD isoforms in regulating platelet activity in mice. Deficiency in SOD1 enhances the sus-
ceptibility to both arterial and venous thrombosis in mice, but it does not enhance platelet
activation in response to thrombin, suggesting that platelet SOD1 does not confer protec-
tion against platelet hyperactivation. Instead, absence of SOD1 impairs thrombomodulin-
dependent protein c activation, hence anti-coagulant activity is affected [47]. Studies using
mice deficient in platelet SOD2 demonstrated increased platelet mitochondrial ROS, but
overall cellular ROS was unchanged. Interestingly, platelet specific SOD2 deletion did
not alter arterial thrombosis, haemostasis, or outcomes in immune disorders (sepsis and
inflammatory arthritis) in which platelets play a role [48], suggesting that SOD2 is dispens-
able for platelet redox balance. The age of the mice used in this study was 7–15 weeks
old, suggesting that low basal mitochondrial superoxide produced in platelets at young
age is insufficient to cause pathologic changes even with concomitant SOD2 deficiency.
During ageing, calcium elevation, mitochondrial hyperpolarisation, PS exposure, and
platelet-dependent thrombin generation were exacerbated in SOD2 knockout platelets
compared with control mice [49]. When a mitochondrially targeted SOD2 mimetic was
applied, age-associated platelet pro-oxidant generation, procoagulant platelet formation,
and in vivo arterial thrombosis were prevented [49].
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2.2.2. Catalase

Catalase is a tetrameric porphyrin-containing enzyme that catalyses the conversion
of H2O2 to water and molecular oxygen. Catalase is present in human platelets with a
copy number of 12,000 per platelet [25]. In a platelet study using rats as a model, catalase
activity is detected at approximately 120 U/mg protein [50]. In human platelets, catalase
inhibits collagen-stimulated TxA2 production, and release of AA from platelet membranes
in a dose-dependent manner [51], corroborated by another study where collagen-induced
whole blood aggregation was found to be associated with the production of H2O2, a process
dose-dependently inhibited by catalase [52].

2.2.3. Glutathione Peroxidases (GPx)

There are four isoforms of GPx detected in the human platelet proteome: GPx1, GPx3,
GPx4, and GPx7, with the copy numbers of 34,100, 1800, 4600, and 1000 per platelet,
respectively [25]. GPx are a family of selenocysteine-containing enzymes tightly coupled to
the pentose phosphate pathway via reduced NADPH, which restores reduced glutathione
(GSH) concentrations via GSH reductase [53]. GPx reduces hydrogen peroxide to water
and lipid peroxides to their corresponding alcohols using GSH as a co-substrate [54]. GSH
depletion in platelets leads to attenuated GPx activity and increased lipid peroxidation [45].
Therefore, GPx plays a crucial role in protecting cells from oxidative damage caused
by lipid hydroperoxides accumulation. In platelets, GPx has been functionally linked
with 12-lipoxygenase, where it oxygenates AA into 12-hydroperoxy-eicosatetraenoic acid
(12-HpETE), which is then reduced into 12-hydroxy derivative (12-HETE) by a cytosolic
GPx [53]. By keeping the hydroperoxides at a low level, GPx lowers the peroxide tone
of platelets, preventing accelerated oxygenation of AA. It has been reported that lower
GPx activity can lead to a relative accumulation of 12-HpETE [55], where such an increase
may activate signal transduction pathways leading to AA release, amplifying platelet
activation [56].

It has been reported that members of a family with a cerebral thrombotic disorder,
exhibited reduced levels of GPx3 activity, increased circulating H2O2, and decreased NO
levels in plasma [57]. Subsequent development of a GPx3-deficient mice to assess platelet
function and thrombosis, demonstrated lack of GPx3 leads to enhanced ROS flux and
platelet-dependent thrombosis in vivo, in part owing to the decreased NO bioavailability
in the plasma [58]. GPx potentiates the inhibition of platelet function via inactivation of
NO by reducing lipid hydroperoxides [59]. Suppression of NO was associated with greater
platelet aggregation due to impairment of platelet inhibitory mechanisms, predisposing
those affected to thrombotic complications.

2.3. The Role of ROS in Platelet Activation

Most ROS generation studies in platelets have focussed on activation by thrombin
and collagen, although ADP [60,61] and AA [27,60] were found to also affect platelet ROS
generation. Depending on the agonist, and, therefore, the stimulated receptor and signalling
pathway, the ROS produced is spatially distinct within the cell [62]. Investigations using
extracellular antioxidants have enabled the contribution of intracellular and extracellular
platelet ROS to platelet activation to be distinguished. Stimulation of platelets with the GPVI
agonist convulxin induces intraplatelet ROS production, whereas thrombin, a GPIbα and
protease-activated receptor (PAR) agonist, induces mainly extracellular ROS formation [62].
There is evidence to suggest that ROS generation in response to these agonists may be
linked to distinct platelet functions, and pharmacological antioxidants do not inhibit all
measures of platelet activation induced by agonists. For example, a study investigated
the spatial regulation of ROS, surface expression of P-selectin, and CD40L, and activated
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integrin αIIbβ3 induced by convulxin and thrombin was found to be abolished by the
GPx mimetics Ebselen and NAC, whilst the externalisation of PS was unaffected [62].
However, in the presence of both extracellular antioxidants polyethylene glycol-SOD (PEG-
SOD) and catalase, only the P-selectin expression and αIIbβ3 activation upon thrombin
stimulation, but not convulxin, were significantly reduced [62]. Therefore, these data
suggest that both intra- and extra-cellular ROS have a role in regulating the biochemical
steps in platelet activation, and spatially resolved, site-specific ROS, may be targeted to
control platelet activation via either thrombin or collagen. However, more studies are
required to validate this.

ROS production downstream of GPVI is biphasic with the initial phase being spleen-
tyrosine kinase (Syk) independent, while the second phase is Syk dependent. The initial
burst of ROS occurs within 2 min of GPVI-mediated activation, followed by additional
ROS production reaching a plateau after 15–20 min. In the presence of a Syk inhibitor,
BAY61-3606, there was no effect on the initial ROS burst, but a complete inhibition of
the second phase of ROS production [63]. These pathways may involve an interaction
of GPVI with TNF adapter receptor 4 (TRAF4) [64], which acts to link PKC-δ-regulated
p47phox phosphorylation, translocation, and NOX2 activation, resulting in ROS generation.
On the other hand, thrombin-induced ROS generation is reported to require both GPIbα-
and PAR4-mediated signalling through focal adhesion kinase (FAK) and NOX1 activa-
tion [65]. This may involve cleavage of the thrombin-binding site on GPIbα, and be linked
specifically to PAR4, as well as involving cyclophilin A (CyPA). CyPA has been identified as
a vital component in the generation of ROS under conditions of thrombin stimulation [66].
In vascular smooth muscle cells, CyPA has been shown to interact with the p47phox subunit
to modulate the assembly of the cytoplasmic membrane NADPH complex, which generates
ROS [67]. In CyPA-deficient mice, there is reduced thrombin-induced ROS formation and
platelet activation via the integrin αIIbβ3 [66].

Whilst the link between agonist stimulation and ROS generation in platelets is well
established, the association between ROS and its downstream effects is relatively under-
examined, although some mechanisms are known. Protein tyrosine phosphatase (PTP) is
one of the proteins that is oxidised by ROS, where its active site cysteine residue, in the PTP
domain, loses its catalytic activity following ROS oxidation [68]. PTPs are crucial regulators
of GPVI-mediated signalling pathways in platelets [69,70]. It has been demonstrated by
Jang et al. [71] that Src homology region 2 domain-containing PTP-2 (SHP-2) is oxidised by
ROS generated in collagen-activated platelets, inactivating SHP-2 and promoting collagen-
induced phosphorylation of downstream signalling molecules, subsequently enhancing
granule secretion, αIIbβ3 activation, aggregation, and thrombosis. In addition, O2

• can
react with GSH, producing oxidised glutathione GSSG and more O2

• [72]. Such reaction
decreases the GSH/GSSG ratio and affects the redox regulation of protein thiol groups,
increasing platelet sensitivity towards agonists activation via calcium mobilisation [73]. A
previous study has demonstrated that O2

• contributes to thrombus formation by disrupting
the redox potential-dependent regulation (GSH/GSSG ratio) of the platelet αIIbβ3 inte-
grin [74,75], owing to the fact that the extracellular domains of αIIbβ3 contain disulphide
bonds, which on reduction activates the receptor and induces aggregation [76]. However,
more work is needed to further our understanding of the redox-dependent changes in the
biochemistry of the signalling proteins involved in platelet activation.

2.4. ROS and Antioxidants in Disease and Ageing

The imbalance between ROS generation and antioxidant mechanisms leads to in-
creased oxidative stress, which is a common pathophysiological mechanism associated
with various cardiovascular diseases (CVD) and platelet dysfunction.
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Changes in antioxidant protection has been associated with platelet hyperactivity in
several disease states including unstable angina and myocardial infarction [31], type 1 and
2 diabetes (T1D, T2D) [77], coronary artery stenosis [78], and autoimmune thrombocytope-
nia (ITP) [79]. Basal platelet thromboxane B2 (TxB2), the stable catabolite of TxA2, has
been shown to be higher in T1D and T2D patients compared to controls, whereas platelet
malondialdehyde (MDA) level, which assesses the overall lipid peroxide level, was only
higher in T2D platelets, but cytosolic GPx activities were lower in platelets from both
patient groups [77]. These data indicate that increased ROS and impaired antioxidant
capacity may contribute to the increased risk of thrombotic occurrence of vascular dis-
eases, and particularly in T2D patients. In murine models of streptozotocin-induced T1D,
GSH levels, and the expression of antioxidant enzymes GPx-1 and SOD1, were lowered
in platelets [80]. Treatment with the ROS scavenger n-acetylcysteine (NAC), a precursor
of GSH, restored the antioxidant reserve of the platelets and protected T1D mice against
the risk for stroke. However, a contradictory study has reported that the activities of
SOD and catalase in platelets from T2D patients showed no difference in comparison with
healthy controls [81]. In coronary artery stenosis patients, reduced mean platelet GPx
activity and increased MDA production have been reported, which could be a contributing
factor for the development of coronary artery disease [78]. Alongside this, in patients with
unstable angina and myocardial infarction, a remarkable increase in platelet XO activity
and MDA levels, with concomitant reductions in the activities of SOD, catalase and GPx,
was found, clearly indicating the critical role of oxidants and antioxidants in ischaemic
heart conditions [31]. Interestingly, a study of platelets from ITP patients, in the active
phase of disease, demonstrated increased platelet oxidative stress, reduced antioxidant
capacity, and increased platelet activity, which returned to normal during remission [79].
These data suggests that oxidative stress and platelet activation are implicated in the active
phase of ITP.

In addition to disease states, ageing (40–79 years old) has also been shown to be
associated with increased platelet ROS, decreased antioxidant activity (catalase, SOD), and
enhanced activation (sCD62p, sCD40L) [82]. Intriguingly, beyond 79 years old, there is
an improved platelet phenotype and reduction in hyperactivity, due to enhanced levels
of platelet antioxidant enzymes and improved redox homeostasis [82], suggesting an age-
associated adaptive mechanism. However, it is important to note that, in this oldest age
group (>79 years old), the elevation in activated integrin αIIbβ3 levels was the highest in
comparison to other age groups [82], indicating that this element of platelet activation is
not correlated to the antioxidant status.

3. Platelet Reactive Oxygen Species and Hyperlipidaemia
The inflammatory milieu associated with atherothrombosis shifts platelet towards

a maladaptive phenotype characterised by hyperactivity, and this is associated with a
systemic pro-thrombotic phenotype and increased ROS [83,84]. Patients with T2D and
coronary artery disease exhibit increased platelet reactivity, and have increased prospective
risk for coronary events and death [85]. Hyperlipidaemia, a key driver of atherothrombosis,
causes a change in platelet biology in which aberrant ROS production plays a critical
role. The appearance of pathological ligands in the blood, such as oxidised lipids, acting
as endogenous damage associated molecular patterns (DAMPs), interact with pattern
recognition scavenger receptors including CD36, scavenger receptor A1, and lectin-like
oxLDL receptor-1 (LOX-1), and promote unregulated platelet activity exacerbated by ROS.
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3.1. oxLDL and Platelet ROS

Hyperlipidaemia, which is characterised by significantly elevated plasma lipids, in-
cluding oxidised low-density lipoprotein (oxLDL), a circulating DAMP known to acti-
vate human and murine platelets [86–88], increases platelet–endothelial interactions [89].
Platelets recognise oxLDL via the cell surface receptors CD36 and LOX-1, which lead to ROS
generation. Table 2 and Figure 1 summarise the mechanisms of platelet ROS generation in
response to hyperlipidaemia and its downstream platelet functions.

Table 2. Effect of ROS in platelet hyperlipidaemia.

Hyperlipidaemic Insult Platelet Function Downstream
of ROS Production

ROS Related Inhibitors Used Pathway Involved Ref.

oxLDL αIIbβ3 activation, TxB2
production, thrombosis under
shear stress

-Gp91ds-tat CD36/LOX1-p38MAPK/PKC-NOX2 [90]

oxLDL aggregation, P-selectin,
adhesion under shear stress

NAC PI3K-AKT-mTOR [91]

oxPCCD36 P-selectin NAC
Gp91ds-tat
ML171

CD36-Src-PLCγ2-NOX2 [92]

oxLDL aggregation VAS2870
DPTA-NONOate
PEG-catalase

CD36-Src-NOX-ERK5 [93]

oxLDL
oxPCCD36

diminished sensitivity to
inhibitory NO-cGMP signalling

TEMPOL
MnTMPyP
Gp91ds-tat

CD36-Src-Syk-PLCγ2-PKC-NOX2 [18]

PCSK9 thrombin-induced
platelet aggregation

VAS2870 CD36-Src-ERK5-JNK-ROS-
p38MAPK/cPLA2/COX-1/TxA2

[94]

AKT, protein kinase B; cGMP, cyclic guanosine monophosphate; COX-1, cyclooxygenase-1; cPLA2, cytosolic
phospholipase A2; DPTA-NONOate, dipropylenetriamine diazeniumdiolate; ERK5, extracellular signal-regulated
kinase 5; Gp91ds-tat, peptide inhibitor for NOX; JNK, c-Jun N-terminal kinases; LOX1, lectin-like oxLDL receptor-
1; ML171, 2-acetylphenothiazine; MnTMPyP, superoxide dismutase mimetic; NAC, N-acetylcysteine; NO, nitric
oxide; NOX, NADPH oxidase, oxLDL, oxidised low-density lipoprotein; oxPCCD36, oxidised phospholipid specific
to CD36; p38MAPK, p38 mitogen-activated protein kinases; PCSK9, proprotein convertase subtilisin/kexin 9;
PEG-catalase, polyethylene glycol-catalase; PI3K, phosphoinositide-3-kinase; PKC, protein kinase C; PLCγ2, phos-
pholipase C gamma 2; mTOR, mechanistic target of rapamycin; ROS, reactive oxygen species; Src, proto-oncogene
tyrosine-protein kinase; Syk, spleen-associated tyrosine kinase; TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-
1-oxyl; TxA2, thromboxane A2; TxB2, thromboxane B2; VAS2870, NOX inhibitor.

OxLDL propagates platelet aggregation and enhances platelet-dependent thrombosis,
and these effects have been shown to be diminished by peptides targeting oxLDL receptors
CD36 or LOX1, acting through NOX2 inhibition [90]. Our work, and that of others, has
dissected the downstream signalling mechanisms of oxLDL-CD36 ligation leading to ROS
production (Figure 1). A report by Assinger et al., identified a role for oxLDL-CD36 in the
induction of ROS production alongside calcium flux, platelet activation, and expression of
CD40L, and this activation was shown to be sensitive to the non-specific NOX inhibitor
apocynin, suggesting ROS production may be via NOX1, NOX2, or both [95]. OxLDL treat-
ment of platelets also leads to increased autophagy, a highly conserved pathway mediated
by lysosomes that degrades cytosolic components, by modulating the PI3K/AKT/mTOR
signalling pathway (Figure 1), which was reversed by the ROS scavenger NAC, suggesting
that ROS acts as a critical signalling node in this pathway [91]. Our group has identified
NOX2 as the primary ROS-generating system in platelets linked to hyperlipidaemia, which
influences both activatory and inhibitory pathways. Ligation of CD36 by oxLDL led to
PLCγ2-mediated ROS production (Figure 1). This ROS production was required for P-
selectin expression, which was ablated by genetic deletion of CD36 or PLCγ2, inhibition of
NOX2, but not NOX1, and the ROS scavenger NAC [92]. As NOX1 has been previously
implicated in thrombin-mediated signalling, and NOX2 in collagen-mediated signalling,
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the observation that NOX2 is critical to oxLDL-ROS is supported, as collagen-GPVI signals
via a tyrosine phosphorylation cascade, which shares many similarities with the signalling
of oxLDL-CD36.
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Figure 1. Signalling mechanisms involved in hyperlipidaemic-induced ROS production 399 and
the downstream effects [23,79–83]. 8-iso-PGF2α, 8-iso-prostaglandin F2α; AA, arachidonic acid;
cPLA2, cytosolic phospholipase A2; ERK5, extracellular signal-regulated kinase 5; mTOR, mechanistic
target of rapamycin; NOX, NADPH oxidase; oxLDL, oxidised low-density lipoprotein; oxPCCD36,
oxidised phospholipid specific to CD36; p38MAPK, p38 mitogen-activated protein kinases; PCSK9,
proprotein convertase subtilisin/kexin 9; PI3K/AKT, phosphoinositide-3-kinase/protein kinase B;
PKC, protein kinase c; PKG, protein kinase G; PLCγ2, phospholipase C gamma 2; ROS, reactive
oxygen species; SFK, Src family kinases; Syk, spleen-associated tyrosine kinase; TXA2, thromboxane
A2; TXB2, thromboxane B2.

In addition to driving platelet activation, there is strong evidence that the CD36-NOX2
pathway can influence procoagulant function in platelets. OxLDL causes the production
of catalase-sensitive H2O2, which in turn activates the MAP kinase ERK5, which leads
to platelet activation and increased PS exposure required for the binding of coagulation
factors [93]. Furthermore, our group found that NOX2-dependent ROS generation is driven
by oxLDL-CD36-PKC signalling (Figure 1), and this promotes platelet activation through
inhibition of the inhibitory NO-cGMP signalling pathway, preventing downstream acti-
vation of the protein kinase G (PKG) substrate vasodilator-stimulated phosphoprotein
(VASP) [18]. Phosphorylation of VASP by PKG at serine 239 has been demonstrated to
inhibit cytoskeletal rearrangement and prevent platelet integrin activation [96]. Platelets
from hyperlipidaemic apolipoproteinE-deficient (ApoE−/−) mice have reduced sensitivity
to cGMP when tested ex vivo [18]. When these mice were infused with the NOX2-inhibitor
peptide gp91 ds-tat for 4 weeks, platelet hyposensitivity to cGMP was corrected, showing
that platelet NOX2 may be a target for controlling platelet hyperactivity under hyper-
lipidaemic conditions (Table 2). Overall, current data indicate that ROS downstream of
oxLDL-CD36 drives platelet degranulation and procoagulant function and disinhibits key
inhibitory pathways (Figure 1). The kinetics of ROS production by oxLDL sustained over
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3 h (as longest time point tested) [92] are in stark difference to those induced by haemostatic
agonist such as a collagen and thrombin, which peak rapidly and then wane. It is attractive
to speculate that as oxLDL concentration increases in the circulation, it drives maladaptive
platelet functions through chronic and low-grade ROS production, eventually overcoming
intrinsic antioxidant capacity leading to a persistent hyperactive platelet phenotype.

3.2. PCSK9 and Platelet ROS

Another DAMP, proprotein convertase subtilisin/kexin type 9 (PCSK9), a serine pro-
tease mainly synthesised by the liver [97], is also elevated in hyperlipidaemia, and it has
been shown to have direct effects on platelet ROS production. There is evidence showing
that plasma PCSK9 levels are associated with future risk of CVD events [98]. In healthy
volunteers, PCSK9 binds to CD36 in platelets, activates Src, ERK5, and JNK, enhancing ROS
production and further activating the p38MAPK/cPLA2/COX-1 signalling downstream of
CD36 [94]. Aspirin, which is a COX1 inhibitor and attenuates ROS-enhanced platelet activa-
tion [99], abolishes the effects of PCSK9 on platelet activation and in vivo thrombosis [94].
Similar effects were found in atrial fibrillation patients where the investigators observed
that PCSK9 levels over 1.2 ng/mL exhibit higher H2O2 production, urinary 8-iso-PGF2α
biosynthesis, and serum sNOX2-dp, compared to those lesser than 1.2 ng/mL PCSK9 [100].
This study also reported that PCSK9 forms an immune complex with CD36 and initiates
the subsequent cascade, including ROS generation by NOX2 activation (Figure 1).

3.3. Mitochondrial ROS and Hyperlipidaemia

As previously mentioned, mitochondrial ROS play a key role in many aspects of cell
signalling [101]; however, its role in platelets activated by oxLDL has not yet been fully
explored. Chatterjee et al. have demonstrated that oxLDL triggers intracellular rise in
ROS and intraplatelet mitochondrial O2

•production [102]. Interestingly, both oxidative
conversion and intraplatelet lipid peroxidation were significantly reduced by MnTMPyP, a
cell-permeable SOD2-mimetic O2

•scavenger, suggesting that mitochondrial O2
•could drive

lipid peroxidation in platelets. OxLDL-induced αIIbβ3 integrin activation and P-selectin
expression were also shown to be inhibited by MnTMPyP. Furthermore, thrombogenic
PS exposure and mitochondrial membrane depolarisation were observed, corroborating
the mitochondrial O2

• generation observations. Other than platelets, endothelial cells
treated with oxLDL show an increase in mitochondrial O2

•, and a functional shift in
mitochondrial phenotype towards impaired enzyme activity in mitochondrial respiratory
chain complexes [103]. Studies of oxLDL-treated macrophages in vitro and hyperlipidaemic
diet-induced macrophages in vivo identified a significant shift towards an increased rate
of oxidative phosphorylation and elevated mitochondrial ROS, which is dependent on
CD36 [104]. There is also evidence linking LPS-stimulated LOX1-mediated ROS production
to mitochondrial function in macrophages [105]; therefore, it is possible to hypothesise that
oxLDL-LOX1 interactions may lead to similar outcomes in platelets. Whether platelets also
show a shift in mitochondrial function and bioenergetics in the context of hyperlipidaemia is
yet to be explored; however, as the techniques required for these studies are now established
in the field of platelet biology [36], these research questions should be pursued. In summary,
mitochondrial dysfunction underpinned by excess O2

• and hyperpolarisation may drive
changes in platelet function in various diseases, which are typically associated with a
hyperactive platelet phenotype.

4. Conclusions and Future Perspectives
There is an ever-expanding field of research into the role of disease-mediated ROS in

platelet hyperactivity, which is underpinned by molecular studies identifying both specific
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activators of ROS production and molecular generators of ROS, followed by pre-clinical
translational studies. While multiple mechanisms have been suggested to mediate the
dysfunction of platelet ROS in diseases, what remains consistently clear is that the failure
of ROS homeostasis within various diseases is central to platelet hyperactivity. In many of
these cases, targeting the activators that drive ROS production is unfeasible, and in such
situations the development and application of ROS scavengers may provide an alternative
approach, which can blunt platelet hyperactivity without losing platelet function. For
instance, the antioxidant NAC, a synthetic derivative of L-cysteine, is typically safe and
well tolerated at high doses in a range of CVD clinical trials [106–108]. Clinical studies have
shown the effectiveness of NAC in improving cardiovascular functions, including reduced
infarct size [107] and preserved left ventricular function in MI patients [106,108], yet its
effect in platelet functions was underexamined. In vitro, NAC inhibits platelet function,
aggregation, adhesion to collagen matrix, ROS generation, and intracellular calcium mobili-
sation [109]. In addition, the low bioavailability of NAC [110,111], due to poor membrane
permeability [112], could potentially limit its clinical potential. N-acetylcysteine amide
(AD4/NACA) with improved lipophilicity and hydrophobicity as well as thioredoxin
mimetic peptides offer anti-aggregatory activity induced by collagen [113]. Therefore, these
peptides, which display higher redox potency over NAC, could be tested in clinical settings
as potential antioxidant approaches for treatment of CVD against platelet hyperactivity.
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