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A B S T R A C T

Considering SCADA systems operate and manage critical infrastructure and industrial processes, the need for 
robust intrusion detection systems-IDSs cannot be overemphasized. The complexity of these systems, added to 
their increased exposure to more sophisticated cyber-attacks, creates significant challenges for continuous, 
secure operations. Traditional approaches to intrusion detection usually fail to cope, scale, or be as accurate as is 
necessary when dealing with the modern, multi-faceted problem of an attack vector against SCADA networks and 
IIoT environments. Past works have generally proposed the use of different machine learning and deep learning 
anomaly detection strategies to find possible intrusions. While these methods have, in fact, been promising, their 
effects are not without their own set of problems, including high false positives, poor generalization to new types 
of attacks, and performance inefficiencies in large-scale data environments. In this work, against this back
ground, two novel IDS models are put forward: SPARK (Scalable Predictive Anomaly Response Kernel) and SAD 
(Scented Alpine Descent), to further improve the security landscape in SCADA systems. SPARK enables an 
ensemble-based deep learning framework combining strategic feature extraction with adaptive learning mech
anisms for volume data processing at high accuracy and efficiency. This architecture has stringent anomaly 
detection through a multi-layered deep network adapting to ever-evolving contexts in operational environments, 
allowing for low latency and high precision in the detections. The SAD model works in concert with SPARK by 
adopting a synergistic approach that embeds deep learning into anomaly scoring algorithms, enabled to detect 
subtle attack patterns and further reduce false-positive rates.

1. Introduction

Supervisory Control and Data Acquisition (SCADA) system is basi
cally the backbone of modern industrial control systems. That means, for 
all practical purposes, they are designed to operate real-time moni
toring, control, and automation for variable processes in different vital 
industries within society, including power generation, water treatment, 
and oil and gas production [1,2]. These systems play a critical role in 
maintaining industrial infrastructures and can enable appropriate ac
tions to be taken by operators due to system anomalies. They ensure 

production stability, as well as operational safety of facilities through 
remote maintenance. SCADA systems have been on a spree of high 
growth in recent times driven by connectivity improvement, data ana
lytics, and technologies that support remote access. More concretely, 
these improvements have meant more efficient, centralized operations 
management of distributed and often geographically dispersed indus
trial systems, greatly boosting productivity while enhancing operational 
visibility [3,4]. It is at this moment, however, that such capability 
dispersion also opens up new challenges-particularly in the domain of 
cybersecurity. Indeed, many of the same features that enable this better 
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management-such as increased remote access and network 
connectivity-are those exposing SCADA systems to cyber-attacks. Inte
gration of Internet of Things (IoT) into SCADA systems has, however, 
introduced a new layer of complication regarding these issues of 
cybersecurity [5,6]. Conventionally, SCADA systems were designed to 
operate in an isolated environment with very limited or no connectivity 
to other outside-the-gate networks. This made them quite minimal, by 
default, in terms of an attack surface. Even today, a strong desire to 
further operational capabilities and provide insight from the data pushes 
these systems toward increased connectivity with other IoT devices and 
networks. This transition comes with benefits like predictive mainte
nance and optimized resource management at the cost of new challenges 
that traditional SCADA systems were never designed to operate within. 
IoT brings in a variety of issues, starting from simple heterogeneity in 
the field devices connected-each having its own different 
vulnerabilities-to the lack of uniform security standards that can be 
enforced across all types of devices and systems [7,8]. Most IoT devices 
are designed to offer functionality with an affordable cost, which, in 
turn, means that security features are generally not robust. This form of 
vulnerability within IoT devices introduces entry points that cyber at
tackers can leverage, therefore making SCADA system protection far 
more challenging [9,10].

Also, the criticality of real-time operations of SCADA becomes yet 
another constraint in a way that security measures should be imple
mented without process disruptions. The demand for uninterrupted 
operation may potentially narrow down the range of traditional security 
best practices, such as regular patching and updating of the software, 
which can affect systems for some period of time. Intrinsic complexity 
and interconnectedness, together with the real-time requirements of 
modern SCADA systems, challenge the deployment of comprehensive 
security measures [11,12]. Thereafter, this very interesting, urgent 
research direction appeared, connected with enhancing SCADA system 
security to develop new solutions capable of mitigating risks without 
compromising operational integrity. A number of researchers and in
dustrials are working on advanced symmetric/asymmetric encryption 
techniques, intrusion detection systems, and machine learning models 
able to identify real-time anomalies among others. In general, the aim is 
to make the SCADA framework resilient by resisting evolving cyber 
threats variably.

The neural networks constitute the basic units of deep learning and 
take their inspiration from the inner structure of the human brain [13]. 
As a matter of fact, this field of studies has turned out to be very 
important in modern computational methods. It is really good at 
recognizing complicated patterns and solving problems that contain 
high-dimensional data. It means that it defines the architecture of a 
neural network, the interconnectivity of nodes in layers performing a 
certain computation. These could be extremely helpful in cases where 
the job analyses are comprehensive, detection of anomalies in SCADA 
systems is necessary, for example, whereby other methods often fail to 
identify a subtle, emerging threat or pattern pointing towards abnormal 
behavior. This is illustrative of the strategic shift in the deep-learning 
security paradigm of the SCADA system through aggressive leveraging 
of the most top-level computational models toward proactive adaptation 
and response against dynamic threats. Equipped with the capability to 
process vast data amounts and learn complicated dependencies, they 
become appropriate to the SCADA environment, where large flows of 
data from sensors, controllers, and actuators are a common feature. 
Huge volumes and varieties are the characteristics of data streams 
generated from such environments; therefore, only against a volume of 
information will meaningful anomalies be detectable via a strong 
analytical approach [14–16]. Neural networks learn directly from data, 
including performance enhanced by experience, and are great at dis
tinguishing between normal operational behavior and potential threats 
in complex, noisy data conditions.

Detection of cyber-attacks in SCADA IoT is very important from the 
security point of view to guarantee safety and operational reliability in 

highly critical infrastructures for life in modern society. The integration 
of IoT into the SCADA system provides huge benefits with regards to 
remote monitoring and real-time acquisition of data. On the other hand, 
they also raise critical infrastructure vulnerabilities due to more con
nectivity and various points of entrance with possible vulnerable targets. 
The solution of this challenge is truly out of the box and hardly achieved 
using common security [17]. Probably, self-similarity analysis in com
bination with ML and DL techniques stands a chance to make this work. 
It is the statistical procedure for the fractal properties, otherwise said, 
the self-similarity properties in different scales or time intervals of a 
system or a network. It does have great potential in the identification of 
deviations which might signal abnormal or malicious behavior within a 
SCADA IoT network. That is to say, it means leveraging inherent re
petitive patterns that are natural in normal network traffic, detecting 
subtle changes in that pattern, which could indicate a possible cyber 
intrusion.

Combining ML and DL algorithms with the self-similarity analysis 
itself creates a hybrid approach that can enormously beef up the 
detection of cyberattacks [18]. This self-similarity analysis may be used 
as a preliminary filter, reducing data to those conditions that are 
possibly anomalous or strange patterns needing close scrutiny. Once 
these patterns are identified, the ML/DL algorithms would go through 
the analysis and classify the anomalies with much greater certainty. In 
like manner, a number of machine learning models will be trained on 
historical data with a view to learning known attack signatures or 
behavior patterns, including decision trees, support vector machines, 
and ensemble techniques [19,20]. On the other hand, deep learning 
methods-especially complex neural networks like CNNs or RNNs-do a 
pretty good job of learning difficult nonlinear relationships from data. 
These deep models would thus be able to extract features from network 
traffic data that may well elude more simple analysis and enhance total 
detection capabilities for advanced persistent threats and zero-day 
attacks.

However, to address the complex threat scenarios that exist in 
SCADA systems and with emergence of IoT devices, the strategy must 
combine several approaches. This strategy should be done by strength
ening the security of a single IoT device because more often than not, 
most IoT devices have poor security features. Having an identity that 
creates equivalent security parameters that may be implemented 
throughout all associated devices and systems is crucial in order to 
eliminate the threats and implement changes to device and network 
security policies [21]. In addition, complex, manifold, and networked 
systems of modern SCADA require unification of various devices and 
protocols into an entity and provide it with adequate protection. This 
integration must be achieved, free of compatibility problems, while at 
the same time keeping a very tight check on security to ensure the safe 
transfer of data. The aim is to build a system that upholds the core 
principles of cybersecurity: ensuring that protecting data from unau
thorized access, ensuring accuracy and completeness of data, and 
ensuring that people have access to system and services.

The kind of security that can be obtained to achieve the objectives of 
having a single system protection is the multi-layered security model 
that includes encryption, secure authentication, and threat detection 
mechanism that integrated deep learning. Neural networks that offer 
real time anomaly detection systems can also have an added role in this 
layered approach by having another level of depth which can identify 
new and emerging threats [22,23]. Surveillance and threat identifica
tion are also improved by such systems since it analyses all the data that 
is continuously received in the SCADA environment to provide alerts 
whenever activities that are most probable to hinder normal functioning 
and/ or represent a breach are identified. Additionally, the capability of 
the neural networks to learn and make new responses to the new data set 
as time elapses enhances proactive threat management, which makes 
organizations to be in a position to respond effectively to the ever 
emerging threats in the cyberspace. Therefore, an optimal solution that 
incorporates best practices in the DL, secure IoT, and implement 
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standard security practices to make SCADA better placed to handle new 
emerging threat models without compromising efficiency and reliability 
is crucial.

Despite potential and developments that these approaches hold, the 
intrinsic limitations and related challenges should be solved in this 
respect for their full exploitation in practice. One of the main challenges 
when using self-similarity analysis and ML/DL algorithms in SCADA IoT 
networks is heterogeneity and scale from the data produced by such 
systems. SCADA networks involve various devices and protocols in IoT, 
all with different frequencies and levels of reliability across the nature of 
data generated [24]. These inconsistencies in the nature of data bear the 
potential for serious complications in developing models that will be 
generalizable and accurate across diverse network conditions. The high 
throughput and velocity of the flow of data in SCADA systems require 
that detection models work with minimal latency to avoid delays in 
responses that might compromise the integrity of the system.

Although improved accuracy has been observed in deep learning 
detection algorithms, the computational cost is very high, often unaf
fordable in resource-limited environments. Therefore, there is a need 
either to develop more computationally efficient models or use hard
ware accelerators. The frequent retraining of models, however, brings in 
operational complexity and skilled people who might not be affordable 
for all organizations, especially those that operate in resource- 
constrained settings. On the whole, while the self-similarity analysis 
combined with the ML/DL techniques is one of the best approaches for 
detecting cyber-attacks within SCADA IoT networks, turning it into 
practice calls for continued research and development by overcoming 
the challenges above for scalable real-time protection against the unique 
demands placed upon the SCADA environments. This research is moti
vated by the realization that the current security frameworks are 
somewhat limited in their capability to handle the complexity and dy
namic nature of the cyber threats that increasingly target SCADA envi
ronments [25]. Current methodologies have tended to rely heavily on 
signature-based detection methods, which already have knowledge 
about the patterns of an attack and are therefore incapable of discov
ering zero-day exploits and novel intrusion strategies. The deeper ca
pabilities of deep learning in terms of the ability to learn from vast 
amounts of data, recognize intricate patterns, and propose a more pro
active approach to cybersecurity are harnessed in this research work 
[26]. Then again, optimization techniques can be applied that improve 
the training of the model to learn from a few data, which typically is the 
problem in cybersecurity, where a complete dataset of an attack cannot 
usually be found. More importantly, this capability is critically needed in 
SCADA systems [27,28], where the operational data is often limited and 
highly contextual.

Major Contributions: 

• This paper introduces two new models of intrusion detection, SPARK 
and SAD are meant to enhance, through ensemble-based deep 
learning and anomaly scoring mechanisms, the security in SCADA 
and IIoT environments against ever-evolving complex cyber threats.

• The SPARK model adopts adaptive learning fused with strategic 
feature extraction for satisfying the requirements of scalable and 
efficient anomaly detection of large-scale industrial datasets. SAD 
complements SPARK with sophisticated anomaly scoring that targets 
complex attack patterns for reduced false positives.

• By using the SWaT and WUSTL-IIoT datasets, this paper showing 
better detection performance compared to that of traditional and 
contemporary IDS solutions. The same hyperparameter tuning, 
evaluation metrics, and statistical validation techniques are followed 
strictly in this study to ensure a fair comparison.

• The research also seeks to enhance the resiliency of the SCADA 
systems against cyber threats, both in the present and emerging 
contexts, by developing a better understanding of how advanced 
machine learning approaches can be effectively used in real-time 
operational environments.

• Results from this study can, therefore, shape policy and best practice 
for the industry, providing stakeholders with new tools and strate
gies that assist in protecting their systems and maintaining conti
nuity of operations against determined cyber threats.

Outline:
The organization of the paper is such that the pressing issue of 

intrusion detection in SCADA systems has been viewed through 
advanced machine learning and deep learning approaches in a very 
structured manner. Section 2 will review the related literature con
cerning the existing machine learning and deep learning models applied 
to intrusion detection in the SCADA environment by describing their 
methodologies along with their respective strengths and limitations. 
This review will set a baseline understanding of the current status of 
research in this domain and thus provide the platform for the proposed 
contribution of the study. Section 3 will discuss the proposed method
ology, covering the development of a hybridized deep learning model 
integrated with optimization techniques designed especially for 
enhancing the security of SCADA systems against cyber threats. The 
efficiency of the proposed model will be proved in this section using 
different metrics, and its superiority to the existing approaches by pre
senting the detection rates, false positives, and computational efficiency. 
Finally, Section 5 concludes the research findings on implications of 
results and future work toward enhancing intrusion detection in SCADA 
systems, pointing out that innovation concerning the addressed field is a 
never-ending process.

2. Related works

Other recent works also pointed out the inclusion of hybrid ap
proaches which integrate the best of machine learning with deep 
learning methods. Besides, integration of optimization techniques 
within such models remains a key area of concentration for model 
parameter tuning to perform better with minimum computational 
overhead-a critical issue in real-time SCADA applications [29,30]. In a 
nutshell, this stream of research in this area underlines continuous 
innovation and adaptation of intrusion detection techniques in a 
dynamically changing threat landscape that SCADA networks have to 
face. This section outlines the specifics of these state-of-the-art ap
proaches, their methodologies, relative benefits, and challenges-thus 
laying the ground for the proposal at hand, which would like to make 
another contribution to this very critical area of cybersecurity.

Ragab, et al. [31] propose the NGCAD-EDLM approach, where the 
acronym refers to Next-Generation Cybersecurity Attack Detection by 
means of an Ensemble Deep Learning Model; this is aimed at solving 
newly arising safety vulnerabilities because of integrated legacy ICT 
systems within industrial IIoT contexts. The study presents that the 
development and deployment of new safety technologies in power 
control systems are likely to face serious cyberattacks; therefore, it has 
become urgent to establish an efficient cybersecurity system in place. As 
the critical role of these systems in ensuring reliable power delivery is so 
high, the stability and efficiency of the proposed cybersecurity model is 
of prime importance. The NGCAD-EDLM technique has been devised in 
order to support the automated detection of cyberattacks, so as to 
improve the security posture of IIoT infrastructures. It follows the use of 
a principal approach for primary data normalization through min-max 
normalization, which is an important step since it scales the data for 
appropriate analysis. The synergy between these two methods within 
the framework of an ensemble is expected to yield improved perfor
mances both concerning detection rates and concerning the reduction of 
false positives.

Abdulganiyu, et al. [32] present the XIDINTFL-VAE framework that 
comprises CWFL and VAE, embedding XGBoost to tackle challenges 
imposed by class imbalance in intrusion detection systems. This pro
posal is very likely to further improve the capability of detection for 
minority class intrusions without sacrificing overall robust performance 
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across classes. Unfortunately, most of these approaches tend to face 
significant challenges in balancing precision and recall on highly 
imbalanced datasets. As a result, these strategies may lead to a high rate 
of false alarms or missed cases. This may pose serious problems in se
curity applications where the cost of errors could be extremely high. The 
XIDINTFL-VAE framework directly addresses this important gap by 
synthesizing data from the most difficult cases in the minority class. This 
tailor-made approach will enable a more subtle analysis of the subtlety 
related to the rare intrusions, which will be useful for improving the 
detection rate and overall classifier performance. Huang, et al. [33] have 
proposed a study wherein, for the very first time, there is the use of 
sequence feature construction algorithms to represent explicitly the in
formation of sequence features, laying a foundation for a truly effective 
intrusion detection system.

The proposed LSTM networks and feed-forward neural networks 
work in tandem so as to retain critical sequence information while the 
dimensions in the output dynamically adapt. This network architecture 
of two kinds works in an effective mapping of processed information to 
classification labels. Finally, the simulation comparison results show 
that the designed IDS has much higher packet capture rate per second 
when compared to three other existing systems. Proposed system ach
ieves an impressive packet capture rate of 7000 packets per second with 
intrusion rates of 10 and 22 % and maintains the system occupancy rate 
at 23 %. This performance metric value is quite impressive and stands in 
support of the efficiency and effectiveness of the proposed approach in 
handling intrusion detection tasks with different attack intensities. The 
results of this study indicate that the proposed mechanism performs 
significantly better than the competition in intrusion detection and 
response. From this, the authors provide several effective solutions to 
the crucial challenges of intrusion detection and response in a timely 
manner, utilizing an appropriate combination of latest neural network 
architectures and sequence features extraction. The obtained results 
show the practicality of the proposed system for use in the real world; at 
the same time, they focus on its potential as a strong countermeasure 
that can help enhance the security posture of networks against an 
increasingly sophisticated landscape of cyber threats.

Mesadieu [34] propose a DRL framework for anomaly detection in 
SCADA networks. By leveraging a "Q-network," it positions itself at an 
advantage to achieve state-of-the-art performance in recognizing pat
terns from complex tasks, very essential for effective anomaly detection 
in industrial control systems. Hence, the integration with DRL adds the 
capability for continuous improvement in the detection capability 
through interaction with the environment and thus adaptation of the 
model to evolving threat landscapes and operational conditions. These 
authors have conducted experiments on two publicly available datasets 
for the validation of their proposed solution. Such validation is quite 
important since it proves that this model will be able to generalize on 
other types of data in a real-world scenario. That is a very good 
contribution to cybersecurity in SCADA systems through deep rein
forcement learning by enhancing the anomaly detection mechanisms. 
The DRL framework proposed in this paper has focused on 
state-of-the-art performance in pattern recognition and is expected to 
help enhance the resilience of the SCADA network against possible cyber 
threats and, in turn, contribute to security and reliability in critical 
infrastructures.

Zaman, et al. [35] provides an overall design framework for the 
ML-based IDS for SCADA-based power systems. Fully aware of the 
possibilities opened up by ML techniques for enhancing security mea
sures, the authors underline some of the intrinsic limits in the devel
opment of ML models, mainly related to the need for customized 
methodologies in data preprocessing and training. These challenges are 
addressed appropriately by the proposed framework, which embodies a 
few key aspects of modeling. The authors have performed various ex
periments to validate their proposed design framework using a publicly 
available dataset from ORNL specifically related to SCADA-based power 
systems. Empirical validation provides the opportunity to present the 

effectiveness of the proposed design framework in a real-world envi
ronment, and at the same time, it acts as a benchmark for not only all 
proposed design frameworks but also several existing IDS solutions to 
compare the performance.

Sangoleye, et al. [36] have determined the limitations of the current 
approaches using Machine Learning, especially in intrusion detection 
within ICS networks. They determine that most of the traditional 
methods require very frequent manual retraining and hardly keep pace 
with the dynamic nature of evolving cyber threats. In the paper, a new 
research has been carried out on the applications of a variety of models 
such as Deep Q-Network, Double Deep Q-Network, Dueling Double Deep 
Q-Network, REINFORCE, Advantage Actor-Critic, Proximal Policy 
Optimization. Each of these models reflects a different approach to the 
exploitation of reinforcement learning principles in network intrusion 
detection and provides extensive study of the DRL possibilities for 
enhancing the security of ICS. In such a way, the authors try to reveal the 
strengths and weaknesses of each model with regards to practical ap
plications and provide valuable insights about their efficiency in intru
sion detection tasks. Suffice it to say, the work of these authors marks a 
significant step in applying advanced DRL techniques within ICS secu
rity frameworks. Emphasizing both autonomous learning and adapt
ability, their research has secured intrusion detection systems’ 
responsiveness against the rapid pace of threat evolution-much needed 
for hardened critical infrastructure against cyber-attacks. This research 
also builds on the literature in terms of the current state of DRL model 
applications in cybersecurity applications and sets up a foundation for 
follow-on research work in terms of further optimizing such models for 
practical use.

Ali, et al. [37] pointed out an important gap in the present research 
landscape, where much attention has gone to binary classification 
problems while multi-class classification remains a challenging and 
actively evolving area. The proposed instance-based intrusion detection 
technique tailored for IDS-ICS is especially for SCADA networks to meet 
the challenge. It is named ICS-IDS, for overcoming multi-class imbal
anced classification challenges. Most important identification of various 
intrusion types in ICS environments depends on this approach. The 
proposed technique of ICS-IDS has two major portions: preparation of 
data and detection. The portion for preparing the data applies several 
advanced techniques to enhance the quality and further analyzability of 
the dataset. Normalization first scales the data to equal importance of all 
features during model training. Dimensionality reduction is then used to 
avoid the problem of the curse of dimensionality by retaining only the 
most informative features with the intent of improving model perfor
mance. It then implements the methodology for k-nearest neighbors and 
resamples the dataset to balance out properties and include more rep
resentation of minority classes.

Yalcin, et al. [38] have underlined that cyberattacks against 
network-based communication structures form a critical vulnerability 
for industrial equipment and operations in ICS. They also pointed out 
that this type of attack may further cause massive disruption or even 
sabotage to manufacturing processes; hence, they ring an alarming call 
for enhanced security to be executed on these systems. With the 
continued digitization of ICS, the exposure to malicious actors keeps on 
increasing, and, thus, strong security solutions have been called for in 
ensuring safety, especially through Intrusion Detection Systems. Given 
that sophistication in cyberattacks keeps on evolving, the authors assert 
that industrial companies are obliged to innovate through the adoption 
of sophisticated solutions such as attack detection systems using artifi
cial intelligence. Adaptability proves to be an important element 
because critical industrial operations are among the favorite targets of 
cybercriminals. Thus, the current research aims at developing an 
AI-based IDS that has been efficient in enhancing security in SCADA 
systems while ensuring high accuracy in the threat detection. The au
thors are striving to benefit from all AI technologies in developing a 
solution that is not only effective in intrusion detection but also learns 
with time, for new and emerging threats, hence contributing to the 
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resilience of industrial operations. This also represents an important 
research contribution, as it addresses urgent security needs and tries to 
push the state-of-the-art in methodologies for intrusion detection in 
critical infrastructure environments. The manuscript thus contributed to 
the ongoing discussion regarding the need to embed AI into cyberse
curity frameworks, with the ultimate goal of raising protective means for 
industrial actors.

Islam, et al. [3] have proposed a new approach for intrusion detec
tion in complicated data environments through the development of an 
efficient Long Short-Term Memory-based Sparse Variational Autoen
coder technique, LSTM-SVAE. A new technique is developed, which 
could effectively extract relevant features from intricate data patterns 
and solve problems normally brought forward by high-dimensional and 
noisy datasets. Hence, by leveraging the strengths of LSTM networks in 
finding subtle and complex relationships within the data, this is a critical 
aspect that the authors achieve for effective intrusion detection. 
Following feature extraction, the authors design a Bidirectional Recur
rent Neural Network with Hierarchical Attention-sequence Intrusion 
Detection. Such an architecture is meant to proficiently find potential 
intrusions by incorporating advanced memory capabilities together with 
mechanisms of focus. The hierarchical attention mechanism further 
helps the model in performance by allowing it to prioritize the features 
pertinent for intrusion detection analysis. Next, the authors introduce a 
Cognitive Enhancement for Contextual Intrusion Awareness module, 
CE-CIA, which refines the initial predictions from the BiRNN–HAID. 
The proposed component adopts cognitive principles to balance sensi
tivity and specificity when accomplishing intrusion detection, hence 
being able to keep false alerts as low as possible.

By improving the dependability of the detection system, the overall 
effectiveness of the intrusion detection framework in underlining real 
threats while minimizing unnecessary alerts thus gets enhanced by 
means of CE-CIA. Wali, et al. [39] provide a broad survey of prevalent 
cybersecurity vulnerabilities and attacks that cloud-based SCADA sys
tems face, furthering the needed knowledge in understanding the se
curity landscape for these infrastructures. The study points to four 
important factors of vulnerabilities that make those systems potentially 
vulnerable: connectivity with the cloud service, shared infrastructure, 
malicious insiders, and security related to SCADA protocols. Further, the 
authors classify cyberattacks that target these systems into five signifi
cant groups, namely hardware attacks, software attacks, attacks 
focusing on communications and protocols, control process attacks, and 
insider attacks. This can be likened to a detailed categorization of at
tacks, which forms the very basis on which focused security strategies 
are developed. In addition, the authors of the paper go ahead to identify 
the various types of attacks and propose various security solutions aimed 
at mitigating the impact of cyber-attacks against cloud-based SCADA 
systems. To this end, by proposing security solutions, the authors have 
given practical suggestions that could go a long way in reinforcing the 
resilience of the SCADA systems against such emerging threats.

Sogut, et al. [40] present a very interesting study physically 
emulating-real water plants on a smaller scale-a carefully developed 
Testbed environment with a SCADA system. This novelty allows going 
deeper into the exploration of vulnerabilities and resilience of such 
systems in controlled conditions, giving insights into the dynamics of 
their operation under conditions of simulated attack. To realize this aim, 
the authors designed five different attack scenarios, each using a 
different Distributed Denial of Service attack: TCP, UDP, SYN, IP 
spoofing, and ICMP flooding. Since the SCADA system was intentionally 
made to malfunction with those specific attack vectors, this research 
shows well the risk that these systems can be exposed to in real-life 
conditions. The approach focused not only on underlining different 
methods of DDoS but also supported capturing subtleties regarding their 
impact on the operation of SCADA. Besides the attack scenarios, the 
authors considered a baseline scenario that depicts normal behavior of 
the SCADA system while considering no interference. This serves as a 
baseline for the authors, so that they are able to compare how much each 

attack scenario disrupts the operation of the system in question. While 
these attack scenarios were being performed, the network of the SCADA 
system was closely monitored, and the network data was collected and 
recorded. Indeed, this intensive collection of data forms a firm basis on 
which to consider the impact each of the different DDoS attacks has on 
the performance of the SCADA system and therefore, by virtue of that, 
provides valued contribution to the existing literature on the security 
and resilience of SCADA systems against cyber threats.

Sahani, et al. [41] conduct a broad review on ML-based IDS for smart 
grids. They discuss several key aspects with care that form part of the 
necessary understanding of the role of ML in enhancing security for 
these complex systems. First, ML-based IDS applied to the transmission 
and distribution sides of power components in smart grids is explored, 
while strongly focusing on the identification and addressing of inherent 
security vulnerabilities. This attention to data illustrates that there is, in 
fact, a need for quality input if, indeed, ML techniques are to be used 
successfully to guarantee that the models identify and respond correctly 
to a potential intrusion. Additionally, the survey goes into detail on the 
wide breadth of ML-based IDSs that have been deployed by the surveyed 
literature, from a superficial look at the various algorithms and meth
odologies employed by researchers on the subject to detailed discussion. 
The wide representation not only serves to present the flexibility of 
approaches toward addressing security challenges for smart grids using 
ML but also as a useful resource for practitioners with interests in 
implementing effective detection systems.

While there has been significant development regarding IDS for 
SCADA networks, much time finds several research gaps still exist. One 
major pitfall lies in the shallow investigation of the hybrid model that 
combines several ML and DL techniques to solve the peculiar challenges 
of the SCADA system. The literature, on one hand, focuses mostly on 
traditional machine learning approaches or, on the other hand, deep 
learning methods separately and does not give much importance to 
benefits that could be realized with a combination of these paradigms. 
This indeed is an indication of how broad a framework is needed that 
could capitalize on both methodologies for enhanced detection rates and 
minimal false positives in different operational scenarios. Also, most of 
the current research designs lack a deep understanding of the cyber 
threats to SCADA systems as being dynamic and evolving in nature. This 
is because, although several of these studies adopt static datasets for 
training and evaluation, it does not serve the realistic purpose under
lying the detection and response to new attack vectors in real time.

Indeed, methodologies that will make real-time learning and adap
tation possible are definitely those that future research will need to focus 
on to respond to the demand of changing systems, which evolve in the 
context of emerging threats. Another important shortcoming is sufficient 
attention and emphasis on interpretability and explainability of IDSs in 
the SCADA environment. Most of the current techniques are targeted at 
performance evaluation metrics like accuracy and recall; however, their 
decision-making process remains mostly in a nontransparent manner. 
This points to one of the most important gaps that need to be filled since 
such understanding of the reasons and ways certain decisions are taken 
by stakeholders is so crucial for improved risk management and 
response strategies.

The related work in the area of intrusion detection for SCADA sys
tems and IIoT environments has pros and cons, based on the methods 
and technologies used. One of the most obvious benefits of using ma
chine learning-based IDS is that it can potentially be applied to detecting 
unknown threats by defining anomaly behavior patterns. Traditional 
approaches, therefore, heavily rely on predefined attack signatures that 
is, they can recognize only known threats. Such capability of handling 
and analyzing big data is particularly useful during scenarios when 
SCADA systems are generating huge streams of real-time data, including 
sensor readings, control commands, and other system logs. Furthermore, 
deep learning methods, especially CNNs and RNNs, have shown 
outstanding performances in the detection of complex attack scenarios 
with sequential or spatial patterns in data. Those methods achieve 
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significant performance in dealing with cases of SCADA networks, where 
long-term dependencies and interdependencies between devices and 
processes are likely to prevail.

Another, though related, area where those methods are also very 
prominent is machine learning-based IDS in SCADA and IIoT systems. 
Among those challenges, one of the most important is that it is 
computationally costly to train and deploy a machine learning model, 
especially a deep learning model. High computational demand may 
cause the latency issues in real-time detection, which is hard to meet the 
stringent time requirements of the SCADA systems controlling the crit
ical infrastructure. It also makes it very hard to debug or fine-tune the 
models in real-world operational environments due to the opaqueness in 
decision processes. Labeled data for infrequent attack scenarios may be 
very problematic to have in practice. False positives, although usually 
not very important in non-industrial settings, are quite troublesome in 
SCADA systems. The false alert may initiate unnecessary shutdowns or 
corrective actions with possible impacts on system operations or even 
damage to critical infrastructure.

3. Proposed spark methodology

In this modern world, where computation in neuroscience is 
constantly improving, it is a matter of utmost urgency and importance to 
further elaborate an efficient and effective model for spike encoding 
threshold computation in order to advance our knowledge with respect 
to the neural process and the way information is depicted in the brain. 
This proposal presents new work concerning a hybrid model, one which 
will be built from the power of two state-of-the-art methods: the Spike 
Encoding Adaptive Regulation Kernel (SPARK) and the Scented Alpine 
Descent algorithm. The main novelty of the present study is a synergistic 
combination of the two approaches, which enhances not only the pre
cision of spike threshold determination but also the adaptability and 
robustness of the model in different dynamic conditions. A blend of 
strengths like this from SPARK and SAD can hopefully mitigate some of 
the weaknesses exhibited by each of these methods to offer a better real- 
world solution in neural data analysis and signal processing, among 
other related areas.

The SPARK model introduces a novelty for spike encoding regarding 
adaptive thresholding with regard to characteristics of input signals. It 
uses dynamic adjustments in encoding parameters using advanced sta
tistical methods, given that neural inputs are of a varying nature. This 
will make the model more sensitive to fluctuations in stimulus intensity 
and frequency for better encoding of information. The key strength of 
SPARK is that it can combine the temporal and spatial features of neural 
activity. In particular, it is ideal for complex datasets where the other 
traditional methods with fixed thresholds cannot detect critical varia
tions. SPARK forms one threshold determination process that is much 
more sensitive to context; thus, it greatly enhances the fidelity of neural 
encoding-a solid foundation for the proposed hybrid model.

Complementing SPARK, the contribution of SAD brings a unique 
optimization approach conceptually rooted on principles of olfactory 
navigation and Levy flight mechanics. This method allows for an effi
cient exploration of the solution space so that the spike encoding 
thresholds will not only be optimal but also resilient to local minima 
pitfalls commonly encountered in traditional optimization techniques. 
The novelty of using odor-based cues in guiding the search process 
across a complex space brings fresh dimensions into the processes of 
optimization and furthers a more holistic understanding of the linkage 
between neural spikes and environmental stimuli. SPARK thereby gives 
an adaptive regulation in a complementary way to the strong optimi
zation due to SAD. Hence, SPARK can form a powerful framework to 
model fine intricacies of spike encoding threshold computation. This 
hybrid model is novel because it is integrative and hence effectively 
marries the adaptiveness of SPARK with the advantages of exploration 
by SAD. This kind of fusion alone has amplified the individual strengths 
of each technique to create new capabilities which enhance 

performances. For instance, the fact that this model automatically ad
justs spike thresholds in a dynamic way, while simultaneously opti
mizing the search for those thresholds, represents an important 
extension beyond methodologies that, within other approaches, occur in 
isolation or rely upon a static parameter. Furthermore, importing 
mechanisms inspired by biology into the computational framework in
troduces even another layer of sophistication, making the model’s 
alignment with natural neural processes even closer. This work, there
fore, constitutes one of the most important and significant steps in 
pursuit of the most authentic and efficient spike encoding methods that 
would clear the path for innovative applications both in research and 
practical settings regarding neuroscience and beyond.

SPARK is particularly appropriate for the study in hand because of its 
singular design focused on SCADA system-related and IoT-driven 
ambient challenges. One of the most important features of SPARK is 
scalability with the size and complexity of the data. The SCADA systems, 
especially those integrated with IoT devices, generate huge amounts of 
data from diverse sensors and controllers. SPARK can efficiently process 
this data using adaptive learning mechanisms, which hierarchically 
extract the most important features of the data, so it would not over
whelm the system with the anomaly detection process. This is in contrast 
to many IDS models, which either employ fixed feature sets or need 
manual tuning for adaptation to the varying levels of complexity in the 
data. SPARK is flexible and, hence, might change according to the 
operational environment; thus, it results to be very suitable for real-time 
dynamic industrial systems, where network configurations, device 
behavior, and attack strategies might change over time. Unlike in most 
conventional models, which may need retraining or even hand inter
vention to get used to new patterns of data, SPARK assures that its dy
namic learning abilities make it effective and responsive with little 
performance degradation.

Most of the existing IDS models, especially those deep learning-based 
ones, are easily burdened with a high computational overhead that 
slows down the detection process especially in an IoT environment 
where devices usually possess weak processing power. Being lightweight 
in feature extraction and efficient in learning mechanisms, SPARK can 
be executed on IoT devices or at edge nodes without inducing any extra 
significant delay. Besides, SPARK also showed great strides in handling 
false positives, which are very common with most IDS solutions. Most of 
the traditional IDS, due to their simplicity and mostly rule-based or 
signature-based approaches, lack both adaptability and precision; thus, 
they often tend to produce either a large number of false positives or 
detection failures both of which are quite disastrous in the case of in
dustrial control systems (Fig. 1).

3.1. Spike wasserstein adversarial robust kognition (SPARK) classifier for 
intrusion detection in SCADA systems

The SPARK Classifier is a new intrusion detection methodology for 
SCADA systems. This technology effectively embeds the power of spike- 
based neural networks with the principles of WGAN, including its most 
salient features, for constructing a classifier that is both robust and 
efficient at identifying complicated patterns related to potential in
trusions within SCADA systems. The SPARK Classifier exploits the 
peculiar properties of spiking neurons, which are much closer to their 
biological counterparts, enabling temporal processing, among others, 
for higher energy efficiency. This is especially a bonus in real-time 
monitoring scenarios typical of SCADA systems, where timely re
sponses are crucial for security threats. One of the major contributions of 
SPARK Classifiers is the novel use of adversarial training for enhancing 
intrusion detection robustness.

Generative Adversarial Networks (GANs) have been explored in the 
last few years and show great promise to improve many applications in 
machine learning, mainly within the area of anomaly detection and IDS. 
Application of GANs in IDS models is justified, since they can generate 
realistic synthetic data that can enhance model robustness by learning 
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the complex data distribution. This limitation has been one of the mo
tivations to investigate GAN-based methods because GANs are capable 
of generating realistic synthetic attack samples, enabling IDS models to 
generalize better when dealing with new and unseen threats. This has 
the proposed IDS framework integrated with GANs, which is especially 
important for SCADA systems where cyber threats evolve very fast. It 
therefore makes the framework highly adaptable and resilient, hence its 
high efficacy in securing industrial control systems and IIoT 
environments.

Their decision to consider GANs in the IDS models lies with their 
remarkable strength in tackling problems of data scarcity and class 
imbalance, which are pervasive challenges in intrusion detection. Any 
malicious activities within the SCADA networks occur relatively much 
fewer in number as compared to the normal operations. The resultant 
datasets used are usually heavy-skewed toward the benign class. Such 
imbalances can even make the traditional machine-learning models not 
quite effective in recognizing such rare but very critical attack patterns. 
In this way, the adversarial training process in GANs makes the gener
ator learn to create increasingly realistic data, and the discriminator 
refines its ability to distinguish between real and fake samples.

This model, taking as a measure of divergence between the distri
butions of normal and malicious activities, overcomes Wasserstein dis
tance for all traditional problems of GANs: mode collapse and instability 
of training. In particular, the integration of spiking neural networks into 

this framework empowers it to enhance its capability for handling time- 
series data in a way that captures temporal network traffic dynamics. 
The dual approaches will not only improve the classifier’s known threat 
detection capability but also enhance its generalization for previously 
unseen attack vectors, a key requirement in the dynamic cyber threat 
landscape.

The novelty of the SPARK Classifier is in the unusual integration of 
spike-based processing with adversarial robustness, hence being very 
different from the existing models. Traditional machine learning and 
deep learning approaches face many temporal aspects of SCADA data 
and the ever-changing nature of attack strategies. In contrast, the SPARK 
Classifier uses spiking neurons to extract time-dependent features, 
making the classifier more sensitive in detecting subtle anomalies 
indicative of a breach. Moreover, SPARK follows the adversarial training 
paradigm whereby there is assurance that a model will be resilient 
against adversarial attacks, something particularly relevant given so
phisticated techniques adopted by intruders. Furthermore, the model is 
very adaptive; it can learn from emerging threats continuously to adapt, 
as the threat landscape keeps on dynamically changing in SCADA sys
tems. The benefits of the SPARK Classifier go beyond its improved 
detection capability. First, its architecture was designed to ensure 
computational efficiency during deployment in resource-constrained 
SCADA environments.

The spiking nature of this network allows sparse communication and 

Fig. 1. Overview of the proposed model.
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low power use, hence successfully meeting the operational requirements 
of many industrial control systems. The operational framework of 
SPARK Classifier focuses on effective network traffic data analysis. First, 
the information fed from SCADA systems, such as control signals, 
telemetry, and event logs, is preprocessed into features which would tell 
the model whether or not the behavior in question is normal or anom
alous. This time-series data is then fed through the spiking neural 
network component to produce spikes indicative of the timing and in
tensity of activities throughout the network. These spikes feed the 
Wasserstein adversarial training mechanism, wherein the classifier is 
trained to discriminate against normal traffic versus various attack 
patterns.

During learning, the model optimizes its parameters with the Was
serstein loss in such a manner that the latter provides a much more 
informative gradient to the traditional loss functions for model optimi
zation. The SPARK Classifier develops, through this process, a strong 
decision boundary to separate legitimate activities from malicious ac
tivities. Since the classifier performs real-time monitoring, the detected 
anomalies could trigger immediate alerts and responses, hence 
enhancing the security posture of the SCADA systems. In a nutshell, 
SPARK represents the leading revolution in intrusion detection for 
SCADA systems by using synergistic performance between spiking 
neural networks and Wasserstein adversarial training. The architecture 
of the system overcomes not only some of the limitations inherent in 
previous models but also provides unparalleled instruments for pro
tecting this vital infrastructure from the ever-evolving threat of cyber- 
attacks.

SPARK Classifier is representative of state-of-the-art technologies in 
industrial cybersecurity in that it has strong capabilities related to 

detection, adaptability to new attack patterns, and a high degree of ef
ficiency from a computational point of view. As shown in Fig. 2, several 
working modules define the SPARK architecture in a structured manner 
to present overall efficacy of intrusion detection in SCADA systems. This 
model thus takes its root from its SNN, which will process inbound data 
in the form of biological neurons. In SNNs, information is conveyed by 
discrete spikes rather than continuous signals, thus efficiently encoding 
temporal data. This is particularly useful in SCADA, where network 
traffic and operational signals are typically time-series-bound. The raw 
data streams of control signals, telemetry readings, and event logs are 
firstly prepared into a format that can be represented by spiking neurons 
by the SNN module. This module uses various mechanisms, such as 
temporal coding and spike-timing-dependent plasticity that allow it to 
adaptively learn from input data over time. The SNN will provide spikes 
as output while processing the incoming spikes, indicative of its current 
state and therefore give a rich representation of normal as well as 
potentially anomalous behaviors. The outputs from the spiking network 
feed into the WGAN module that forms the backbone of the adversarial 
training framework of the SPARK Classifier.

In the WGAN module, the classifier plays a game with a two-player 
generator and discriminator. With this setting, the generator generates 
adversarial samples, resembling potential intrusions, by learning fea
tures from the output of SNNs. The motivation here is to synthesize a 
diverse dataset composed of not only legitimate traffic but also different 
attack patterns. In contrast, the discriminator scores both the genuine 
data from SCADA systems and the synthetic samples generated by the 
generator against each other in order to discriminate between normal 
activities and malicious activities with high accuracy. The Wasserstein 
loss function provides more stability within this adversarial setup and 

Fig. 2. Flow of the proposed SPARK model.
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thus leads to an effective training mechanism that allows the model to 
learn meaningful representations for both normal and anomalous 
behavior, not suffering from mode collapse problems so often present 
within standard GANs frameworks.

A feedback loop in SPARK allows the Classifier to learn continuously 
to achieve strong performance by updating model parameters with new 
data, given performance related to a discriminator that recognizes 
which of the samples are real and which are generated. This turns out to 
be very critical for enhancing the classifier’s novel intrusion strategies 
detection capabilities that may not have been presented during its initial 
training. This feedback mechanism, integrated with SNN and WGAN 
modules, in essence enables the SPARK Classifier to evolve with 
evolving attack patterns in order to maintain a high accuracy level in 
detection. The preprocessing unit of the SPARK Classifier prepares 
feature extraction and normalization apart from the main modules, 
filtering out noise and irrelevant information with the hope of 
improving the quality of input feeding into the SNN. Advanced pre- 
processing may then apply dimensionality reduction to focus only on 
the most relevant salient features that contribute toward intrusion 
detection so that the model is not overwhelmed by extraneous data. 
Then, the pre-processed data is fed into the spiking module for temporal 
processing, and it gets a further transformation to the spike trains with 
temporal characteristics.

Its output feeds into a decision module incorporating classifier pre
dictions with SCADA contextual information. This latter module should 
enable ranked alerts to be generated regarding the anomalies detected, 
their priority, and recommendations on response actions. By integrating 
the contextual awareness, SPARK Classifier can determine whether an 
anomaly represents a serious threat and requires intervention, or a non- 
threatening anomaly due to normal fluctuations of operation. This ho
listic intrusion detection approach will guarantee that SPARK Classifier 
identifies not just potential intrusion but allows for timely and valid 
response to the threat so as to keep SCADA systems secure.

In this classification technique, the input SCADA network dataset is 
initialized with the feature vectors as mathematically represented in the 
following equation: 

S = {(pi,qi)}
N
i=1 (1) 

Where, pi ∈ Sd indicates the input feature vector and qi ∈ {0, 1}
represents the output label defines the instance of intrusion. As a 
consequence of this, the generator function is estimated from the latent 
space with the data as described in below: 

p̂ = G (x;ZG ) (2) 

Where, x ∼ N(0, 1) and ZG denotes the generator parameter. As a 
consequence of this, the discriminator function is estimated for deter
mining that whether the input data is real or fake based on the following 
equation: 

(3)

Where, ZG denotes the discriminator parameter. Moreover, the 
Wasserstein loss function is estimated as follows: 

(4)

Where, S indicates the loss parameter among the real and generated 
data. Moreover, the gradient penalty factor is computed as follows: 

(5)

Where, p̃ is uniformly sampled among the real and fake data. 
Consequently, the total discriminator loss function is computed with the 
gradient penalty factor using the following equation: 

LStot = LS + ξLb c (6) 

Where, ξ is the balancing factor that is used to balance the gradient 
penalty. As a consequence of this, the generator loss function is 
computed that supports to maximize the discriminator output based on 
the following model: 

(7)

Where, LG indicates the generator loss function that is used to 
maximize the output of discriminator. In addition to that, the He 
initialization is performed for updating weight values in the network 
layers, which is mathematically expressed as follows: 

AptCommandmathcalw1 ∼ ℵ

(

0,
2
ni

)

(8) 

Where, ni represents the number of input units in the network layer. 
Moreover, the spike activation function is estimated with the following 
model: 

δ(k) =
{

1 if ϑ(k) ≥ ϑkh
0 Otherwise (9) 

Where, ϑ(k) represents the potential membrane, and ϑkh denotes the 
spike threshold. Moreover, the loss function for the spiking network is 
also computed as shown in the following equation: 

Lspi = −
∑K

k=1
(mklog(δ(k))+ (1 − mk)log(1 − δ(k))) (10) 

The combined loss function for the overall SPARK model is estimated 
using the following equation: 

Lloss = LStot + LG + Lspi (11) 

The final classified output for intrusion detection in SCADA systems 
is obtained as represented in the following form: 

m̂ = φ(AptCommandmathcalwout × δ(k)) (12) 

Where, AptCommandmathcalwout indicates the weight value of the 
output layer and φ is the activation function.

Scented Alpine Descent (SAD) for Spike Encoding Threshold 
Computation

The Scented Alpine Descent (SAD) is a special hybrid optimization 
model of Spike Encoding Threshold Computation for bringing more fine 
tuning into threshold values pivotal for spike encoding in SNNs. Esti
mation of spiking thresholds plays an important role in determining how 
continuous input from SCADA systems will be converted into spike 
trains, usually necessitated by temporal and event-driven data process
ing. The spiking encoding thresholds directly influence the fidelity and 
granularity of neural activation patterns, which therefore affect 
capturing such nuanced and often subtle patterns inherent in data from a 
SCADA network. SAD is one such technique that conjoins dynamic and 
explorative principles with the optimum searching downhill simulation 
on complex search spaces impelled by scent-driven swarm intelligence 
features of Smell Bees Optimization. Such hybridization makes SAD 
capable of adaptively searching and refining the optimal threshold levels 
that maximize the sensitivity of the SNN to normal and anomalous 
patterns in the data.

Thus, spike encoding thresholds are crucial in this estimation pro
cess, since these thresholds determine at what times the neuron fires; 
hence, it influences the response of the network to the input stimuli in 
general. If the thresholds are too high, under-activation may come into 
effect, where important features may not be recognized by the network, 
and intrusion detection rate comes lower than otherwise. If the thresh
olds are much lower, then it could over sensitize the network and fire 
more data than required; that could saturate the downstream classifiers 
and might result in false alarms. The SAD model tries to solve the 
problems raised by the considerations above by subtly computing the 
threshold. Smell Bees Optimization introduces fine-tuned local search to 
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adjust and optimize the threshold value at very precise points by using 
multi-modal search capabilities of Alpine Skiing Optimization to 
conduct diversified solution explorations across different terrains of 
search spaces. This ensures that the synergy makes the encoding neither 
overly conservative nor too permissive, hence always providing the 
network with an optimal balance for intrusion detection accuracy.

The SAD model presents novelty in its original contribution of fusing 
two diverse optimization paradigms in a proposed application, compu
tation of spike encoding thresholds in SNNs targeting security in SCADA 
networks. While most of the conventional techniques of threshold se
lection depend on predefined static values or are based on very naive 
gradient-based methods that cannot be adaptive, SAD presents a more 
dynamic and adaptive thresholding strategy. By incorporating the 
behavior of bee swarms in relation to the following of scents, the algo
rithm will then refine solutions by "sensing" proximity to optimum 
threshold values within a specified neighborhood. This further com
plements the global, downhill exploration approach of Alpine Skiing 
Optimization, adept at escaping local optima by simulating the process 
of a skier going down rugged landscapes. Together, they make a strong 
optimization strategy capable of solving a nonlinear, high-dimensional 
problem of threshold computation and returning a more robust, adap
tive SNN for intrusion detection.

This adaptive process is very helpful in real-time SCADA systems, 
where an anomaly has to be timely and precisely detected in order to 
avoid malicious activities and ensure the integrity of the system. In this 
context, the SNN can optimize the thresholds for spike generation such 
that the balance of firing pattern preserves the critical information and, 
on the other side, minimizes noise and redundancy. This balance im
proves general model classification capability in terms of true positive 
rate, precision, recall, and F1-score. Therefore, this use of SAD for such a 
purpose serves to support not only known intrusion pattern detection 
but also to enhance the system’s generalization capability of response 
against new, unforeseen threats. In a nutshell, SAD points out a new 
frontier in adaptive neural computation and intrusion detection. Its 
combination of exploration-oriented Alpine Skiing Optimization with 
the localized fine-tuning capabilities of Smell Bees Optimization allows 
for an unmatched framework toward computing spike encoding 
thresholds that raise the performance of spiking neural networks.

This approach further develops the theoretical conception of hybrid 
optimization models and provides a practical solution that advances the 
reliability and responsiveness of the defense mechanisms of the SCADA 
system. By using the SAD model with laborious threshold calibration, 
SNNs maintain high discrimination power, thus yielding better detec
tion accuracy and lower false alarms for more robust security postures in 
critical infrastructure networks. The main novelty in optimization of 
spike encoding thresholds by olfactory stimulus evaluation, and me
chanics of Levy flight have been applied for the first time. This technique 
allows more dynamic exploration in solution space, enabling the model 
to find an optimal threshold with high efficiency that might be missed by 
traditional algorithms. In other words, embedding biological principles 
of olfactory navigation contributes not only to the adaptability of the 
model but also, in a manner of speaking, to the use of natural-process 
connotations that enhance more powerful computational strategies. 
Secondly, SAD differs in its ability to balance exploration and exploi
tation efficiently (Fig. 3).

This is usually a very difficult balance for traditional optimization 
algorithms to make without getting stuck in premature convergence to 
suboptimal solutions. In contrast, the position update in SAD is proba
bilistic with Levy flights in order to allow for an extensive search of the 
solution landscape. This characteristic is especially useful in complex 
environments where the relationship between variables is nonlinear or 
highly intricate. With the possibility to get stuck in the path of a local 
optimum, SAD model navigates it masterfully and improves perfor
mance by optimization of the spike encoding thresholds to enhance 
accuracy and efficiency in some neural encoding task. Another strong 
side of this model is its flexibility and scalability: the framework of SAD 

can easily adapt to any situation and setting of parameters. Thus, such a 
model can easily be spread from neuroscience research to different real- 
life tasks of signal processing. While most of the existing models are 
bound by fixed parameters or rigid structures, unlike them, the SAD 
model allows the inclusions of other variables and conditions as dictated 
by the use cases. This flexibility not only extends the robustness of the 
model across a wide range of domains but also guarantees that the model 

Fig. 3. Flow of the proposed SAD model for spike encoding threshold 
computation.
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will evolve with technological advancement and improvement in un
derstanding neural processes. Besides, the high computation efficiency 
makes the SAD model much different from those traditional methods.

Since the Levy flight optimization-driven evaluation itself of olfac
tory stimuli avoids much computation compared to the search methods 
using exhausting, the efficiency leads to fast convergence and less cost of 
resources, which may make the SAD model very useful for real-time 
applications where speed is crucial. That means the researchers and 
practitioners can exploit the benefits of the SAD model in a manner not 
involving exceedingly expensive time and computational resource costs. 
The SAD model offers a number of advantages compared to the available 
optimization techniques for Spike Encoding Threshold Computation. 
The novelty in its integration of biological inspiration with dynamic 
exploration mechanisms, flexibility, and computational efficiency gives 
it a standing where the researchers have an urge to learn more and 
enhance their knowledge for the usage of neural encoding processes.

In this optimization model, the set of populations are initialized at 
first as shown in the following equation: 

P(h) =
{

α→1(h), α→2(h)… α→b(h)
}

(13) 

Where, P(h) indicates the population vector, and b is the size of 
population. Consequently, the Olfactory Stimulus based fitness function 
is evaluated for each agent h, and its appropriate activation signal from 
the receptors is estimated based on the following model: 

ρact =
∑λ

i=1
ςψ i (14) 

ς ∼ Uniform(ςmn, ςmx) (15) 

Where, ψ i denotes the number of olfactory receptors and ς is the 
molecule concentration rate. Moreover, the levy flight searching strat
egy is applied as shown in the following equation: 

A(t + 1) = A(t) + Levy(A(t)) × A(t) (16) 

Levy(a) = 0.01 × ∂ × η × |ϱ|− 1/β (17) 

Where, β is the constant value for Levy strategy, A(t) is the position of 
skier at iteration t, ∂ and η are the random numbers on the range of (0, 
1). In addition to that, the stamina is estimated and updated with the 
maximum value based on the following model: 

ϕi(t) =
Y

1 + ek(ai(t)− a0)
(18) 

Where, ϕi(t) indicates the physical stamina, and k represents the 
logistic growth rate. Then, the distance and movement update is per
formed using the following equations: 

di(t) = ||di(t) − db(t)|| (19) 

A(t+1) = A(t) + ΔA(t) (20) 

ΔA(t) = rand × ρ(t) × d(t) (21) 

Where, di(t) indicates the distance between skier i and the first-place 
skier at time t and db(t) denotes the position of the first-place skier. 
Based on the position update, the threshold is estimated for the SPARK 
classifier.

Real-world scalability and deployment of SPARK and SAD in live 
SCADA systems depend on a few considerations. Most of the SCADA 
environments, especially those that involve critical infrastructure and 
industrial control systems (ICS), are distributed across several 
geographical locations with large volumes of data generated by sensors, 
devices, and industrial processes. This imposes a requirement for scal
ability in both SPARK and SAD, to be able to deal with such large data 
sizes while minimizing disruption of ongoing operations. This is 

important because SCADA systems face a high update rate, operational 
changes, and variations of attack vectors. SPARK has a multi-layered 
deep network structure that allows it to process large amounts of data 
in an efficient manner. The biggest advantage over traditional IDS ap
proaches is that SPARK doesn’t get overwhelmed with the speed and 
accuracy required in large-scale dynamic systems; thus, it has very low 
latency and is really precise and efficient when dealing with such 
complex tasks as predictive anomaly detection in real time, without 
flooding the network with traffic and hindrance in finding potential 
threats. On the other hand, SAD, combined with SPARK, gives yet 
another level of sophistication in reducing false positives and better 
precision in detection. SAD combines deep learning and anomaly- 
scoring algorithms in detecting tricky attack patterns that usually go 
unnoticed by traditional methods. Thus, SPARK and SAD combine 
synergistically to increase the adaptivity and accuracy of the detection 
process, decrease the need for manual intervention, and increase the 
reliability of the system.

The proposed framework with models, including SPARK and SAD 
could work efficiently, especially within a resource-constrained envi
ronment of a SCADA system, which will integrate with many IoT de
vices. Inherent in the SCADA systems, there are real-time processing of 
data and security over connected devices constrained by computation, 
power, and network bandwidth resources. This will keep the system 
responsive to known attacks as well as novel patterns of attack without 
overloading the devices with an excessive amount of data processing 
tasks. SAD is complementary to SPARK in the sense that it focuses on 
improving the detection accuracy while maintaining computational ef
ficiency. SAD’s anomaly scoring mechanism can be integrated into this 
framework to add another layer of detection, which can run parallel 
with SPARK. In effect, integrating the deep learning models into the 
scoring mechanism means that SAD would enable a much more fine- 
grained analysis of attack patterns with little noticeable impact on 
performance for the SCADA system in question. More importantly, it is 
of high importance for a system that constantly receives streams from a 
very large number of IoT devices and efficiently handles sparse infor
mation in the data together with varying degrees of attacks’ intensity. 
This will ensure the system only processes data of most relevance, hence 
reducing computational overhead and avoiding a clog in the system.

4. Results and discussion

In the case of intrusion detection systems, appropriate datasets will 
be helpful with the aim of validation and assessment in different pro
posed methodologies. The work presented herein assessed the perfor
mance of the SCADA intrusion detection system against more than one 
dataset highly considered within cybersecurity. SWaT, Gas Pipeline, 
WUSTL-IIoT, and Electra [42,43] are some of the datasets used for this 
analysis. Each of these datasets presents a different problem and a 
different opportunity for enhancement in the capability of anomaly 
detection in industrial control systems. The SWaT dataset is generated in 
a water treatment environment. It contains all types of normal and 
attack scenarios in a simulated environment. This dataset includes over 
100,000 records of sensor data with attack examples and is relevant to 
the assessment of system robustness against different intrusion types. 
The diversity of this dataset allows for in-depth analysis of the SCADA 
system response to expected and unexpected behaviors, hence allowing 
subtle anomalies indicative of security breaches. The Gas Pipeline 
dataset shall provide insight into the operational dynamics of gas 
pipeline systems, comprising a number of states related to operations 
and possible attack vectors. It is composed of real-time sensor readings 
combined with actuator commands that enable detection of anomalies, 
which might signify potential threats to the integrity of the gas distri
bution network.

In this work, two widely known SCADA-related datasets, the SWaT 
dataset and the WUSTL-IIoT dataset, are considered. These datasets are 
chosen based on their comprehensiveness and realistic representations 
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of SCADA systems; they have the ability to produce normal operation 
data and a large variety of attack scenarios. It contains normal data 
representing regular system behavior and a large collection of attack 
scenarios, including Denial of Service (DoS), Remote-to-Local (R2L), 
User-to-Root (U2R), and others that reflect malicious activities. On the 
other hand, the WUSTL-IIoT dataset is from an Internet of Things (IoT)- 
integrated SCADA testbed for testing cyber-attacks in industrial envi
ronments. It covers more extensive industrial applications, including 
attacks such as Brute Force, Distributed Denial of Service (DDoS), 
Command Injection, Malware, and MITM (Man-in-the-Middle). Such 
datasets are heterogeneous, offering wide information not just typical 
SCADA system behavior but also a wide range of types of cyber-attacks 
in an industrial IoT context.

Among other features, some of the features in these datasets involve 
time-series information from several sensors monitoring various SCADA 
system components, such as temperatures, pressures, and flow rates, to 
mention but a few. All these features are very essential in modeling 
system behavior and identifying pattern anomalies that represent an 
intrusion in the system. Another feature available involves actuator 
commands that involve controls of different components within a sys
tem; they also log the state of a system at particular times. One may 
control the attack-specific features, where artificial intrusions are 
introduced to simulate a range of cyber-attacks. Generally, each feature 
is timed recorded so that the analysis could be done on both spatial and 
temporal dependencies on the system. In the more complex cases, 
different types of attacks are labeled distinctly, allowing multi-class 
classification, where the model has to determine which particular type 
of attack is taking place in the system.

The data are complex, and considering the criticality of the infra
structure, this dataset is very relevant to understand the practical utility 
of proposed intrusion detection techniques. The WUSTL-IIoT dataset has 
been designed to represent the complexities of IIoT systems, integrating 
multiple devices that communicate on different protocols. This dataset 
includes both benign and malicious traffic patterns, so the SCADA 
intrusion detection system can be evaluated under different conditions. 
Its narrow focus on IIoT makes this dataset very important in under
standing the subtlety of network security in those environments where 
traditional cybersecurity measures fall short. Finally, Electra is a com
plete electrical grid operation and related vulnerabilities dataset. The 
dataset contains comprehensive operational data for the detection of 
unusual activity and can be useful in support of cyber-attack detection 
against energy infrastructure. This dataset offers real-world bench- 
testing of intrusion detection algorithm resiliency against focused at
tacks that jeopardize energy systems’ reliability and safety. Eventually, 
the unification of these datasets in the evaluation framework enhances 
comprehensiveness in assessment by providing multifaceted views 
regarding capabilities of a proposed SCADA intrusion detection system. 
Each dataset contributes with unique properties and challenges that 
would enable profound analysis of methodologies employed for 
detecting and mitigating possible intrusions in various industrial 
environments.

It is worth noting that the fairness in the comparison has been very 
carefully taken care of through standard experimental settings, common 
evaluation metrics, and strong statistical analysis. Since SPARK and SAD 
are new models for intrusion detection in SCADA environments, fairly 
comparing their performances with those of the state-of-the-art IDS so
lutions is important for validation. To this end, the experimental setup 
maintains the same dataset preprocessing, feature selection, and model 
training for all models in evaluation. The proposed SPARK and SAD are 
trained and tested on the same datasets used for the benchmarked IDS 
models, SWaT and WUSTL-IIoT, to ensure none of them has an unfair 
advantage resulting from discrepancies in the datasets used. It also 
strictly controls the partitions of the dataset for training and testing, so 
the models are evaluated on data that has never been seen, to estimate 
the true generalization ability. Furthermore, k-fold cross-validation is 
applied to prevent performance inflation due to specific dataset splits; 

thus, each model is tested on a variety of the dataset and produces an 
average score showing its overall effectiveness, not its performance on a 
single test set. The other important thing for fairness is using stan
dardized evaluation metrics that comprehensively cover different as
pects of model performance. The performance is, therefore, measured by 
the metrics of precision, recall, F1-score, and AUC-ROC (Area Under the 
Receiver Operating Characteristic Curve) to give a better evaluation. 
Hyperparameter optimization is also always performed for all models 
using grid search or Bayesian optimization techniques to make sure that 
before comparing the models, each is optimized with the best possible 
parameters to avoid any unfair tuning advantage.

Aside from the performance evaluation, equity is also provided in 
computational resource equity. Big computational resources are nor
mally required for IDS models based on deep learning; therefore, giving 
different models various processing powers or memories or a larger 
amount of time for training may incur an unfair comparison between 
models. Aside from performance evaluation, equity is also provided in 
terms of giving computational resource equity. Deep learning-based IDS 
models usually require huge computational resources, and an unfair 
comparison may be incurred if some models are granted higher pro
cessing power, memory, or training time compared to other models. In 
the intended work, all models are implemented on the same hardware 
and software setups, thus guaranteeing that no particular method has an 
advantage in terms of computational resources. Batch sizes, learning 
rates, and numbers of epochs are all kept the same between models to 
rule out differences in the learning curve. Early stopping mechanisms 
and convergence monitoring are applied uniformly to make sure that no 
model gets an extension in terms of training times, which could provide 
benefits with overfitting. Allowing all models to be based on a similar set 
of important features levels the comparison and does not leave it subject 
to feature engineering biases that could favor one approach over 
another.

Fig. 4 shows the histogram plot of some system variables; this plot is 
important for understanding the statistical distribution of critical fea
tures used in the anomaly detection dataset. The variables in this his
togram dataset include Packet Size, Response Time, CPU Usage, Memory 
Usage, Network Traffic, Anomaly Score, and Error Rate. These are 
generated by mixing normal and uniform distributions that realistically 
model SCADA system behavior. This can be elaborated as: Packet Size 
has a normal distribution with mean 500 and standard deviation 100, 
representative of general sizes of data packets transmitted within a 
SCADA network; CPU_Usage and Memory Usage are simulated with 
averages of 50 % and 60 %, respectively, representative of moderate 
loads on the system in an industrial setting under control. The Network 
Traffic variable follows a uniform distribution between 100 and 1000 
and can be representative of variation in data throughput that can be 
experienced with such systems. In the end, the Anomaly Score and Error 
Rate are quantitative measures that give an idea about the degree of 
deviation respecting normal operation, with higher values possibly 
signaling either threats or inefficiencies.

As shown in Fig. 5, the histogram of the distribution of the individual 
features is also helpful to identify outliers and trends that may be useful 
in anomaly detection performance. From this, the researchers are able to 
analyze the balance between the variability and stability of the data; 
hence, the feature that best differentiates between normal and anomaly 
behavior can be determined. It is in these underlying statistical distri
butions and patterns of variability, as may be perceived through such 
histograms that the ground lies for tuning detection thresholds and 
refining the model sensitivity against various kinds of anomalies. The 
plot at each point in data shows the MSE; hence, it gives a quantitative 
measure as to how close model predictions are to the actual values. 
When plotted along the axis of the indices of data points, it shows certain 
fundamental trends in anomaly detection. Spikes in MSE point toward 
the location of detected anomalies. This approach is particularly suitable 
when the data are time-series oriented, as generally is the case in SCADA 
and industrial control systems. This can be done by plotting the MSE, 
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which then shows periods of stability versus moments of unexpected 
behavior that provides a very clear indication of when and where se
curity threats or system failures occur. This sharp contrast between 
normal operations-with their low MSE-and anomaly-laden periods with 
their high MSE underlines the model capability to clearly discern 
abnormal patterns.

The next sections describe the procedure of training and validation 
with focus on different metrics on the datasets, necessary for evaluation 

of the proposed IDS performance and its ability to generalize. First, 
Fig. 6(a) shows the case of the SWaT dataset for the training and vali
dation process of accuracy with respect to the anomalous and normal 
inputs where the plot describes the how the model tends to classify the 
given input data. The observed pattern of the training accuracy is akin to 
a smooth moving line that progressively ascends. That proves the model 
learns consistently to differentiate the pattern within SCADA network 
data with reasonable accuracy. If overfitting were to occur, this would 

Fig. 4. Histogram plot.

Fig. 5. Anomaly detection in SWaT dataset.
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show as a large gap between the training and validation curves: In tra
jectory 3, the training accuracy remains high and the validation accu
racy either stagnates or declines; this is bad news for the overfitting that 
has occurred.

Fig. 6(b) is a close up of training vs. validation loss using SWaT 
dataset. The loss metric shown on the y-axis in Figure is a measure of 
how different the output of the model is from the actual outputs. The 
validation loss curve is the most appropriate measure to use, as it shows 
how the model fairs in terms of data set it has not trained on. Ideally, 
they should drop similarly in order to indicate good learning and good 
generalization. On the other hand, when the training loss continues to 
decrease and the validation loss either plateaus or increases- that is 
overfitting, and the model memorized the data rather than learning 
regularities. Fig. 6: In the former case, if needed, the training and vali
dation loses should be decreasing before reaching stage when they are 
not very low, but not rapidly increasing, either – this means that the 

model is neither too complex to explain seen inputs, nor highly likely to 
fail in explaining unseen inputs.

A similar procedure followed for the estimation of the models’ per
formance using the gas pipeline dataset is shown in Fig. 7 (a). It is 
representative of another type of industrial control system and it is 
characterized by its own data features and threat models.

The accuracy curves of training versus validation illustrate the 
relative performance of the model on this unique dataset. Consistent and 
converging training and validation accuracy is indicative of the fact that 
the model architecture and feature extraction techniques generalize well 
across diverse datasets. Any large deviations between the two curves 
may indicate that changes in hyperparameters or perhaps the model 
architecture are necessary to more suitably allow for certain nuances 
within gas pipeline data. The idea is to make sure that while the model 
remains highly accurate, it does not lose its ability to adapt well to 
different operation environments. Fig. 7 (b) shows the training vs 

Fig. 6a. Training and validation accuracy for SWaT dataset.

Fig. 6b. Training and validation loss for SWaT dataset.

R. Bhukya et al.                                                                                                                                                                                                                                 International Journal of Critical Infrastructure Protection 49 (2025) 100759 

14 



validation loss for the gas pipeline dataset. If the number of epochs 
exceeds a certain limit and the validation loss starts to increase, early 
stopping or regularization methods can be employed to avoid overfitting 
of the model. The minimized validation loss that stabilizes near the 
training loss is particularly important in industrial systems, where both 
false positives and negatives are costly, and thereby guaranteeing reli
able anomaly detection.

Beginning with Fig. 8 (a) which illustrates the training and validation 
accuracy for WUSTL-IIoT dataset; the horizontal axis of the plot repre
sents number of epochs and vertical axis represents percentage of ac
curacy. WUSTL-IIoT, arguably the most complex dataset inclusive of 
high-dimensional data obtained from industrial IoT scenarios, tests the 
model in its capability to identify relevant features and ingratiate with 
the inherent IIoT stream heterogeneity. An ideal plot was a training 
accuracy plot that increases from epoch to epoch, indicating that the 

model is learning features of the data set. The further understanding of 
the learning dynamics of the model can be made clear from the training 
and validation loss shown in Fig. 8(b) for the WUSTL-IIoT dataset. The 
performance metric is as given in the y-axis, which is the loss function or 
lack of it as the case may be, whereby the best score is nearer to zero than 
is the actual score. The further perfect training scenario is characterized 
by decaying of the training loss across the epoch implying that internal 
weights of the model are well optimized.

Turn to Fig. 9 (a), the training and validation accuracy of the Electra 
dataset gives an idea of how the model performs on data from another 
distinct industrial dataset with its own features and operational char
acteristics. The nature of Electra dataset, typically derived from electric 
grid systems or energy management networks – an inherent variability 
of network dynamics which may complicate the process of anomaly 
identification. As Fig. 9 (b) revealed, the Electra dataset undergoes the 

Fig. 7a. Training and validation accuracy for Gas pipeline dataset.

Fig. 7b. Training and validation loss for Gas pipeline dataset.
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training and validation loss. Here, the training and validation losses are 
minimizing their errors and show that the model has improved. The key 
is that both should clearly decline over epochs and flatten at certain 
values significantly lower than initial, which would indicate that the 
model is capable of learning not only its own training set but also new 
validation data.

The confusion matrices of the SWaT and WUSTL-IIoT datasets give 
much insight into a detailed evaluation of these intrusion detection 
models in terms of classification performance regarding accuracy in the 
recognition of the difference between normal and attack scenarios. 
Fig. 10 shows the confusion matrix of the SWaT dataset, which provides 
a more structured way to visualize the classification outcomes by the 
detection model for all types of intrusion classes: DoS, R2L, U2R, 
Command Injection, Data Injection, Injection Attacks, and Physical 
Intrusion. The rows represent the actual class ground truth while the 

columns represent the predicted class. Hence, it depicts the number of 
instances correctly and incorrectly classified by the detection model. For 
example, Command Injection and Data Injection could have very close 
behavioral characteristics, and thus sometimes may be misclassified. 
Also, R2L and U2R attacks often overlap in terms of exploit patterns, 
which makes the task of distinguishing them even harder with a good 
accuracy rate. A properly optimized deep learning-based anomaly 
detection model should be designed to reduce false positives and false 
negatives as much as possible, ensuring a good precision and recall for 
each type of attack.

Similarly, Fig. 11, the confusion matrix of the WUSTL-IIoT dataset, 
provides very critical insight into how effective the intrusion detection 
model can be in handling the most sophisticated cyber-attacks in the 
wild within the industrial IoT ecosystem. The dataset consists of 
different intrusion types: brute force, DDoS, command injection, 

Fig. 8a. Training and validation accuracy for WUSTL-IIoT dataset.

Fig. 8b. Training and validation loss for WUSTL-IIoT dataset.
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malware, MITM, privilege escalation, SQL injection, and phishing 
everything aimed at IIoT infrastructure. The confusion matrix shows 
how the model classifies each type of attack, on the one hand dis
tinguishing between normal and malicious activities. A high detection 
rate along the diagonal line presents a strong detection framework that 
can recognize the patterns of attacks with low classification errors. 
However, misclassifications between Brute Force and DDoS attacks, for 
example, can take place due to their sharing of characteristics in 
network traffic anomalies since both have high-volume request patterns. 
SThe confusion matrix provides a basis for further detailed analysis to 
ensure that an intrusion detection system in the industrial environment 
is optimized to scale and evolve with new and emerging cyber threats.

Fig. 12 shows the performance analysis of proposed SPARK model 
with respect to various intrusion types. It is observed from this figure 
that the proposed model outperforms others in detecting and classifying 

cyber-attack classes with supreme efficiency. These are then further 
elaborated in detail by using metrics like precision, recall, and F1-score, 
which are considered some of the key indicators of model performance 
in anomaly detection tasks. The attack classes considered in the analysis 
are "BENIGN," "Bot," "DDoS," "DoS GoldenEye," "DoS Hulk," "DoS Slow
httptest," "DoS slowloris," "FTP-Patator," "PortScan," "SSH-Patator," and 
"Web Attack." It ranges from the minimum 0.988 to the maximum 0.992. 
The high value, which accounted for 0.992, was observed for an "DoS 
GoldenEye" attack, showing the efficiency of the model in making pos
itive predictions without giving too many false positives. Recall scores, 
which were supposed to grade the model on its ability to detect all the 
relevant cases of each intrusion type, are very consistent, standing be
tween 0.989 and 0.992. It is for "Bot" and "DoS Slowhttptest" attacks that 
the highest recall, 0.992, has been recorded and justifies the efficiency of 
the model in capturing true positive instances. These are further 

Fig. 9a. Training and validation accuracy for Electra dataset.

Fig. 9b. Training and validation loss for Electra dataset.
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confirmed by the F1-scores, also averaging close to 0.991 for most of the 
attack classes, showing the strength of the model in preserving a har
monic mean between precision and recall. This consistency from all 
metrics shows the dependability and strength of the SPARK model in 
handling diverse and complex intrusion scenarios.

From Fig. 13, it is evident that the SPARK proposed model has an 
edge over the traditional methods. SPARK model acquires the leading 
value for precision of 0.995, whereas "LSTM" is equal to 0.993 and 
"DNN" to 0.982. This means the proposed model outperformed the 
others by providing higher accurate predictions with fewer numbers of 
false-positive cases. SPARK has a recall of 0.99, hence identifying the 
true anomalous activities compared to models like "ImpAE", which have 
0.673 and "One class SVM", having 0.699. The F1-score is a measure that 
provides the combined average of both precision and recall; the model 
SPARK is complete with a value of 0.99, beating other models such as 
"1D CNNs" at 0.873 and "RNN" at 0.796. The dominance on all the 

metrics shows that the proposed model copes well with real-world data 
characterized by a low false negative rate and reliable methods for 
positive prediction.

More comparison is provided in Fig. 14 on the SWaT dataset with a 
selected number of machine learning models such as "MLP", "Logistic 
Regression", "Random Forest", "Decision Tree", "GradientBoosted Trees", 
and "Naive Bayes". SPARK takes the lead in the accuracy metric with a 
value of 0.993, hence giving a very good overall performance both for 
normal and anomaly classification. This result outperforms such models 
as "Gradient-Boosted Trees," which has an accuracy of 0.99, and "Naive 
Bayes," which has the lowest at 0.97. Precision-one of the most impor
tant measures responsible for the detection of false positives-remains 
high and equal to 0.992 for the SPARK model, higher than that of 
"MLP" and "Random Forest," both having 0.98. The recall for the SPARK 
model, also at 0.992, further establishes the fact that it possesses all 
intrusion cases relevant in the ground truth, beating models like 

Fig. 10. Confusion matrix for SWaT dataset.

Fig. 11. Confusion matrix for WUSTL-IIoT dataset.
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"Logistic Regression" to a recall of 0.97. On the F1-score, which balanced 
the precision and recall, the SPARK model stood tall with an F1-score of 
0.991, well away ahead of models such as "Decision Tree" and "Naive 
Bayes, " which were stuck at 0.98. In fact, the high and consistent values 
of accuracy, precision, recall, and F1-score in the SPARK model 
demonstrate its robustness, adaptiveness, and effectiveness in detecting 
and mitigating intrusion attempts under different settings of the SWaT 
dataset. The fact that these results show consistent superiority indeed 
means that the SPARK model will be aptly suitable for real-time 
deployment on ICS and IIoT environments to provide an effective bar
rier against different types of cyber intrusions.

Table 1 presents a comparison of different IDS models, tested on 
important key performance indicators such as accuracy and detection 
rate. The considered IDS models include G-IDS, RDTIDS, IDL-IDS, H-IDS, 

DIDS, and the proposed model. These results identify that the proposed 
IDS outperformed other models in terms of its achieved high accuracy of 
99 % and a high detection rate of 99.35 %. Looking closer into the re
sults, the poor performance of G-IDS gives an accuracy of 92.23 % and a 
detection rate of 91.04 %, showing that its capability for correct clas
sification of network intrusions is rather low. RDTIDS give better results: 
accuracy-96.99 %, and detection rate-94.47 %, which postulates its 
moderate reliability but lagging behind advanced systems. IDLIDS 
shows quite a balanced performance, while the value of accuracy rea
ches 95.60 %, the detection rate shows a higher percentage of 96.20 %; 
it proves to be strong in maintaining a good balance between accuracy 
and anomaly detection. The H-IDS model is more accurate, reaching 
97.64 % with a detection rate of 94.48 %, which is meaningful given the 
improvements that G-IDS presents. More interestingly, DIDS has 

Fig. 12. Performance analysis of the proposed SPARK model with respect to different types of intrusions.

Fig. 13. Comparison with other classification approaches using SWaT dataset.
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produced equal results to the H-IDS model in terms of accuracy, with 
97.64 %, but outdid it with its detection rate, reaching 99.20 %, thus 
showing a better capacity in comprehensive threat identification.

Among all considered models, the proposed model outperforms all of 
them with an accuracy of 99 % and a detection rate of 99.35 %. Such 
results confirm the efficiency of the proposed approach; it hints at the 
fact that any such approach will be extremely robust for real-life 
intrusion detection scenarios. Besides, the significant margin within 
the level of accuracy and detection rate compared to DIDS, which 
already performs well, reveals that the proposed model represents a 
technique or optimization which bounds up its detection accuracy and 
ends. Fig. 15 shows the accuracy of each model, where clear indications 

Fig. 14. Comparison with various machine learning approaches using SWaT dataset.

Table 1 
Comparative study with other IDS models.

Models Accuracy ( %) Detection Rate ( %)

G-IDS 92.23 91.04
RDTIDS 96.99 94.47
IDL-IDS 95.60 96.20
H-IDS 97.64 94.48
DIDS 97.64 99..20
Proposed 99 99.35

Fig. 15. Comparison of model accuracy using SCADA IDS dataset.
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show how the proposed model was able to outperform the rest with its 
99 % accuracy. Fig. 16 shows the models’ detection rate; here again, the 
Proposed model leads by 99.35 %, edging out DIDS at 99.20 %. This 
consistent superiority in both metrics would imply that the Proposed IDS 
not only classifies benign and malicious traffic correctly, but it does this 
in real time with a minimum number of false negatives.

Fig. 17 depicts the various deep learning techniques applied to the 
WUSTL-IIoT dataset, which have given accuracy. The several techniques 
compared herein are CNN, LSTM-RNN, GRU, DNN, GAN, and the Pro
posed Technique. The analysis here shows that while the traditional 
models in the form of CNN-LSTM and LSTM-RNN show only an average 
level of accuracy at 85 % and 82 %, respectively, the more advanced 
versions of the models, GRU-AE and GAN increased further to a mean 
accuracy value of about 89 % and 87 %, respectively. BiGRU, on the 
other hand, presents higher performance with an average accuracy of 95 
%, hence proving its ability to deal with time series data. Among these, 
the Proposed Technique represents the highest accuracy averaging 99 
%, indicating good model design, adaptability in anomaly detection, and 
high-precision processing of IIoT data.

The margin of difference that is significant involved herein tells us 
this may set a new benchmark of the Proposed Technique in the field of 
IIoT security and monitoring systems. As shown in Fig. 18, a comparison 
of these models regarding precision on the WUSTL-IIoT dataset is pre
sented. In precision, which is an important metric for estimating the 
reliability of the different anomaly detection models, discrepancies can 
be shown in techniques. CNN-LSTM and LSTM-RNN maintain average 
precision at about 84 % and 81 %, respectively, while GRU-AE raises 
that bar at about 88 % average precision. GAN also fares well at about 86 
%. BiGRU also sets a high standard with an average precision of about 94 
%, showing its effectiveness in filtering out false positives. Again, the 
Proposed Technique has an almost flawless performance with an 
average precision of 99 %, showing it is very good at locating true 
positives while minimizing false alarms. This kind of precision is highly 
desirable in systems that require high levels of trustworthiness and 
minimum misclassifications.

Fig. 19 illustrates the recall for the set of models using deep learning 
techniques. Recall tells something about the aptitude of a model to 
predict all instances of a particular class. During this comparison, both 
CNN-LSTM and LSTM-RNN averaged at 83 % and 82 % recalls 

respectively. This shows their inability to capture all true anomalies. 
Whereas GRU-AE performs moderately better with an average recall of 
87 %, the GAN performs about the same level, producing a recall of 86 
%. However, BiGRU stands out with an average recall of 93 %, showing 
it is strong for a high proportion of anomaly identification. Among the 
overall performance, the Proposed Technique far outperforms all the 
competitors by giving a recall of about 99 %, indicating that its capa
bility of recognizing almost all the relevant instances is brilliant, with 
very few cases missing. This high recall value is indicative that the 
model is robust, given its main aim is to ensure comprehensive detection 
coverage, very critical in high-stake IIoT environments where missed 
anomalies have big consequences.

As shown in Fig. 20, different machine learning methods using the 
Electra dataset are validated. The applications were done for models 
such as Decision Tree, Random Forest, SVM-Support Vector Machine, 
KNN-K-Nearest Neighbors, Naive Bayes, and Proposed Technique. The 
Decision Tree, on average, provides an accuracy of around 75 %; hence, 
the tendency is simple and has a limited capability to generalize complex 

Fig. 16. Comparison of detection rate using SCADA IDS dataset.

Fig. 17. Comparison with other deep learning techniques based on accuracy 
using WUSTL-IIoT dataset.
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patterns. SVM and Random Forest struggled to average about 80 % and 
85 %, respectively, but the Proposed Technique clearly outdoes all other 
models in a rather pointed fashion with a marked average accuracy of 90 
%, showcasing its advanced algorithmic capabilities combined with 
optimization strategies fitted to the nuances of the Electra dataset. 
Fig. 21 shows the comparison of precision on the same set of models, 
which introduces the degree to which each model predicts the positive 
instances correctly. Naive Bayes had the lowest average precision at 72 
%, indicating a high propensity to false positives.

The Decision Tree and KNN follow at 74 % and 77 %, respectively. In 
turn, the SVM is somewhat better off, with an average precision of 
around 81 %, benefiting from its decision boundary maximization. It can 
be noted that, through ensemble decisions, Random Forest has a high 
value of precision about 84 %. Among these, the Proposed Technique far 
outperformed others with the highest precision value of about 91 %, 
which indicates that the tunings and decision improvements are highly 
precise. This hence reduces misclassifications drastically and is highly 
capable of identifying true positives from false positives. Fig. 22 repre
sents the F1-score of these models for the Electra dataset. At the head, 
however, is the Proposed Technique with a massive average F1-score of 

92 %, reflecting the proficiency on both precision and recall. That is, 
high effectiveness in complete detection and rather precise classification 
shows that the model can be a reliable choice among the evaluated 
techniques, when dealing with applications involving the Electra 
dataset.

Similarly, Spiking Neural Network training limitations also become 
critical as it arises for either of the two technologies from integration and 
inherent challenges this also relate to the integration models of SAD with 
the current architecture of the SCADA network. Still, another problem 
found in SNNs is training algorithms can be immensely complicated. 
There is, therefore, the need for a common and standardized framework 
in training the SNNs, hence making it very difficult for researchers to 
come up with strong models that would easily be adapted in practical 
applications, most especially in the SCADA systems where real-time 
processing is paramount. This would create an extremely high demand 
for highly parallelized computations in the processing of real-time, 
event-driven data from SCADA systems. The realization of the process
ing time requirements already assumes the application of hardware 
accelerators in the form of neuromorphic chips. This will only add costs 
and integration problems since the existing SCADA systems may not be 
designed to accommodate any special hardware or software 
requirements.

5. Conclusion

This paper covers a detailed study on the development and evalua
tion of advanced intrusion detection models for ICS, focusing on SCADA 
and IoT environments. It introduces two new designs, SPARK-standing 
for Scalable Predictive Anomaly Response Kernel-and SAD, short for 
SAD-both of which were developed to transcend shortcomings of typical 
detection systems by providing higher levels of accuracy, precision, and 
resilience to sophisticated cyber-attacks. SPARK is a unique model, 
having a novel architecture that effectively integrates the mechanisms of 
deep learning with strategic feature extraction mechanisms. It makes 
SPARK very capable of handling large-scale datasets without loss of 
detection fidelity. The special layered structure it has, together with 
adaptive learning rates and a hybrid ensemble strategy, supports its 
robustness and adaptability on diverse network conditions. SAD utilizes 
an ensemble of deep neural networks combined with anomaly scoring 
methods to emphasize minute deviations in-network behavior. It fea
tures low false positives, keeping the system reliable for high complexity 

Fig. 18. Comparison with other deep learning techniques based on precision 
using WUSTL-IIoT dataset.

Fig. 19. Comparison with other deep learning techniques based on recall using WUSTL-IIoT dataset.
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intrusion patterns. Both models come with significant advantages 
compared to traditional and modern IDS solutions.

SPARK can be widely applied in ICS for real-time monitoring because 
of its scalability and computational efficiency. SAD provides a number of 
strategic advantages because multi-dimensional analysis allows it to 
classify benign anomalies from actual security threats with high accu
racy. Besides, experimental results further ensure the efficacy of these 
proposed models. On the SCADA IDS dataset, SPARK and SAD 
convincingly demonstrated better detection rates and F1-scores than 
other state-of-the-art techniques, which indicated that both models 
outperformed them in all aspects. Similarly, tested on the WUSTL-IIoT 
and Electra datasets, both have shown remarkable increases in accu
racy, precision, and recall, each confirming their versatility and 
robustness for different industrial datasets. The findings underline, in 
summary, that the SPARK and SAD models are basically the final frontier 
in modern intrusion detection. Distinctly designed to provide improved 
detection capabilities and operational efficiency, the two designs also 

chart a way into more resilient and intelligent security solutions for 
modern ICS and IoT networks. Further, the in-depth review and excel
lent performance reveal their applicability to practical scenarios, which 
again underlines the role of novel approaches in the protection of critical 
infrastructure against emerging cyber threats.

Federated learning can help significantly in enhancing the level of 
intrusion detection system’s privacy and scalability by training on local 
data without sharing sensitive information across the network. This may 
further help generalize models that need to learn from various sources 
without requiring any centralized data collection something often not 
possible in the case of SCADA systems extended over different 
geographical regions. The decentralized approach has an extra advan
tage in augmenting real-time capabilities, as through this method, the 
model can continue updating and adapting to new threats without 
needing retraining periodically on a centralized server. Future works 
will also discuss the use of hybrid approaches in combining federated 
learning with traditional deep learning or spiking neural networks, in 
order to leverage benefits coming from both worlds: temporal dynamics 
provided by SNNs and collaborative advantages belonging to federated 
systems, with the final aim to build up a more robust, adaptive, and 
scalable IDS solution for SCADA networks. Therefore, it will continue to 
strengthen the security and resilience of the SCADA systems and ensure 
their security against new types of cyber-attacks by putting these chal
lenges and future directions in focus.
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