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Abstract: Improving energy efficiency is a major concern in residential buildings for eco-
nomic prosperity and environmental stability. Despite growing interest in this area, limited
research has been conducted to systematically identify the primary factors that influence
residential energy efficiency at scale, leaving a significant research gap. This paper ad-
dresses the gap by exploring the key determinant factors of energy efficiency in residential
properties using a large-scale energy performance certificate dataset. Dimensionality reduc-
tion and feature selection techniques were used to pinpoint the key predictors of energy
efficiency. The consistent results emphasise the importance of CO;, emissions per floor
area, current energy consumption, heating cost current, and CO, emissions current as
primary determinants, alongside factors such as total floor area, lighting cost, and heated
rooms. Further, machine learning models revealed that Random Forest, Gradient Boosting,
XGBoost, and LightGBM deliver the lowest mean square error scores of 6.305, 6.023, 7.733,
5.477, and 5.575, respectively, and demonstrated the effectiveness of advanced algorithms
in forecasting energy performance. These findings provide valuable data-driven insights
for stakeholders seeking to enhance energy efficiency in residential buildings. Additionally,
a customised machine learning interface was developed to visualise the multifaceted data
analyses and model evaluations, promoting informed decision-making.

Keywords: energy efficiency; residential buildings; visual data analysis; energy performance;
machine learning; buildings features

1. Introduction

Measuring the energy efficiency of residential buildings is a crucial task that necessi-
tates a wide range of skills and various processes. It is highly important to enable energy
efficiency measurement in houses in order to analyse energy performance, improve areas,
and ensure compliance. Energy efficiency ratings are an essential part of the energy per-
formance evaluation of residential buildings in the United Kingdom [1]. Ratings should
provide information that is conveyed in such a manner that homeowners, policymak-
ers, and other stakeholders are given an informed choice [2]. Over the years, the UK
has developed many methods and frameworks [3,4] to standardise the way in which the
measurement and reporting of energy efficiency in houses is conducted [5,6].

The implementation of energy-saving improvements in residential buildings achieves
significant economic benefits by reducing utility bills and minimising the emissions
footprint [7,8]. Lower energy consumption rates reduce the cost of living and decrease
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energy stress on grid loads [9]. Conventional approaches often fall short of addressing
energy efficiency in buildings, possessing several dynamic and complex sets of features [10].
Traditional methods typically rely on linear assumptions and simplified interactions, which
can overlook critical non-linear relationships and complex feature interactions inherent in
large datasets. These challenges require advanced machine learning techniques to uncover
correlations and hidden patterns within energy performance data [11-13]. In contrast to
traditional methods, machine learning algorithms are capable of modelling non-linear de-
pendencies and complex feature interactions, thereby providing more accurate and robust
predictions. Therefore, the implementation of machine learning models in energy efficiency
prediction can enhance the effectiveness of energy resource allocation [14]. However, the
highly complex interactions of the features within buildings can make the measurement
process challenging [15]. Hence, this demands the use of advanced and intricate analytical
techniques. Combining machine learning with feature selection together provides very
high promises for further improvements in the accuracy and robustness of energy effi-
ciency prediction methods for residential buildings [16,17]. These powerful techniques
can mine hidden patterns, model complex interactions, and adapt to changing conditions.
Advanced analytics with advanced ML algorithms can play a significant role in achieving
objectives for energy efficiency and sustainability [18]. Machine learning techniques have
been employed to work effectively when energy data have complex dependencies [19,20].
Prediction models are capable of predicting energy efficiency by identifying gaps within
residential feature performance. Predictive models provide effective design and retrofit
strategies to improve the energy performance of buildings [21].

In this regard, we employ a mix of traditional and modern machine learning algo-
rithms that are crucial for enhancing energy efficiency due to their capability of analysing
large feature sets of data and identifying complex patterns. This diversity of algorithm
selection helps to capture multiple aspects of the features’ relationships, leading towards a
more robust prediction. Through the analysis of past data on energy performance, algo-
rithms are employed to predict future energy efficiency in order to pinpoint locations where
energy savings are required to be achieved in residential buildings. In our study, the use of
mix of traditional and modern machine learning algorithms, such as Linear Regression,
Support Vector Regression (SVR), Decision Tree, Random Forest, and Gradient Boosting,
is encouraged due to their exhibited efficacy in dealing with a wide range of predictors,
as well as their different levels of interpretability and complexity. Linear Regression offers
a fundamental starting point because of its simplicity and straightforward interpretation.
On the other hand, non-linear models like Support Vector Regression (SVR) and Decision
Tree are capable of capturing intricate inter-relationships within the data. Ensemble ap-
proaches, such as Random Forest and Gradient Boosting, boost predictive performance by
amalgamating many models to mitigate overfitting and enhance accuracy.

This study aims to comprehensively analyse the key features that contribute to energy
efficiency, performance, and evaluation using selected machine learning models for the en-
ergy efficiency prediction of residential buildings. After performing thorough experiments
and analysing the performance of the features, we sought to investigate the following
research questions: (1) How does the performance of key predictors vary across traditional
and modern models? (2) How does the performance of classical ML models (Linear Regres-
sion, Decision Tree, and SVR) compare to modern ensemble models (Random Forest, extra
trees, Gradient Boosting, XGBoost, and LightGBM) for the prediction of energy efficiency?
(3) Do ensemble models sustain their higher predictive performance over traditional mod-
els when applied to large data? This research has the following objectives to address and
achieve the aim of the study:
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¢ To identify and quantify the key house features across traditional and modern models
that significantly impact energy efficiency;

¢ Torigorously evaluate the predictive performance and scalability of traditional and
modern models in the context of large datasets;

¢ To assess the robustness of models and address any biases that can affect the analysis.

The structure of this article is as follows: Section 1 presents an introduction to the
importance of ML algorithms in the calculation of residential building energy efficiency.
Section 2 explores a literature review related to the key models and techniques implemented
in the measurement of building energy performance. Section 3 describes the methodology
by providing an overview of the dataset, employing a thorough feature selection approach
to identify the most valuable features and select the ML models. Section 4 presents the
results across the key features that contribute to energy efficiency in residential buildings
and presents an analysis of the performance and evaluation of selected machine learning
models for energy efficiency prediction of residential buildings. Section 5 explains the
theoretical and practical implications. Section 6 concludes the methodology and findings
of this research.

2. Related Work

The global energy consumption from buildings, particularly residential structures, is
increasing. Enhancing energy efficiency in this sector is vital for advancing sustainability
and improving quality of life [22,23]. Energy efficiency rating measurement is a critical
component in assessing the energy performance of residential buildings. Ratings provide
information in a manner that enables homeowners, policymakers, and other stakeholders
to make well-informed decisions. The UK has employed several techniques to provide
uniform procedures for measuring and reporting energy efficiency in residential build-
ings throughout time [1,3,5,6]. Energy-efficient buildings offer enhanced comfort and a
better health environment for those within such households. Modern HVAC systems and
enhanced insulation provide sustainable indoor temperatures with better air quality [24].
This literature review examines the primary techniques and frameworks implemented to
predict energy efficiency in buildings, specifically emphasising feature selection techniques
and machine learning models.

The following are the key techniques and methods currently employed to measure
energy efficiency in residential buildings. energy performance certificates (EPCs) are
mandatory for all buildings at the time of construction in the UK [25,26]. The Standard
Assessment Procedures (SAPs) methodology [1] is the most common type of methodology
applied to measure energy performance in a house [1]. RASAP is another methodology;
it has been implemented on a smaller amount of input data and with the entire SAPs
methodology [27]. RASAP becomes highly beneficial in producing EPCs in existing
dwellings, where producing a total SAPs rate is not viable. The Building Energy Rat-
ing (BER) is used in the Republic of Ireland to measure the energy performance possible for
a house [28]. The Passive House Standard is used for building energy efficiency to improve
insulation, airtightness, and ventilation systems within buildings [29]. Leadership in En-
ergy and Environmental Design (LEED) is another tool for calculating a building’s energy
and environmental performance [30]. Smart meters and home energy monitoring systems
provide real-time data for the occupants to be able to manage energy use in an optimised
manner [31]. The Building Research Establishment Environmental Assessment Method
(BREEAM) is a well-recognised assessment technique for commercial buildings [32].

Machine learning algorithms have been extensively employed in predicting energy
consumption and evaluating the energy performance of buildings. The following are
published studies that have utilised machine learning techniques. The authors of [33]
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employed Linear Regression to assess the impact of various building features on energy
performance. In refs. [34,35], where residential energy consumption was predicted using
KNN for the construction of historical energy usage and characteristic patterns, especially
when the dataset included complex and irregular structures. A similar piece of work [36]
on predicting energy-saving using retrofit measures in residential buildings, as well as an
energy consumption dataset with two different cases of before and after retrofit energy us-
age, correctly showed KNN to be suitable for predicting energy-saving potential states from
different retrofit interventions. SVR was employed in [37] to model energy performance in
residential buildings under heterogeneous data features driving each building, linked to
meteorological conditions, building materials, and occupancy patterns. Another study [38]
used Decision Tree to predict energy consumption to enhance energy efficiency within
buildings. The numerical statement in this research stated historical energy consumption
data and building characteristic data, whereby Decision Tree can predict critical energy-
saving areas effectively. Ref. [39] demonstrated that Random Forest performs well in energy
consumption prediction tasks based on information about building size, insulation type,
and patterns of occupancy. They revealed that RF could capture the complex relationships
between input features and the energy applications needed for accurate energy use pre-
diction. Similarly, the authors of [40] used RF to predict energy demand using historical
consumption data and the building characteristics in the dataset. Gradient Boosting in [41]
was used to predict commercial buildings” energy consumption by considering a building’s
design, occupancy pattern, and weather conditions. A conclusion was drawn that Gradient
Boosting establishes better forecasting accuracy than other approaches available to date in
this field.

There are published studies comparing the prediction performances of various ma-
chine learning models in the Table 1. Comparative analysis studies on multiple machine
learning algorithms relating to the prediction of energy performance have been pub-
lished [14,42]. Ref. [43] introduced three machine learning-based prediction frameworks
that aim to anticipate several energy loads simultaneously. Ref. [44] presents a compre-
hensive analysis of the four primary machine learning techniques used in forecasting
and enhancing building energy performance: artificial neural networks, Support Vector
Machines, Gaussian-based regressions, and clustering. Ref. [12] introduced a range of ma-
chine learning approaches that can improve the accuracy and efficiency of energy models
by thoroughly demonstrating the construction of energy models utilising extreme Gradient
Boosting (XGBoost), artificial neural network (ANN), and degree-day-based ordinary least
square regression. Ref. [45] presents a taxonomy of the predominant machine learning
techniques employed for predicting energy consumption, which were based on the features
of buildings. The study also offers a comparative examination of several ML algorithms in
terms of how they contribute to predicting energy use.

Table 1. Summary of key studies on machine learning applications in energy efficiency prediction.

Cite Techniques Used Context Key Findings

Building features Assessed the impact of

[33] LR : various features on
analysis
energy performance.
Predicted historical
Residential energy energy usage and
[34] KNN consumption identified characteristic
patterns.
. Demonstrated suitability
[36] KNN Pre- and post-retrofit o predicting

energy data energy-saving potential.
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Table 1. Cont.

Cite Techniques Used Context Key Findings
Modeled energy
Meteorological, material, performance under
[37] SVR and occu d
pancy data heterogeneous
conditions.
5] b1 Historical enexgyand.  _2Ce Ny S
building characteristics &Y &
areas.
Captured complex
Building size, insulation, relationships for
[39] RF
and occupancy patterns  accurate energy use
prediction.
Validated RF’s
[40] RE Historical consumption  performance in
and building data predicting energy
demand.
Achieved superior
Commercial building forecasting accuracy
[41] GB .
energy consumption compared to other
approaches.
Provided a
ANN’ SVM, Building energy comprehensive analysis
[44] Gaussian-based . .
) . performance forecasting  of primary ML
regressions, clustering .
techniques.
XGBoost, ANN, Enerev model Demonstrated enhanced
[12] Degree-Day OLS gy m accuracy and efficiency
: construction . -
Regression in energy prediction.
Taxonomy of ML Energy consumption Offergd a comparative
[45] Techniques rediction examination of various
d P ML algorithms.
Classification and E;? j:sct::sdn?gf&aii ¢
[46] SGD, NLP Prediction by analysing

text data

data and effectively
predicted it.

3. Methodology
3.1. Description of Dataset

The dataset was collected from the Department of Levelling Up, Housing, and Com-
munities in the United Kingdom [47]. This is an extensive dataset of housing energy

performance, and we investigated the performance of houses, particularly, in the area of
York, United Kingdom. The York dataset has 49,959 observations (rows) and 92 features
(columns). The dataset consists of all the house features that are required to calculate

the energy performance of a house. It covers the following wide range of features that

contribute towards energy efficiency: energy consumption performance, CO; emissions

performance, cost analysis, water consumption analysis, houses structural components that

are important for measuring energy efficiency, and energy performance certificate rating.
Tables 2 and 3 classify the key attributes in the dataset.
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Table 2. Categorisation and analysis of key attributes in energy performance certificate (EPC) data

for residential buildings.

Category  Feature Description
Total Floor Area The total floor area measured in square meters.
Number of Extensions The number of extensions present in the property.
Number of Habitable Rooms The total number of habitable rooms within the property.
Building  Number of Heated Rooms The total number of rooms in the property that are heated.
Low-Energy Lighting The percentage of lighting within the property that utilizes low-energy solutions.
Window Energy Efficiency The energy efficiency rating of the windows.
Wall Energy Efficiency The energy efficiency rating of the walls.
Current Energy Efficiency Rating  The current energy efficiency rating of the property.
Current Energy Consumption The total energy consumption of the property in its current state.
Main Heating System Efficiency =~ The energy efficiency rating of the primary heating system.
E Main Heating Control Efficiency =~ The energy efficiency rating of the primary heating control system.
nergy
Lighting Efficiency The energy efficiency rating of the lighting system.
Hot Water System Efficiency The energy efficiency rating of the hot water system.
Roof Energy Efficiency The energy efficiency rating of the roof.
Window Energy Efficiency The energy efficiency rating of the windows.
Table 3. Categorisation and analysis of key attributes in energy performance certificate (EPC) data
for residential buildings.
Category Feature Description
Current Environmental Impact Rating The environmental impact rating of the property in its
current state.
Current CO, Emissions The total amount of CO, emissions produced by the
property.
CO, Emissions per Floor Area The amount of CO, emissions produced per square
meter of floor area.
Main Heating System Environmental Efficiency The .envn‘onmental efficiency rating of the primary
heating system.
Environmental - - . -
Main Heating Control Environmental Efficiency The .enVIronmental efficiency rating of the primary
heating control system.
Lighting Environmental Efficiency The environmental efficiency rating of the lighting
system.
Hot Water System Environmental Efficiency The environmental efficiency rating of the hot water
system.
Roof Environmental Efficiency The environmental efficiency rating of the roof.
Window Environmental Efficiency The environmental efficiency rating of the windows.
Annual Lighting Cost The estimated annual cost incurred for lighting.
Annual Heating Cost The estimated annual cost incurred for heating.
Cost Annual Hot Water Cost The estimated annual cost incurred for hot water

usage.

Current Energy Consumption

The total energy consumption of the property in its
current state.
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3.2. Feature Transformation

The following number of steps using proposed framework in the Figure 1 were taken
to clean and prepare the dataset to ensure the data are consistent and accurate.

Phase 2: Feature Phase 3: Predictive
Phase 1: Study . . -
. Construction and Selection Analytics
Design
Collecting Houses
Energy ML Models
Performance Selections
o Dahse‘
. No
Yes Data Processing & L
l Wrangling Training all Models
I
Problem
Identification
Yes Feature Extraction liyperparameter
‘ & Engineering Tunning
Yes Parameters Tunning\
3
Literature Review Feature Scaling
Cross Validation |——

|

f

No Yes
\_‘ Yes

Important Feature
Selection Predictions l——

] L —=

Research
Objectives

Oefining Researc
Questions

Figure 1. Proposed comprehensive framework for predicting energy efficiency in residential build-
ings using machine learning models.

3.2.1. Handling Missing Data

The original dataset had several missing data points. The following approach was
implemented to deal with the missing values; the missing values were replaced with the
median values in order to maintain the distribution of the data. In the case of categorical
features, missing values were imputed with the mode values. This approach ensures that
the selected imputation did not significantly skew the distribution of the data.

3.2.2. Handling Duplicates

Redundant observations were excluded to prevent repeating information. By filtering
out the inaccurate values, the number of observations (rows) was reduced. The dataset
was refined from 49,959 rows to 36,534 rows, assuring the inclusion of the most important
features and observations.
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3.2.3. Normalisation

The dataset was normalised using Min-Max scaling [48], which enables an effective
comparison and improves the effectiveness of the machine learning models. The following
is the formula that was used: X—X

— “min
Xnorm = Xmax — Xmin (1)
where X represents the original value, Xni, represents the minimum value, and Xmax
represents the maximum values of the feature, respectively. This scaling process results in

the conversion of numerical features ranging between 0 and 1.

3.2.4. Standardisation
Following normalisation, the dataset was standardised [19] in order to rescale a mean
of zero and a standard deviation of one. The equation of standardisation is as follows:
X—p
o

)

Xstandard =

where i represents the average value of the feature, and o represents the standard devia-
tion. This is crucial for models to perform assumptions about the features of a Gaussian
distributed dataset.

3.2.5. Encoding Categorical Variables

We employed a label encoding method to encode the categorical features into numer-
ical features. This encoding method [49] preserves the inherent sequence of the features.
In the dataset, the categorical features, which have a range between “Very Good’, ‘Good’,
‘Average’, ‘Poor’, and "Very Poor’, describe the highest ratings to the lowest ratings. The nu-
merical values are assigned to each data point uniformly distributed between 0 and 1,
demonstrating the relative logical ranking of the ratings.

3.3. Features Classification

The house’s key features were categorised into four main groups: Building Description,
Energy Performance, Environmental Factors, and Cost. The description of each category is
provided below.

3.3.1. Building Components

The characteristics of building structures offer crucial insights into the influence of
energy performance and the feasibility of enhancing energy efficiency. The characteristics
of construction age, floor size, and the number of heatable and heated rooms give cru-
cial data on the material, design, and age of the structure. This information is vital for
assessing thermal efficiency and insulation levels. The tenure function provides crucial
information regarding the ownership of the building, which is essential for implementing
energy-efficient activities. The kind of property and its constructed characteristics provide
information about the construction of dwellings, which may help determine the amount
of heat lost through roofs and walls. The discussion revolves around the heat loss and
distribution variables in multi-story buildings, specifically focusing on the flat level and its
count aspects. The unheated corridor feature can reveal the channels through which air
leakage occurs.
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3.3.2. Energy

Current energy consumption refers to the amount of energy that a specific residence
consumes on average in a year. The energy consumption feature measures the precise
amount of energy used and is a crucial factor that directly affects the energy efficiency
of buildings. The energy rating is a crucial aspect in measuring energy efficiency, as it
indicates the level of energy performance for buildings. Our main focus is on energy
efficiency, which is measured using a detailed numerical score. The major feature serves
as an indicator of the performance of other building characteristics and identifies areas
that provide an opportunity for further improvement. These energy characteristics offer
a thorough depiction of the energy profile of buildings. The energy efficiency attributes
provide a description of the efficiency and effectiveness of each corresponding feature.

3.3.3. Environmental Factors

The features of the environment are vital because they serve as the primary factor in
determining energy efficiency. Environmental impact assesses the environmental effective-
ness of a certain dwelling. The present levels of CO, emissions and the amount of CO,
emitted per unit of floor space are important elements that directly impact the evaluation
of a property’s energy efficiency. The environmental performance of a building is also
monitored by using other components. Additionally, these qualities serve as important
indicators of a house’s carbon impact. This would encompass the comprehensive depiction
and effectiveness evaluation of different building elements, such as lighting, windows, the
roof, and floors.

3.3.4. Cost

This provides a comprehensive breakdown of the expenses associated with different
architectural elements, such as lighting, heating, and hot water. The cost features offer
a clear understanding of the financial consequences. The expenditures are linked to hot
water, heating, and lighting on a yearly basis. Consequently, these characteristics have an
impact on the assessment of the energy efficiency of a dwelling.

3.4. Features Selection Process

We employed a thorough feature selection approach to identify the most valuable
features and enhance the performance of machine learning models, as can be seen in
Figure 2. We utilised a blend of filter, wrapper, and embedding techniques to evaluate
the significance of features across several assessments. Correlation analysis and mutual
information were employed to investigate both linear and non-linear correlations between
independent characteristics and the target feature. In addition, we utilised tree-based
models such as Random Forest and Gradient Boosting, which are recognised for their
intrinsic feature significance metrics, to prioritise features according to their impact on
prediction accuracy. Moreover, we utilised principal component analysis (PCA) to discover
the primary components that encapsulate the main variations in the dataset. Ultimately,
we enhanced our selection procedure by employing Recursive Feature Elimination (RFE)
and LASSO Regression. These methods systematically delete less significant features
by considering their coefficients. By employing a multifaceted strategy, we were able to
carefully choose a comprehensive collection of features to optimise the performance of the
model while simultaneously reducing the risk of overfitting and computational complexity.
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Data Preprocessing

Handling Missing Values

Encoding Categorical

|
| |
| |
I |
I |
| Features |
I |
I |
I |
| |

Feature Selection Techniques

Dimensionality Reduction -
(PCA) Filter Methods | | Wrapper Methods | Embedded Methods
T
¥ y l

|RFE|

Gradient Boosting

| Correlation Analysis (Pearson) |J | Mutual Information

Random Forest |

| LASSO |

Key Features

Building Archetype | | Energy | | Environmental Factors | | Heating Cost

l

Predictive Models

LinearRegressionl | Decision Tree | | Random Forest | |GradientBoosting| | SVR I I KNN |

A 4
| Extra Trees | |XGBaost || LightGB |

Figure 2. Comprehensive analysis and evaluation of predictive models for energy efficiency in
residential buildings.

3.5. Feature Analysis Techniques

This work utilises filter methods, such as correlation and mutual information, wrapper
methods, such as Random Forest and Gradient Boosting, and an embedding approach,
namely dimensionality reduction, to determine the most important features that signifi-
cantly impact the computation of energy efficiency in residential premises. In the context
of energy efficiency, we examined each of the following techniques.

3.6. Principal Component Analysis (PCA) Algorithm

Principle component analysis (PCA) is a method used to identify the linear com-
bination of the original characteristics, known as principle components (PCs). These
components account for the majority of the variability in the dataset. PCA is used to
convert the multiple features in the energy efficiency dataset into a smaller number of
principal components (PCs). Each PC is a composite of actual features, with each feature
being assigned a weight. The size of each weight determines the level of attention placed
on energy efficiency calculations [50].

Mathematical Model

PCA rescales the dataset to standardise the mean and normal deviation. The process
involves obtaining the covariance matrix of a standardised dataset, calculating the eigen-
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values and their associated eigenvectors of the covariance matrix and forming principal
components. The eigenvalues are ordered in decreasing order, and their corresponding
eigenvectors are selected.

The covariance matrix C of the dataset X is given by

1
n—1

C= XX €)
where 7 is the number of observations, and A and the vector v are the eigenvalues and
eigenvectors for that personality.

Cv=Av 4)

3.7. Correlation Analysis

Correlation analysis quantifies the extent to which each independent feature is related
to a target feature. Thus, it entails quantifying the correlation coefficients of crucial aspects
in the examination of energy efficiency. The Pearson correlation coefficient that we em-
ployed runs from —1 (indicating negative values) to 1 (indicating positive values), where a
value of 0 signifies no linear connection [51].

Mathematical Model

The Pearson correlation coefficient, expressed by p or 7, is the measure of the correlation
between two variables, X and Y. The formula for the Pearson correlation coefficient is
given by

1 (Xi = X) (YY)

- VI (X = K02\, (v - V)2

)

where

*  X;andY; are the sample points for the individual;
e XandY are the means;
. n is the number of observations.

3.8. Mutual Information Algorithm

Mutual information decreases the level of uncertainty regarding one variable when
the information of another variable is taken into account. MI calculates the combined
probability distribution of the distinct features and the target feature [52].

Mathematical Model
Mutual information for two discrete random variables is defined between X and Y as

I(XY)=13 ) plxy) IOg(p}(gix’y)) (6)

xeXyeY p(]/)

where

*  p(x,y) is the joint probability distribution function of X and Y;
e p(x) and p(y) are the marginal probability distribution functions of X and
Y, respectively.

In continuous variables, the estimation of MI varies through the density estimation
carried out by the kernel or by some other numeric methods [3].

3.9. Recursive Feature Elimination (RFE)

RFE operates in a retrogressive fashion by removing aspects. The process begins by
training the whole collection of features from the dataset and evaluating the significance of
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each feature based on the model’s parameter performance. It eliminates the least significant
characteristic while preserving the most significant features [53].

Mathematical Model

Mathematically, let F = {f1, f2,..., fu} be the set of all features, and let M be the
machine learning model. The goal of RFE is to find the optimal subset of features 7* C F
that minimise model error.

F* = argjglcir}ﬁ(/\/l(]:’)) ()

where L is the loss function, and M (F’) is the model trained on a subset of the features F'.

3.10. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO regression incorporates a regularisation term into the ordinary least squares
(OLSs) function of the objective. The penalty is directly related to the absolute value of
the coefficient in the model. The penalty can be modified by parameter regularisation,
resulting in a significant reduction in the coefficients towards zero [54].

Mathematical Model

1 2 P P
min<2 > (vi—Bo— xﬁjxij)2+“x|ﬁj|> ®)
Pob \ <1 i3 =1 =1

where

* vy, is the dependent variable;

*  xjjare the independent variables;

* Py is the intercept;

* B are the coefficients of the model;
¢ 7 is the number of observations;

*  pisthe number of features;

*  uis the regularisation parameter.

3.11. Random Forest Algorithm

The Random Forest model operates by combining many Decision Trees into an ensem-
ble. Every tree is trained using a random selection of parameters and the available data.
By including randomisation, this technique mitigates overfitting and improves the model’s
performance. The ultimate result is achieved by aggregating individual trees through the
process of averaging [55].

Mathematical Model

Random Forest is an approach in which base trees are learned from bootstrapped
samples {h1(X),hy(X), lots,hy(X)}. Moreover, each tree is trained using the sample
derived from resampling the dataset; however, during training, predictive variables are
chosen randomly to grow said trees. The prediction using Random Forest is given as the
average of all the trees:

s 1Y
Y=Y m(X) 9)
N i=1
where h;(X) is the prediction of the i-th tree, and N is the total number of trees.

3.12. Gradient Boosting

Gradient Boosting models operate in an iterative manner. At each iteration, a subset
of the Decision Tree is generated and trained to forecast the mistakes (residuals) of the
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previous model. Once all forecasts had been completed, we merged the findings to generate
the ultimate singular forecast for the model. This iterative forecasting procedure occurs
until the model successfully identifies the precise collection of traits that serve as the
primary predictors [56].

Mathematical Model

Gradient Boosting works by sequentially building trees of decisions in which indi-
vidual trees correct the residuals of those constructed previously. The general form of the
prediction function F,(x) at the m-th stage is

Fu(x) = Ep_1(x) + vhy(x) (10)

wherein

e F, 1(x) is the forecast from the (m — 1)-th iteration;

*  Jy(x) is the m-th Decision Tree;

* v is the learning rate, which helps in applying the regularisation parameter, scaling
the contribution of each tree.

3.13. Model Selection

In this study, we employed a mix of traditional and modern machine learning al-
gorithms crucial for enhancing energy efficiency due to their capability to analyse large
feature sets of data and identify complex patterns. This diversity of algorithm selection
helped to capture multiple aspects of the features’ relationships, leading toward a more
robust prediction. Through the analysis of past data on energy performance, algorithms
were employed to predict future energy efficiency in order to pinpoint locations where
energy savings were required in residential buildings. In our study, the use of a mix of tradi-
tional and modern machine learning algorithms, such as Linear Regression, Support Vector
Regression (SVR), Decision Tree, Random Forest, and Gradient Boosting, was encouraged
due to their exhibited efficacy in dealing with a wide range of predictors as well as their
different levels of interpretability and complexity. Linear Regression offers a fundamental
starting point due to its simplicity and straightforward interpretation. On the other hand,
non-linear models like Support Vector Regression (SVR) and Decision Tree are capable
of capturing intricate inter-relationships within the data. Ensemble approaches, such as
Random Forest and Gradient Boosting, boost predictive performance by amalgamating
many models to mitigate overfitting and enhance accuracy. Therefore, we examined a di-
verse range of regression models for predicting the Current Energy Efficiency of residential
buildings. We investigated both linear and non-linear models to estimate the predictive
capability of different classifiers.

3.14. Linear Regression

Linear Regression is a statistical method that finds the straight line that best fits the re-
lationship between variables. It operates by reducing the total of the squared discrepancies
between the predicted and observed levels of energy efficiency. When analysing energy
efficiency features, Linear Regression may be employed to approximate the weights of the
coefficients linked to each independent factor. This assessment quantifies the individual
impact of each independent variable on the dependent feature of energy efficiency [57].

Mathematical Model

This is basically the mathematical form of the Linear Regression model:

Y =80+ 1 X1+ B2Xo+ -+ PuXy+e€ (11)
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where

*  Yisthe dependent variate;
* Xj,Xp,..., X, are the independent variables;
* By is the constant. B1, B2, ..., Bn are the coefficients of the error term, €.

3.15. k-Nearest Neighbors (KNNs) Algorithm

The KNN algorithm is a simple, non-parametric, instance-based learning approach to
classification and regression. In the current study, the application of KNN was carried out
to predict the future trend of energy efficiency and categorise possible areas of potential
energy savings in residential buildings [58].

Mathematical Model

The KNN algorithm predicts the value of a new data point by surveying the k-nearest
samples in the training set and averaging over the responses of the training samples in
the case of regression or using simple votes for the most frequent class in the case of
classification. The most popular choice for this measure is Euclidean distance:

d(x;, xj) = kZ(xik — xji)? (12)
=1

where x; and x; are two samples of feature space.

3.16. Decision Tree

The Decision Tree algorithm is a non-parametric supervised learning method for classi-
fication and regression. It models decisions and their possible consequences, represented as
a tree-like graph. In this study, Decision Tree was used for modelling and prognosticating
future energy efficiencies, finding the potential areas of power savings [59].

Mathematical Model

A Decision Tree splits the data into subsets based only on the value of input features
and forms branches out of them, ultimately leading to the final prediction decision at the
leaf nodes. These splits are made using criteria like Gini impurity, Information Gain for
choices in classification tasks, or Mean Squared Error in regression.

3.17. Support Vector Regression (SVR)

SVR works for both linear and non-linear regression performance and is a type of
support vector machine. It finds the function that, when predicted from the SVR, strays
from the actual observed targets by no more than a specified margin [60].

Mathematical Model

SVR tries to get hold of a linear function f(x) such that the predicted value deviates
by, at most, epsilon from the actual value. The form of the function is shown as

f(x)=w-x+b (13)

Formulate the optimisation problem:

S IR
5 cy& 14
min o [[w]* + ;é‘z (14)
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yi— (W-x;+b) <e+;
(w-x;+b) —y; < e+ (15)
>0

where §; denotes the slack variables that quantify the error, and C is a regularisation parameter.

3.18. Random Forest Algorithm with Extra Trees

Random Forest with extra trees can improve the prediction performance of a regular
RF model by including the concept of extremely randomised trees. Therefore, the optimal
subset of features for each tree is selected randomly. This reduces the chances of unpre-
dictability by minimising overfitting. This technique decreases the variance of the model
without increasing bias, offering robust predictions [61].

3.19. XGBoost and Light GBM

Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (Light-
GBM) are two advanced ensemble learning models that have demonstrated exceptional
performance in prediction accuracy. They have shown outstanding performance on large
and complex datasets with multiple sets of features. Both models construct trees sequen-
tially, where each new tree operates to fix the errors of its predecessor [62].

3.20. Hyperparameters Tuning

A systematic hyperparameter tuning strategy was employed to optimise model per-
formance. We employed grid search, which is a systematic way of tuning hyperparameters;
it moves through every combination of a specified set of given hyperparameters. Therefore,
through cross-validation results, the assurance that the selected hyperparameters will
return the best model performance is obtained. The best hyperparameters tuned for each

model can be seen in Table 4.

Table 4. Best hyperparameter tunings for different models.

Models

Selected Hyperparameters

Best Hyperparameters

Linear Regression

{}

{}

KNN

{n_neighbors: [3, 5, 7]}

{n_neighbors: 5}

SVR

{C:]0.1, 1, 10], gamma: [0.1, 1, "cale’, ‘auto’]}

{C: 10, gamma: "cale’}

Decision Tree

{max_depth: [None, 10, 20],
min_samples_split: [2, 5, 10]}

{max_depth: 10, min_samples_split: 10}

Random Forest

{n_estimators: [50, 100, 200], max_depth:
[None, 10, 20], min_samples_split: [2, 5, 10]}

{max_depth: 20, min_samples_split: 2,
n_estimators: 100}

Extra Trees

{n_estimators: [50, 100, 200], max_depth:
[None, 10, 20], min_samples_split: [2, 5, 10]}

{max_depth: 20, min_samples_split: 2,
n_estimators: 100}

{n_estimators: [50, 100, 200], learning_rate:

{learning_rate: 0.1, max_depth: 5,

Gradient Boosting [0.01, 0.1, 0.5], max_depth: [3, 5, 10]} n_estimators: 200}

XGBoost {n_estimators: [50, 100, 200], learning_rate: {learning_rate: 0.1, max_depth: 5,
[0.01, 0.1, 0.5], max_depth: [3, 5, 10]} n_estimators: 200}

LightGBM {n_estimators: [50, 100, 200], learning_rate: {learning_rate: 0.1, max_depth: 5,

[0.01, 0.1, 0.5], max_depth: [3, 5, 10]}

n_estimators: 200}

3.21. Model Evaluation

A comprehensive list of multiple evaluation metrics was used to evaluate the perfor-

mance of the regression model.
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3.21.1. Mean Squared Error (MSE)

1& .
MSE = Y (i —9:)? (16)
i=1
MSE measures the average squared difference between the actual and predicted
values, providing a sense of the magnitude of the errors. Lower MSE values indicate better

model performance.

3.21.2. Mean Absolute Error (MAE)

1 X
MAE = =} lyi — il (17)
i=1

MAE computes the average of the absolute differences between actual and predicted
values, offering a straightforward measure of prediction accuracy.

3.21.3. Root Mean Squared Error (RMSE)

S|
.M:

RMSE = (vi — 9:)? (18)

i=1

RMSE provides an error measure in the same units as the target variable and places
greater emphasis on larger errors due to the squaring of differences.

3.21.4. R-Squared (R?)

Y (i — i)
R2 — 1 _ i=1
Y (yi —7)?

R-squared represents the proportion of variance in the dependent variable that is pre-

(19)

dictable from the independent variables. Higher values indicate better model performance.

3.21.5. Mean Absolute Percentage Error (MAPE)

1 n
MAPE = —
&

Yi— i

% 100 (20)

Yi

MAPE expresses prediction accuracy as a percentage, making it scale-independent
and useful for comparing models across different scales.

3.21.6. Adjusted R-Squared (Adjusted R?)

n—1

Adjusted R? = 1 — (1 - R2) e 1)

Adjusted R-squared adjusts the R-squared value based on the number of predictors,
providing a more accurate measure of model performance, especially when multiple
predictors are involved.

3.22. Cross-Validation

K-fold cross-validation was employed to ensure a robust model evaluation. Cross-
validation is a resampling technique used to evaluate models on a limited sample of data.
k is the number of groups to divide a given data sample. In order to achieve this aim, cross-
validation is performed for multiple rounds (specifically, 3, 5, 7, and 9) to examine whether



Buildings 2025, 15, 1275

17 of 34

model performance remains stable across various data partition points. The process is
iterated k times, with each k-fold executed precisely.

4. Results

This section presents the results across the key features that contribute most to the
prediction of energy efficiency in residential buildings. This section also presents an analy-
sis of the performance and evaluation of selected machine learning models for the energy
efficiency prediction of residential buildings. These models include Linear Regression,
Random Forest, Gradient Boosting, k-nearest Neighbours (KNNs), Decision Tree, and Sup-
port Vector Regression (SVR). Through the use of these results, we evaluated performance
metrics that effectively approximate the ability to forecast energy efficiency for actionable
insights about energy savings.

4.1. Key Features

The results of the comparative features ranking of the feature selection techniques in
Table 5 reveal distinct trends and insights regarding the significance of independent features
in predicting the target feature. The visual analysis in Figure 3 involves the use of multiple
techniques, such as correlation, Linear Regression, principal component analysis (PC1),
mutual information, recursive feature deletion, LASSO, Random Forest, and Gradient
Boosting. The study reveals that various techniques prioritise features differently based
on their distinct methodologies. For instance, CEPFA has a significantly high negative
correlation ranking, indicating a strong relationship with energy efficiency. Simultaneously,
CEPFA is also consistently identified by RF, GB, and MI as a robust predictor in those
non-linear models.

Feature Importance Comparison Across Methods

Correlation

Linear Regression
Random Forest
Gradient Boosting
PCl

Mutual Infermation
RFE

Lasso

o
o

Normalized Importance
o
=

0.24
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Figure 3. Comparative features ranking for different models.
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Table 5. Comparative features ranking across different techniques.

Ranking ~ Correlation Reléir‘;;‘iron R;Z‘i‘;i“ g;z‘:t‘fr?gt PC1 Il:%ll%::;; RFE LASSO
1 CEPFA ECC CEPFA CEPFA LEE CEPFA CEPFA ECC
2 ECC CEC CEC CEC LENE ECC ECC CEC
3 CEC CEPFA HCC HCC LEL CEC CEC HWEE
4 HCC HCC ECC ECC RENE HCC TFA WEE
5 HWCC HWCC MHEE MHEE REE WENE.1 HCC MHEE
6 EO NAR HWCC HWCC MHCEE HWEE MHEE REE
7 LCC MHCENE MHENE MHENE MHCENE WEE MHENE LEL
8 TFA MHCEE LCC LCC WEE HWEVE NAR WIEE
9 NAR LEE TFA TFA WENE.1 HWCC NHR MHCEE
10 NHR LENE HWEE HWEE WENE MHEE HWEE WENE.1
11 LENE EO LEL LEL WIEE RENE LCC RENE
12 LEE LEL HWEVE HWEVE LCC REE LEL LEE
13 LEL NHR WENE.1 WENE.1 HWEE MHCENE HWCC MHCENE
14 WENE LEE WEE WEE HWEVE MHCEE WEE MHENE
15 WIEE MHENE NHR NHR ECC WIEE HWEVE HWEVE
16 REE EO NAR NAR CEC MHENE MHCEE WENE
17 RENE WIEE EO EO CEPFA WENE WENE.1 NHR
18 MHCEE WENE RENE RENE MHEE LEL RENE NAR
19 MHCENE REE REE REE MHENE TFA MHCENE EO
20 MHENE REE WENE WENE HCC NHR REE TFA
21 WEE RENE WIEE WIEE NAR LENE WENE HWCC
22 WENE.1 WEE MHCEE MHCEE HWCC LEE WIEE HCC
23 MHEE MHENE MHCENE MHCENE TFA LCC EO LCC
24 HWEVE WENE.1 LENE LENE NHR EO LENE CEPFA
25 HWEE MHEE LEE LEE EO NAR LEE LENE

Linear Regression and LASSO exhibit similarities at the highest level in terms of their
linearity; however, they differ slightly because of the additional regularisation impact
of LASSO. For instance, if a Linear Regression model ranks TFA as the most important
feature, LASSO would emphasise ECC to a greater extent. This disparity demonstrates the
impact of regularisation on the significance of features. Additionally, it was discovered that
Recursive Feature Elimination (RFE), a method that iteratively removes the least significant
features, and mutual information, a metric for assessing the reliance between variables,
both highlight the importance of CEPFA and ECC. This concordance demonstrates the
convergence of methodologies in determining the relative relevance of different features.
Principal component analysis (PCA), specifically PC1, is inclined towards Lighting Energy
Efficiency (LEE) and Lighting Environment Efficiency (LENE). These factors are closely
associated with the variability of the data in the dataset, distinguishing PCA from other
approaches that primarily prioritise predictive accuracy.
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Analysis of Key Feature Contributions

The following key contributions of different critical features towards target feature
prediction in each model were computed using feature importance scores.

Principal Component Analysis (PCA):

The presence of LEL, LENE, and LEE as significant factors suggests that they play a
crucial role in accounting for the variation in energy performance. These characteristics
are categorical and do not contribute to the variance covered by PC1. Following ECC,
CEC, and CEPFA, the primary factors that contribute to the variation reflected by PC
were identified.

Correlation Analysis:

The following features show strong positive correlations: HWEE, HWEVE, and MHEE
have a strong positive relationship with the energy efficiency of houses. The features that
show strong negative correlations are CEPFA, ECC, CEC, and HCC. These give a negative
correlation, and therefore, enhancement can improve energy performance. The features
which show moderate correlations are HWCC and WENE. These show a moderate positive
correlation. The features which show weak correlations are LEL, LEE, and NHR. The
features which have a negligible correlation with the target feature are NAR, TFA, and LCC.
These results bind critical features that have a significant impact on the energy efficiency
of houses, which, in turn, can be used to inform future predictive modelling efforts and
strategies for energy saving.

Linear Regression Analysis:

The regression coefficients indicate the magnitude and direction of the impact each
feature has on the energy performance of residential buildings. Key observations include
the following: TFA has a strong positive impact on energy efficiency, suggesting that larger
buildings tend to have better energy efficiency. MHEE is positively correlated, indicating
that higher energy efficiency in specific areas contributes positively. LCC also shows a
positive impact, implying that investments in efficient systems may enhance overall energy
performance. LEL has a smaller positive impact; HWCC has a significant negative impact,
indicating higher costs reduce performance. NAR also negatively impacts performance.
HCC has a strong negative impact, showing high costs reduce energy performance. CEPFA
indicates a significant negative impact. CEC and ECC show the strongest negative impacts,
indicating that high costs in these areas significantly detract from energy performance.

Mutual Information: Mutual information captures the most relevant features influ-
encing energy performance, with scores for CEPFA, ECC, CEC, and HCC. These are the
most influential features in the energy efficiency of residential buildings.

Recursive Feature Elimination (RFE): RFE captures the following features: ECC, CEC,
CEPFA, HCC, TFA, and NAR. These are the most pertinent features that contribute to the
predictive power of the model, as determined by iteratively eliminating the most minor
important features.

Least Absolute Shrinkage and Selection Operator (LASSO):

LASSO provides a slightly different subset of features, including ECC, CEC, LEL,
and HWEE. LASSO has added an L1 penalty to the regression model, and it not only
reduces the complexity of the model but also ensures some of the coefficients are shrunk
exactly to zero.

Random Forest: CEPFA has the highest importance score, meaning it was the most
important feature driving the predictions. CEC and HCC receive a very high score of
importance, reflecting their relevance in this model.

Gradient Boosting: The highest importance score is assigned to CEPFA. CEC, HCC,
and ECC, showing that the importance grades of these features closely mirrored the aspects
observed for Random Forest.
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4.2. Model Performance
4.2.1. Performance Metrics

Figure 4 exhibits the performance metrics of the models, comprising Mean Squared
Error (MSE), Mean Absolute Error (MAE), R-squared (R2), Root Mean Squared Error (MSE),
Mean Absolute Percentage Error (MAPE), and adjusted R-squared (Adjusted R?), with
their best hyperparameters; this can be seen in Table 4, and these were calculated by the
models during tuning.

4.2.2. Comparison of Model Performance

Figures 5 and 6 visualise the performance of each model in terms of MSE, MAE,
and R-squared.

4.2.3. Model Performance Discussion

For the comparison of the predictive models according to the different performance
metrics, the following insights are discussed:

Random Forest: Among all models tested, RF registered the lowest Mean Squared
Error of 3.932, the lowest Mean Absolute Error at 1.017, and the highest R-squared value at
0.962. The best hyperparameters for Random Forest use 200 trees and a max depth of 20,
with a minimum sample split of 2. Therefore, this shows that the Random Forest model is
robust and accurate in predicting energy efficiency.

Random Forest with Extra Trees: This model shows robust performance across all
models, exhibiting its ability to manage high-dimensional features and their complex
interaction; the results can be seen in Table 6.

Gradient Boosting: Gradient Boosting has worked very well; it had an MSE of
4.569, an MAE of 1.389, and an R-squared score of 0.956. The best hyperparameters
for Gradient Boosting are a learning rate of 0.1, 5 particular trains, and 200 estimators.
Regarding performance, Gradient Boosting places close to Random Forest for forecasting
energy efficiency.

XGBoost: As seen in the results in Table 6, this model has also performed exceptionally
well, with consistent and accurate prediction, highlighting efficiency and robustness in
handling the predictor’s complex interactions.

LightGBM: This model has also demonstrated excellent accuracy and performance,
which can be seen in Table 6. LightGBM is one of the most efficient models for predicting
residential building energy efficiency.

Decision Tree: This model saw an MSE of 7.319, generating an MAE of 1.393 and
gaining an R-squared score of 0.929. So, it too has performed not too severely, although it
has a little less accuracy than Random Forest and Gradient Boosting.

Support Vector Regression (SVR): SVR has recorded lower scores: an MSE of 8.747,
an MAE of 1.804, and an R? of 0.916. The best hyperparameters this model yielded are the
following: a C of well-regulasing 10, and the value of gamma set to cale’.

Linear Regression: The linear model has an MSE of 11.024, an MAE of 1.993, and an
R-squared score of 0.894. Hence, the contribution is just as expected for a baseline model.

k-Nearest Neighbors (KNNs): KNN comes out with a top MSE of 27.911, an MAE
of 3.747, and the lowest R-squared Score of 0.731. Hence, this means that KNN is the
least accurate among the models tested. The best hyperparameter configuration gives
n_neighbors equivalent to 7.

Random Forest showed the best overall performance in the forecasting of energy
efficiency in residences; the Gradient Boosting model also indicated good performance and
generated candidates that were credible for consideration. As such, these models would
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be of distinct interest, allowing accurate prognostic estimation and touching on the global
potential pain points of saving energy and promoting energy management strategies.
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Figure 4. Model comparison charts regarding error performance metric charts for different models
using MSE, MAE, ADJR, R?, RMSE, and MAPE assessment criteria.
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Table 6. Cross-validation results for using (a) 3-fold, (b) 5-fold, (c) 7-fold, (d) 9-fold, and (e)

whole data.

Models MSE MAE R? RMSE MAPE Adjusted R?
Linear Regression 12.590 2.091 0.873 3.548 5.444 0.873
KNN 11.167 1.993 0.887 3.342 4.731 0.887
SVR 7.244 1.455 0.927 2.692 3.595 0.927
Decision Tree 9.483 1.690 0.903 3.079 4.045 0.903
Random Forest 5.455 1.150 0.945 2.336 3.004 0.945
Extra Trees 5.131 1.162 0.948 2.265 2.943 0.948
Gradient Boosting 4.698 1.261 0.953 2.167 2.744 0.953
XGBoost 4.703 1.256 0.953 2.169 2.773 0.953
LightGBM 4.713 1.267 0.952 2171 2.794 0.952
(a) Using 3-Fold Data

Models MSE MAE R? RMSE MAPE Adjusted R?
Linear Regression 12.574 2.091 0.873 3.546 5421 0.873
KNN 10.704 1.942 0.892 3.272 4.608 0.892
SVR 7.057 1.442 0.929 2.656 3.411 0.929
Decision Tree 9.200 1.675 0.907 3.033 3.865 0.907
Random Forest 5.308 1.128 0.946 2.304 2.870 0.946
Extra Trees 5.014 1.144 0.949 2.239 2.820 0.949
Gradient Boosting 4.609 1.245 0.953 2.147 2.652 0.953
XGBoost 4.555 1.243 0.954 2.134 2.687 0.954
LightGBM 4.590 1.253 0.954 2.142 2.720 0.954
(b) Using 5-Fold Data

Models MSE MAE R? RMSE MAPE Adjusted R?
Linear Regression 12.554 2.092 0.873 3.543 5.406 0.873
KNN 10.483 1.919 0.894 3.238 4.559 0.894
SVR 6.977 1.437 0.929 2.641 3.368 0.929
Decision Tree 9.129 1.673 0.909 3.022 3.846 0.909
Random Forest 5.159 1.115 0.948 2.271 2.850 0.948
Extra Trees 4.948 1.138 0.950 2.224 2.797 0.950
Gradient Boosting 4.521 1.242 0.954 2.126 2.636 0.954
XGBoost 4.543 1.242 0.954 2132 2.692 0.954
LightGBM 4.538 1.246 0.954 2.130 2.682 0.954

(c) Using 7-Fold Data
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Table 6. Cont.

Models MSE MAE R? RMSE MAPE Adjusted R?
Linear Regression 12.558 2.092 0.873 3.544 5.400 0.873
KNN 10.336 1.904 0.895 3.215 4.492 0.895
SVR 6.943 1.435 0.930 2.635 3.353 0.930
Decision Tree 8.808 1.656 0.911 2.968 3.724 0.911
Random Forest 5.139 1.111 0.948 2.267 2.841 0.948
Extra Trees 4.885 1.132 0.951 2.210 2.775 0.951
Gradient Boosting 4.547 1.241 0.954 2.132 2.674 0.954
XGBoost 4.526 1.236 0.954 2.127 2.681 0.954
LightGBM 4.490 1.238 0.955 2.119 2.698 0.955
(d) Using 9-Fold Data

Models MSE MAE R? RMSE MAPE Adjusted R?
Linear Regression 14.334 2.115 0.862 3.786 6.316 0.862
KNN 11.634 1.986 0.888 3411 4.979 0.888
SVR 10.834 1.685 0.896 3.291 5.580 0.896
Decision Tree 11.391 1.568 0.890 3.460 4.071 0.884
Random Forest 6.305 1.165 0.939 2.499 3.135 0.940
Extra Trees 6.023 1.151 0.942 2.454 3.125 0.942
Gradient Boosting 7.733 1.583 0.925 2.361 3.197 0.925
XGBoost 5.477 1.242 0.947 2.340 2.970 0.947
LightGBM 5.575 1.331 0.946 2.361 3.197 0.946
(e) Using whole data

Model Comparison for 3_Folds

—e— MSE
—o— MAE
12 —e— RMSE
—e— MAPE

Figure 5. Cont.
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Figure 5. Comparison of different models” performance in terms of their MSE, MAE, R?, RMSE,
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Figure 6. Comparison of different models” performance in terms of their MSE, MAE, R?, RMSE,
and MAPE when using (a) 7-Fold, (b) 9-Fold data, and (c) whole data.

5. Implications of Study

This study discusses the theoretical and practical implications.

5.1. Theoretical

This study provides a significant theoretical contribution to the prediction of residential
building energy efficiency using ML models. By systematically employing a mixed method
strategy to improve understanding of how multiple models can be utilised, we enhanced the
robustness and accuracy of prediction using a high-dimensional dataset. The comparative
analysis of the models offers a detailed understanding in the context of energy efficiency
forecasting. This study shows that ensemble models outperform classical models by
capturing complex interactions. The extensive set of evaluation metrics also provides
a framework for evaluating the performance of each model. This incorporates into the
theoretical knowledge of how mixed-model approaches can assess the effectiveness of ML
models in the prediction of residential building energy efficiency.

5.2. Policy

This research provides insightful practical implications for building designers, policy-
makers, energy engineers, and homeowners. The findings of this research can be directly
utilised to predict the energy efficiency of current buildings and in the implementation
of retrofitting applications. We have developed a machine learning interface that visu-
alises a multifaceted view of data visual analysis and model evaluations, as can be seen
in Figures 7-12. This interface seamlessly integrates the insights of several features into a
single, user-friendly display. This platform incorporates a powerful visualisation of feature
correlation, feature importance, prediction, and multiple model evaluation metrics. Each
display is dedicated to a distinct analytical approach, offering a comprehensive insight
into how each machine learning model processes and ranks features within the energy
performance dataset. This interface integration not only improves the usability of the analytical
models but also enables stakeholders to make well-informed decisions. The results of this
research can guide the development of new energy efficiency techniques, with the aim of
improving residential building energy efficiency. Energy managers can employ this prediction
model to design more effective energy performance and management strategies. This frame-
work can be integrated into live data to predict the real-time energy performance of different
features of smart buildings. This could be integrated into dynamic adjustments that optimise
energy consumption, reduce operational costs, and improve the comfort of the occupants.
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6. Conclusions

In this study, we investigated the critical role of feature selection techniques and
machine learning models to identify the most influential features in terms of predicting
Current Energy Efficiency in residential buildings in the York area in the United Kingdom.
Our proposed approach not only addressed a local challenge but also established a scalable
methodology that can be adapted to diverse contexts.

This study demonstrated the efficacy of ensemble models by addressing the challenges
of a high-dimensional dataset. Ensemble models outperformed the other classical models,
showcasing the capability of capturing complex relationships between sets of features and
minimising overfitting.

These findings advance the field by highlighting the practical superiority of ensemble
methods in handling intricate, real-world datasets, thereby setting a benchmark for future
research. Therefore, the results decisively answered our research questions on the perfor-
mance of key predictors and prediction efficiency across traditional and modern models,
identifying the key features of energy efficiency and designing a robust feature selection
and prediction methodology.

This contribution is significant, as it bridges the gap between theoretical model devel-
opment and practical implementation, providing a clear pathway for improving energy
efficiency predictions in both academic and applied settings. By systematically employing
a mixed-method strategy, our proposed framework enhances the understanding of how
multiple models can be utilised to enhance the robustness and accuracy of prediction using
a high-dimensional dataset. The comparative analysis of models also offers a detailed
understanding in the context of energy efficiency forecasting. Such insights pave the way
for the integration of diverse techniques to capture the full spectrum of influential features,
thereby encouraging the development of more refined and targeted energy efficiency inter-
ventions. Practically, our findings have direct implications for enhancing energy efficiency
in residential properties. This set of refined features is ready to use in training more accurate
machine learning models for the accurate predictions of energy efficiency.

In a broader context, these contributions empower stakeholders, including policymak-
ers, designers, and engineers, to make data-driven decisions that can lead to substantial
improvements in energy conservation and sustainability across the built environment.

6.1. Limitations

One of the key limitations of this study is its reliance on static datasets. How-
ever, with the increasing availability of real-time data through smart meters, IoT devices,
and building management systems, there is an opportunity to integrate continuous data
streams into energy efficiency models. The models and findings presented in this research
are based on specific building energy-related datasets and features. Further research is
needed to validate these models in other contexts or domains, such as commercial or
industrial buildings, to ensure their broader applicability.

6.2. Future Research

This proposed framework is currently focused on building-specific features (e.g.,
energy consumption, CO; emissions, and heating costs). However, energy efficiency in
buildings is also influenced by external factors such as weather patterns, energy prices,
local grid dynamics, and occupant behaviour. These variables play a critical role in shaping
the overall energy profile of a building. Future research could investigate how these
external factors can be integrated into predictive models. This would enable a more holistic
approach to energy efficiency modelling while capturing a wider range of variables that
impact building performance.
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Abbreviations

The following abbreviations are used in this manuscript:

PCA Principal component analysis
KNNs k-Nearest Neighbours

SVR Support Vector Regression
RF Random Forest

GB Gradient Boosting

XGBoost Extreme Gradient Boosting
LightGBM  Light Gradient Boosting Machine

MI Mutual information

RFE Recursive Feature Elimination
HWEE Hot Water Energy Efficiency
HWEVE Hot Water Environment Efficiency
HVAC Heating, Ventilation, Air Conditioning
WIEE Windows Energy Efficiency
WENE Windows Environment Efficiency
WEE Walls Energy Efficiency

WENE Walls Environment Efficiency

REE Roof Energy Efficiency

RENE Roof Environment Efficiency
MHEE Main Heat Energy Efficiency

MHENE Main Heat Environment Efficiency
MHCEE Main Heat Control Energy Efficiency
MHCENE Main Heat Control Environment Efficiency

LEE Lighting Energy Efficiency
LENE Lighting Environment Efficiency
CEE Current Energy Efficiency

EIC Environment Impact Current
ECC Energy Consumption Current
CEC CO, Emissions Current

CEPFA CO; Emissions Current per Floor Area
LCC Lighting Cost Current

HCC Heating Cost Current

HWCC Hot Water Cost Current

TFA Total Floor Area

EO Extension Count

NAR Number of Habitable Rooms

NHR Number of Heated Rooms
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LEL Low-Energy Lighting
SAP Standard Assessment Procedure
RASAP reduced Standard Assessment Procedure
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