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a  b  s  t  r  a  c  t  

Hospital management plays a pivotal role in ensuring the efficient delivery of medical services, especially 
in the face of challenges posed by pandemics such as COVID-19. This paper explores the application of 
machine learning techniques in addressing the challenge of hospitalization during pandemics. 
Leveraging a comprehensive dataset sourced from the Mexican government, various supervised learning 
algorithms including Random Forest, Gradient Boosting, Support Vector Machine, K-Nearest Neighbors, 
and Multilayer Perceptron are trained and evaluated to discern factors contributing to hospitalizations. 
Feature importance analysis and dimensionality reduction techniques are employed to enhance models 
predictive performance. The best model was Gradient Boosting algorithm with an accuracy of 85.63% and 
AUC score of 0.8696. The interpretability plots showed that pneumonia had a positive impact on the hos-
pitalization prediction of the model. Our analysis indicates that women aged over 45 with pneumonia 
and concurrent COVID-19 exhibit the highest likelihood of hospitalization. This study underscores the 
potential of interpretable machine learning in aiding hospital managers to optimize resource allocation, 
hospitalization cases, and make data-driven decisions during pandemics. 
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is 
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

1. Introduction 

Hospitals are complicated establishments that require optimal 
performance in terms of service quality, service time, cost-
effective rates, use of supplies, and overall service outcome.1,2 

Maintaining effective and organized operations, resolving prob-
lems, and maximizing resource utilization are all made possible 
by professional hospital management. It is critical to provide 
patients with practical and proactive services as well as to raising 
the standard of hospital care.2 For better patient care quality and 
compliance, efficiency, minimizing mistakes, timeliness and out-
come, and data privacy, management tools for hospitals are 
essential.1,2 

The management of hospitals has faced many difficulties as a 
result of pandemics, including managing financial and resource 
allocation, employees and scheduling, and providing mental sup-
port to healthcare professionals.3 To manage emergencies and 
decrease the effects of the pandemic on the community, hospital 
managers have to create elaborating plans for the epidemic.3 In 

order to manage patients and stop the spread of diseases, pan-
demics have also brought attention to how crucial it is for hospitals 
to be adaptable and cooperative when collaborating with primary 
care.4 Managers at hospitals have had to deal with the nursing staff 
shortage, create crisis management strategies, and give healthcare 
professionals organizational support.5,6 Pandemics have further 
highlighted the need for easily accessible, precise, and effective 
diagnostic tools, treatment modalities, and preventive measures.3 
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Promising answers to the problems hospital managers encoun-
ter especially during pandemics can be found in machine learning 
(ML) techniques.7 Hospitals that want to effectively manage a crisis 
can improve patient flow, predict the spread of disease, allocate 
resources efficiently, and make data-driven decisions through the 
use of Artificial Intelligence (AI) and ML.8 In order to find trends 
and risk factors related to COVID-19 and other infectious condi-
tions, machine learning algorithms are able to evaluate enormous 
amounts of patient data, including population demographics, med-
ical histories, and clinical records.9 These algorithms can help 
anticipate hospitalization rates, spot high-risk individuals who 
might benefit from prompt intervention, and maximize bed usage 
to handle the spike in patient numbers.7,8 In order to ensure 
sufficient availability of crucial resources, ML models can also be 
used to develop forecasting models for medical supply chain 
management.7,10 Additionally, by supporting staff scheduling and 
resource allocation decision-making processes, machine learning
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algorithms can assist hospitals in making well-informed decisions 
based on real-time data.8,9 
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As an example, the COVID-19 pandemic has had a disastrous 
worldwide impact, having a severe influence on people’s long-
term health and livelihood. With a 7 million death toll, healthcare 
systems around the globe were compromised.11 Never before had 
modern healthcare settings experienced such an influx for hospital 
beds, including ICU beds and intubation devices. In the face of this 
unprecedented crisis, it has been crucial to examine the factors 
that contribute to the severity of COVID-19 cases. The most severe 
cases typically end in death, but the moderately severe cases often 
result in hospitalization, which could last up to a month depending 
on the severity.12 

This work endeavors to use AI technology to support the clinical 
decision-making process, aiding medical facilities in effectively 
preparing hospital beds and providing appropriate care for their 
patients. The research entails training various machine learning 
models, encompassing Random Forest (RF), Gradient Boosting 
(GB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 
and Multilayer Perceptron (MLP). Through an examination of 
patient data, including medical histories, the study aims to discern 
the extent to which specific pre-existing conditions or other attri-
butes significantly elevate the risk of hospitalization using The 
COVID-19 Mexico Patient Health Dataset (Covid19MPD) as a case 
study.13 This dataset was chosen because it includes patients med-
ical history and several underlying conditions such as Pneumonia 
and Chronic Obstructive Pulmonary Disease (copd), contains over 
97,000 instances, and has a hospitalization feature, making it suit-
able for the case study to predict hospitalization during pandemics. 
Additionally, the research employs several Explainable Artificial 
Intelligence (XAI) techniques to enhance the model’s interpretabil-
ity and explainability, facilitating a deeper understanding of the 
underlying factors influencing hospitalization outcomes. 

The rest of the paper is structured as follows. Section 2 
describes related work and a literature review. Section 3 describes 
the dataset utilized, examines the methodology used in this work, 
while the results and discussion are provided in Section 4. Section 5 
describes the interpretability and add another layer of explainabil-
ity to the models. Section 6 describes the current limitations while 
Section 7 concludes the paper highlighting the main findings and 
future work. 

2. Literature review 

Recently, hospital managers and healthcare providers have been 
increasingly using machine learning techniques to analyze real-
time data for decision-making.14 Salcedo et al.15 evaluated the uti-
lization of machine learning algorithms in the context of COVID-19. 
They examined 925 papers published between 2019 and 2022, cul-
minating in the selection of 32 publications for further analysis. 
Their investigation revealed the diverse applications of machine 
learning algorithms in pandemic management efforts, including 
the prediction of in–hospital mortality among COVID-19 patients, 
the development of machine learning-driven models for predicting 
near-term in–hospital mortality in COVID-19 patients, and the 
assessment of the risk of community deaths associated with 
COVID-19 using various machine learning algorithms.15 

To assist healthcare professionals in making decisions, De 
Holanda et al.16 created two predictive machine learning models 
to identify COVID-19 patients at higher risk of hospitalization or 
death. Out of the fourteen machine learning algorithms that were 
tested, the gradient boosting model performed the best, predicting 
death with 83% accuracy and an Area Under the Curve (AUC) of 
0.89, and hospitalization with 71% accuracy and an AUC of 0.75. 
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Brnabic and Hess17 carried out an extensive study into the 
methods and approaches used when applying machine learning 
to observational data to inform patient-provider decision making. 
In order to guarantee that decisions about patient care are sup-
ported by solid evidence, the study made clear how important it 
is to use a range of machine learning techniques, clearly define 
model selection strategies, and include both internal and external 
validation procedures. Random forest and decision tree (DT) 
approaches were the most often used techniques in these investi-
gations. It is interesting to note that most of the studies that were 
analyzed relied on a single algorithm, and very few chose to use 
multiple machine learning algorithms in their analyses.17 

Weissman et al.18 attempt to predict when to expect an increase 
in clinical demand and present the best and worst-case scenarios 
for the local COVID-19-induced demand on hospital capacity. The 
developed modeling tool can help in the early stages of a pan-
demic, guide clinical operations and staffing demands, predict 
when hospital capacity may become overcrowded, and inform 
capacity strain preparations. Using a queuing model, the study 
offers a novel method for ventilator capacity planning during the 
early phases of the COVID-19 pandemic. This tactic was used to 
demonstrate how public health campaigns and social distancing 
could potentially prevent up to 50 deaths per day in British Colum-
bia, Canada. The authors used the COVID-19 Hospital Impact Model 
for Epidemics (CHIME), which is based on the susceptible, infected, 
removed (SIR) model. The model’s primary findings are the total 
counts of expected demand for hospital beds, ICU beds, and venti-
lators over time at three different levels of care. Their study pre-
dicts hospital bed capacity during the COVID-19 pandemic, 
providing vital information for effective planning during epi-
demics. CHIME estimated that it would take a maximum of 31 to 
53 days for the number of patients with COVID-19 diagnoses to 
exceed the hospital’s current capacity. The total number of beds 
that would be needed in three hospitals to accommodate a surge 
of COVID-19 patients was estimated to be between 3,131 and 
12,650 in both optimistic and pessimistic scenarios. This included 
an estimated requirement for 118 to 599 ventilators and 338 to 
1,608 ICU beds.18 

Eight Ochsner Health hospitals used a SIR model created by Fort 
et al.19 that was based on the University of Pennsylvania Model for 
Epidemics between March 16 and April 15, 2020. The model used 
ICU admissions of cases to estimate community case loads, espe-
cially in cases of delayed evaluation. Surprisingly, by April 6, 
2020, the model accurately predicted the peak utilization of hospi-
tal beds (n = 487) and intensive care units (n = 250). Ochsner 
Health actively distributed 130 intensive care unit beds among 
its hospitals based on the patterns the model identified. This neces-
sitated building more intensive care units (ICUs) and converting 
some hospital emergency rooms and surgical rooms into ICU beds. 
The model demonstrated the importance of hospital admission 
data and offered useful information about the prevalence of 
COVID-19 transmission within an area in situations where disease 
monitoring is limited or results are delayed. Different basic repro-
duction number (R0) plots in their model represented a range of 
scenarios, which aid in the planning of hospital managers and 
healthcare providers.19 

Al Meslamani et al.20 investigated the possible benefits of using 
machine learning in pandemic healthcare responses. These bene-
fits included the ability to predict the spread of disease, identify 
individuals who are more susceptible to it, and optimize the allo-
cation of resources. Machine learning can help policymakers make 
decisions about how best to use resources, which could ultimately 
lead to resource savings, reduced workloads for medical profes-
sionals, improved patient outcomes, and improved mental health. 
However, the authors draw attention to the paucity of studies on



how machine learning can improve pandemic healthcare 
responses in practice.20 
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The Machine Learning-based Hospitalization Capacity Planning 
System for COVID-19 (CPAS) in the UK is a noteworthy initiative 
that aims to provide various stakeholders with actionable insights 
into the complex problem of ICU capacity planning as highlighted 
in.21 In partnership with NHS Digital, CPAS has been effectively 
deployed at individual hospitals as well as regionally throughout 
the UK. Its main goal is to support the organization of ICU beds, 
supplies, and staff members in order to efficiently handle the 
extraordinary demands on ICU resources brought on by the 
COVID-19 pandemic. The system uses data to forecast hospital 
demands at the national, regional, hospital, and individual levels. 
Widespread deployment of it in the UK has aided in capacity plan-
ning initiatives designed especially for COVID-19 patients. Rather 
than relying on algorithms, Qian et al.21 used the sophisticated 
automated machine learning tool AutoPrognosis, which is based 
on the ideas of Bayesian optimization (BO), to tune every pipeline 
step collaboratively. CPAS made use of three different patient-level 
data sources, each of which provides information on a different 
facet of the patient’s health. To create aggregated trend forecasts, 
CPAS also integrates community movement trend data. 

In order to deliver high-quality healthcare services and make 
the best possible utilization of scarce resources, Altintop et al.22 

claimed that knowledge developments or efficiency measurements 
on unprocessed data in the healthcare information system were 
required. This study uses a dataset of operational and financial 
healthcare records from over 600 hospitals in Turkey in 2013, 
which includes around 200 features divided into three categories: 
administrative features (such as the load factor of beds), earnings 
items, and cost items. Hospital locations are also categorized. To 
produce fuzzy linguistic overviews, a genetic algorithm is imple-
mented. For the dataset that was provided, the parameters of the 
genetic algorithms in their system were determined through 
experimentation and error. 

Garcia et al.23 explored the utilization of simulation models to 
enhance hospital readiness in the face of epidemics, with a specific 
focus on the COVID-19 scenario. They introduced a discrete event 
simulation model designed to assist in the short-term planning 
of hospital resources, particularly ICU beds, to effectively manage 
outbreaks such as the COVID-19 pandemic. Their simulation model 
incorporates stochastic modeling of patient admission and patient 
flow processes. The Gompertz growth model is employed to repre-
sent the patient arrival process, accurately capturing the exponen-
tial growth, peak, and decline of COVID-19 cases. Through 
empirical analysis, their study concludes that the Gompertz model 
surpasses other sigmoid models in terms of fitting pandemic-
related data and predicting capacity. Patient flow modeling encom-
passes various pathways and dynamic length-of-stay estimation 
based on patient-level data. Their simulation model was applied 
in two regions of Spain during the COVID-19 waves in 2020, pro-
viding daily predictions to guide healthcare planning teams. Their 
work23 underscores the significance of simulation models in repli-
cating the complexity and variability of healthcare systems, espe-
cially in uncertain and rapidly changing situations like 
pandemics. Their proposed simulation framework enables short-
term forecasting of resource requirements for COVID-19 patients, 
facilitating proactive planning by health authorities. The paper also 
underscores the potential application of the simulation model in 
future outbreaks. 

The potential of machine learning in addressing five major 
issues related to the COVID-19 pandemic response is examined 
by van der Schaar et al.24 Risk assessment, treatment planning, 
allocating resources, forecasting diseases, and medication develop-
ment are all included in these difficulties. The authors argue that 
these technologies have an opportunity to save lives when 

integrated into healthcare systems and offer specific strategies 
for their real-world application. 
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Arvind et al.25 highlights the utilization of machine learning 
techniques to forecast the intubation of hospitalized COVID-19 
patients based on contemporaneous laboratory measurements 
achieving area under the receiver operating characteristic curve 
(AUC) of 0.84. Research on predicting the outcomes of hospitalized 
patients is abundant, with several papers focused on predicting 
mortality or ICU admissions for hospitalized cases, including.26–28 

Previous studies often failed to provide detailed information 
about the features that influence ML models, making model expla-
nations challenging. The papers we reviewed achieved a maximum 
accuracy of 83%. This study seeks to close that gap by offering a 
framework for understanding ML models used to predict hospital-
ization. Our technique not only improves the ability to predict hos-
pitalization cases—which is critical during pandemics—but it also 
illustrates how ML models arrive at their results, boosting resource 
management and decision-making during pandemics. 

3. Methodology 

The proposed framework for predicting hospitalization cases 
during pandemic is outlined in this section, along with details 
about data description, preprocessing, feature engineering and 
how the models are trained. Fig. 1 displays the process flow chart. 
Each Block willl be covered in details in this section. 

3.1. Data description 

The Covid19MPD Dataset serves as a comprehensive repository 
of patient data encompassing COVID-19 test results and various 
medical conditions.13 Comprising 95,840 instances distributed 
across 20 features, the dataset transcends its initial focus on 
COVID-19 analysis to address a more pressing concern: forecasting 
the hospitalization needs of patients. This strategic shift aims to 
assist hospital managers in optimizing resource allocation, partic-
ularly during pandemic crises. 

To facilitate efficient predictive modeling, the dataset under-
went a restructuring process whereby hospitalization feature (pa-
tient type) was relocated as output variable. Table 1 serves as a 
guide, providing a detailed description of the dataset’s columns. 

An inconsistency was found in the dataset where patients 
marked as being in the ICU ’1’ were incorrectly classified as not 
hospitalized ’0’. This was corrected by adjusting the hospitalization 
status to match the logical progression of patient care. After that, 
the features labeled ”dead,” ”ICU,” and ”intubated” were elimi-
nated since the primary objective is to forecast hospitalization 
before a patient’s registration. 

Fig. 2 offers valuable insights into the interplay among dataset 
features, showcasing each feature’s correlation with others to help 
understanding the dataset’s underlying dynamics. After the elimi-
nation of the ’ICU’ and ’intubated’ features, the correlation matrix 
makes it evident that no two attributes have a significant relation-
ship with one another. 

3.2. Preprocessing and feature engineering 

To preprocess the Covid19MPD Dataset, some steps were 
undertaken to ensure data integrity and suitability for modeling 
purposes. The following preprocessing procedures were applied 
to refine the dataset and rectify inconsistencies: 

Initially, the ’age’ attribute was binarized to simplify its repre-
sentation while preserving its relevance to the model. Age values 
greater than 45 were assigned a value of 1, whereas those 45 or 
below were assigned a value of 0. The choice of 45 as the threshold



was based on its clinical significance, as individuals in this age 
group are more likely to develop several medical conditions.29 

Additionally, with the dataset’s average age being approximately 
42, selecting 45 provided a balanced division while maintaining 
predictive effectiveness. Although alternative thresholds such as 
30, 40, and 50 were initially explored, experimental evaluations 
confirmed that 45 yielded the best model performance. 
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Fig. 1. The complete process for the interpretable ML model. 

Table 1 
Dataset description. 

Feature Description 

Sex Female/male. 
Pneumonia if the patient was diagnosed with pneumonia. 

Age Age of the tested group. 
Pregnancy if the patient is pregnant. 
Diabetes if the patient has a diagnosis of diabetes. 
COPD if the patient has a diagnosis of COPD. 
Asthma if the patient has a diagnosis of asthma. 

Immunosuppression if the patient has immunosuppression. 
Hypertension if the patient has a diagnosis of hypertension. 
Other_disease if the patient has a diagnosis of other diseases. 

if the patient has a diagnosis of cardiovascular 
disease. 

Cardiovascular 

Obesity if the patient is diagnosed with obesity. 
if the patient has a diagnosis of chronic kidney 
failure. 

Chronic_kidney_failure 

Smoker if the patient has a smoking habit. 
Another_case if the patient had contact with any other case 

diagnosed with covid. 
Patient_type identifies the type of care received by the patient in 

the unit, hospitalized(inpatient) or not (outpatient) 
if the patient required to enter an Intensive Care 
Unit. 

ICU 

Intubated if the patient required intubation. 
death if the patient passed away or survived the covid19. 
Covid the result of the analysis of the sample, if the 

patient got covid or not. 

In the original dataset, the codes 97 and 98 were utilized to rep-
resent cases that were classified as ”not applicable” or ”not pro-
vided,” respectively. These values were consistently reassigned to 
a standardized code ’2’ to maintain consistency across the dataset 
and minimize bias in subsequent analyses, to lessen their dispro-
portionate influence on the model. 
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To assess the potential impact of dataset characteristics on 
model performance, we analyzed the skewness of each feature. 
Given that all attributes are categorical, skewness values reflect 
class imbalances, where a high positive skew indicates that the 
majority of instances belong to a single class, while a negative 
skew suggests the opposite. Several variables, including COPD 
(6.55), immunosuppression (6.74), chronic kidney failure (6.79), 
and cardiovascular disease (5.92), exhibited high positive skew-
ness, suggesting that these conditions were rare in the dataset. 
Conversely, hospitalization (-1.25) displayed negative skewness, 
indicating that most cases fell into the positive class (hospitalized). 

Feature importance analysis using RF is a valuable technique 
employed to discern the relative significance of different variables 
in predicting outcomes within a dataset.30 In the context of the 
COVID-19 Mexico Patient Health Dataset, RF serves as a robust tool 
for assessing the importance of various features in predicting hos-
pitalized cases and related outcomes. 

Table 2 presents an overview of the feature importance rank-
ings derived from the RF analysis and offers insights into the rela-
tive contributions of each attribute to the predictive power of the 
model. Features with higher rankings signify greater importance 
in influencing the model’s predictions, indicating their significant 
impact on the outcome variables. Conversely, attributes with lower 
rankings are deemed to have relatively lesser influence on the 
model’s predictive capabilities. 

The dataset included 73,381 instances classified as hospitalized 
cases and 22,458 instances classified as outpatient cases. This 
emphasizes the dataset’s underlying class imbalance, where inpa-
tient cases are far more common than outpatient instances. In 
order to rectify the intrinsic class imbalance observed in the data-
set, the oversampling and downsampling approaches were used. 
The details of these approaches’ use and their effect on model per-
formance and predicted accuracy are discussed in the Results and 
discussion section. 

3.3. ML models 

Machine learning provides powerful tools for identifying com-
plicated patterns in data and building prediction models.31 ML 
techniques, including RF, SVM, KNN, GB, MLP, DT, Logistic Regres-



calculation, and backpropagation to update the model’s weights 
over successive epochs to learn optimal weights.40 
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Fig. 2. The Features’ Heat Map. 

Table 2 
Features Importance usung RF.

- Feature Feature Importance 

1 Pneumonia 0.5134758 
14 Another_case 0.10218845 
2 Age 0.06774288 
15 covid 0.04822036 
4 Diabetes 0.04711961 
8 Hypertension 0.03227444 
11 Obesity 0.02457615 
12 Chronic_kidney_failure 0.02334989 
13 Smoker 0.02210968 
5 COPD 0.02162293 
9 Other_disease 0.02021054 
7 Immunosuppression 0.01946763 
10 Cardiovascular 0.01665956 
3 Pregnancy 0.01569267 
6 Asthma 0.0137337 
0 Sex 0.01155569 

sion (LR), and Naïve Bayes (NB) are widely used for classification 
and regression tasks.32,33 To increase precision and decrease over-
fitting, RF builds numerous decision trees and aggregates their pre-
dictions.34 SVM aims to discover the best hyperplane that splits 
data points into various classes in a high-dimensional space, mak-
ing it effective for both linear and nonlinear classification.35 KNN 
classifies data points based on the majority of their k-nearest 
neighbors, making it straightforward and flexible to varied 
datasets.36 Gradient Boosting sequentially trains decision trees, 
with each consecutive tree rectifying the errors of its predecessor. 
This leads to enhanced accuracy and predictive power.37 MLP is a 
popular form of artificial neural network (ANN) that comprises of 
an input layer, one or more hidden layers, and an output layer.38,39 

The MLP learning technique comprises forward propagation, error 
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A variety of techniques are included in the classifier set used in 
this work, including RF, KNN, SVM, GB, MLP, DT, LR and NB. These 
models were chosen based on their effectiveness in similar predic-
tive modeling applications, as discussed by Uddin et al.33 Two dif-
ferent hidden layer configurations within the MLP architecture 
were investigated to maximize prediction accuracy and model per-
formance. The first architecture comprised three hidden layers 
with node counts of 30, 20, and 4, respectively, while the second 
configuration featured two hidden layers with node counts of 50 
and 20, respectively. 

The dataset was divided into three sets: training, validation, and 
testing. The training set, which accounts for 80% of the data, is used 
to train models and estimate parameters. To avoid overfitting, 10% 
of the data is allocated for validation, allowing for hyperparameter 
fine-tuning and performance evaluation on untrained data. The 
remaining 10% is reserved for the testing set, which evaluates the 
model’s generalizability and accuracy on new data. 

When analyzing the performance of a classification model, mul-
tiple metrics are often employed to comprehend various elements 
of the model’s performance including accuracy, precision, recall, 
and F1 score.41 Accuracy is the proportion of accurately predicted 
instances to all instances in the dataset. It is a simple metric that 
gives an overall impression of how frequently the model is true.41 

It can be calculated using Eq. (1): 

Accuracy 
TP TN 

Total instances 
1 

where TP is true positive cases and TN is true negative cases.42 

Precision is defined as the ratio of accurately predicted positive 
observations to all expected positives. It determines how many 
cases anticipated as positive are actually positive.41 It can be calcu-
lated using Eq. (2):
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Precision 
TP 

TP FP 
2 

where TP is true positive cases and FP is false positive cases.43 

Recall is the ratio of accurately predicted positive observations 
to total observations in the class.41 It measures how many true 
positive instances are caught by the model and it can be calculated 
using Eq. (3): 

Precision 
TP 

TP FN 
3 

where TP is true positive cases and FN is false negative cases.43 

Recall is critical in cases where missing a positive occurrence (false 
negative) has serious effects. 

The F1 Score represents the harmonic mean of precision and 
recall. It provides a single statistic that balances both concerns, 
making it a valuable measure for calculating false positives and 
false negatives.41 It can be calculated using Eq. (4)44 : 

F1score 2 
recall precision 
recall precision 

4 

Another key performance metric for classification models is the 
AUC of the ROC curve. The AUC measures a model’s ability to distin-
guish between classes and provides insight into the trade-off 
between sensitivity and specificity.45 AUC can be calculated using 
Eq. (5): 

AUC 
1 

0 
TPR FPR dFPR 5 

where: 
True Positive Rate (TPR) or recall is given by Eq. (3), and False 

Positive Rate (FPR) is given by Eq. (6): 

FPR 
FP 

FP TN 
6 

4. Results and discussion 

Table 3 shows the comparison of classification performance of 
the ML algorithms used using 10-fold cross validation. It displays 
the performance of the trained model across multiple evaluation 
metrics, such as accuracy, precision, recall, F1 score and AUC. 

Although the total accuracy percentages varied from 82% to 
86%, more examination showed excellent recall, precision, and F1 
scores for the ”1” class, which corresponds to hospitalized cases. 
This demonstrates the model’s ability to reliably identify situations 
that require hospitalization, as well as its potential application in 
clinical decision-making and resource allocation. 

Despite the class imbalance, The use of AUC helped mitigate the 
effects of skewed distributions, as AUC evaluates model discrimi-
nation rather than absolute classification accuracy. Additionally, 
to minimize bias, the implemented stratified cross-validation 
ensured that training and validation sets maintained proportional 
class distributions. 

Out of all the ML models that were assessed, the results show 
that GBM performed the best with AUC of 0.8696. This is due to 
its capacity to iteratively improve predictions by fixing cases that 
were incorrectly classified at every learning stage. In contrast to 
conventional ensemble techniques such as bagging, which train 
models separately, gradient boosting constructs trees in a sequen-
tial fashion, modifying each weak learner’s contribution according 
to the residual errors of earlier iterations. This makes it possible for 
it to learn intricate, non-linear feature interactions, which is espe-
cially useful because our dataset is categorical.Gradient Boosting 
also dynamically modifies instance weights, improving its capacity 
to manage unequal class distributions. Models such as RF, on the
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other hand, give each instance the same weight, which can lessen 
sensitivity to patterns of minority classes.
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To assess whether a more sophisticated ensemble method could 
enhance model performance, a stacking classifier using RF, GBM, 
and SVM as base models was used with LR serving as the meta-
model. While stacking is often expected to improve classification 
performance by leveraging the strengths of multiple models,46 in 
this case, it did not provide a significant advantage over individual 
models. The results showed that the stacking model performed 
comparably to the best individual classifiers, achieving accuracy 
of 85.04% and indicating that the base models were already captur-
ing the key patterns in the data effectively. This suggests that, for 
this particular dataset and classification task, the added complexity 
of stacking did not translate into noticeable performance gains. 

To optimize the GB model performance, we performed auto-
mated hyperparameter tuning using Optuna, a Bayesian optimiza-
tion framework that efficiently searches for the best 
hyperparameters using a pruning-based approach.47 Hyperparam-
eters such as number of estimators, maximum depth, minimum 
samples per split, and subsample ratio were tuned. The optimal 
set of hyperparameters, which led to the best model performance, 
is reported in Table 4. The model’s performance was only margin-
ally improved through tuning. On the validation set, the model’s 
accuracy increased to 85.31%, and on the testing set, it reached 
85.61%. 

The investigation of oversampling and downsampling strategies 
reveals the common issue of class imbalance in healthcare data-
sets, in which some classes are under-represented. As Table 5 
demonstrates, attempts to rectify this imbalance were done by 
exploring the effects of both downsampling and oversampling, 
however neither strategy produced significant improvements in 
the GB model performance. The ’Over/Down sampling’ results in 
Table 5 shows that resolving class imbalance remains a difficult 
issue that might require more advanced techniques or dataset-
specific approaches. 

RF feature selection with the top 8, 10, and 12 features, 
SelectKBest with k = 8, 10, and 12, and Principal Component Anal-

ysis (PCA) with 8 and 12 components were all utilized to enhance 
hospitalized case prediction using GB model. Despite these 
attempts, no significant enhancement in performance was noted. 
PCA, which is typically used for dimensionality reduction, and 
SelectKBest, which assesses features based on their statistical asso-
ciation with the target variable, both failed to improve perfor-
mance. These results highlight the complexities of feature 
selection and its impact on model performance. Detailed perfor-
mance results are provided in Table 6. 

Table 4 
Best parameters obtained by Optuna. 

Parameter Value 

learning_rate 0.05875538439237237 
n_estimators 98 
max_depth 5 

min_samples_split 4 
min_samples_leaf 5 

subsample 0.9616982928990448 

Table 5 
Performance evaluation of the gradient boosting model with different sampling techniques. 

GB Model Sampling Techniques 

Original Over-Sampling Down-Sampling (1:2) 

Not Hospitalized Precision 0.71 ± 0.02 0.58 ± 0.03 0.65 ± 0.02 
Recall 0.64 ± 0.03 0.72 ± 0.04 0.63 ± 0.03 

F1-Score 0.66 ± 0.02 0.64 ± 0.03 0.64 ± 0.02 

Hospitalized Precision 0.89 ± 0.01 0.87 ± 0.02 0.86 ± 0.02 
Recall 0.92 ± 0.02 0.81 ± 0.03 0.84 ± 0.03 

F1-Score 0.90 ± 0.01 0.84 ± 0.02 0.85 ± 0.02 

AUC 0.87 ± 0.01 0.79 ± 0.02 0.81 ± 0.02 
Accuracy 85.35% ± 0.05 80.86% ± 0.075 82.71% ± 0.065 
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Table 7 shows that several feature selection strategies that we 
explored, such as RF and SelectKBest, perform similarly in a subset 
of 8 features. However, the difference in the 4th and 5th features 
chosen by RF (obesity) and SelectKBest (copd) implies that each 
technique evaluates feature value or relevance to the hospitalized 
case prediction task differently. 

The preparation methods taken in this scenario, such as han-
dling missing values, demonstrate the complexities of preparing 
healthcare datasets for predictive modeling and the importance 
of thorough data cleaning and feature engineering to ensure the 
dataset’s integrity and dependability. 

To gain deeper insights into model behavior, error analysis was 
conducted by examining misclassification patterns across different 
models. One of the key findings was that false negatives (i.e., hos-
pitalized cases misclassified as non–hospitalized) were generally 
more frequent than false positives. This trend was most prominent 
in models with lower AUC scores, such as NB, SVM, and DT, sug-
gesting that these models struggled to differentiate hospitalized 
cases that shared similar feature distributions with the non–hospi-
talized group. On the other hand, models that achieved the highest 
AUC scores, such as GBM, and RF exhibited lower false negative 
rates, indicating their ability to better capture complex feature 
interactions. Conversely, simpler models like LR tended to produce 
higher false positive rates, meaning that some non–hospitalized 
cases were mistakenly classified as hospitalized. This suggests that 
these models may overestimate risk, potentially due to their reli-
ance on linear decision boundaries. 

In comparison to De Holanda et al.,16 who developed two pre-
dictive machine learning models aimed at identifying COVID-19 
patients at elevated risk of hospitalization or mortality, our study 
achieved higher predictive accuracy using the gradient boosting 
algorithm. Specifically, our model attained an accuracy of 85.63% 
and AUC of 0.8696 in predicting hospitalization during the 
COVID-19 pandemic, surpassing their reported accuracy of 71% 
with an AUC of 0.75 for hospitalization prediction. 

Predicting hospitalization for pediatric COVID-19 patients in 
Malaysia was the main goal of Liew et al.48 The Adaptive Boosting 
(AdaBoost) technique was determined to be the best-performing 
model with an AUROC of 0.95 after feature selection was done



using Recursive Feature Elimination (RFE). Direct performance 
comparison is challenging due to the disparities in target demo-
graphics, even though their work sheds light on pediatric admis-
sions. But in contrast to their study, which mostly used 
characteristics based on demographics and symptoms, we 
included a wider variety of clinical and comorbidity-related 
characteristics. 
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Table 6 
Performance evaluation of the GB model with different feature selection techniques. 

RF Feature Selection PCA Feature Selection SelectKBest Feature Selection 

8 
Components 

12 
Components 

Top 8 Top 10 Top 12 k = 8 Features k = 10 Features k = 12 Features 

Not 
Hospitalized 

Precision 0.70 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.03 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 
Recall 0.61 ± 0.03 0.61 ± 0.03 0.60 ± 0.02 0.61 ± 0.03 0.62 ± 0.03 0.62 ± 0.03 0.62 ± 0.03 0.62 ± 0.03 

F1-Score 0.65 ± 0.02 0.66 ± 0.02 0.65 ± 0.02 0.64 ± 0.03 0.66 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 

Hospitalized Precision 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 
Recall 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 

F1-Score 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 
AUC 0.84 ± 0.023 0.84 ± 0.025 0.81 ± 0.051 0.82 ± 0.01 0.83 ± 0.098 0.83 ± 0.02 0.83 ± 0.005 0.84 ± 0.002 

Accuracy 84.64% ± 0.02 84.64% ± 0.02 84.64% ± 0.01 83.88% ± 0.07 84.88% ± 0.02 84.88% ± 0.06 84.88% ± 0.09 84.88% ± 0.05 

Table 7 
The Top 8 Features selected by RF and SelectKBest. 

Technique Top 8 Features 

RF pneumonia age diabetes hypertension obesity chronic_kidney_failure another_case covid 
SelectKBest pneumonia age diabetes copd hypertension chronic_kidney_failure another_case covid 

Performance evaluations for several machine learning models 
are included in the internal validation results from Liew et al.48 

Although the RF classifier in their investigation had a PPV of 1.00 
and a specificity of 1.00, it only had a sensitivity of 0.23 and an 
AUROC of 0.94. With an AUROC of 0.93 and a sensitivity of 0.32, 
the XGBoost model demonstrated a similar pattern of high speci-
ficity and poor sensitivity. This implies that their models were 
more cautious, giving specificity precedence over sensitivity, 
which would have resulted in a higher percentage of false nega-
tives when it came to hospitalization predictions. 

In contrast, considering the real-world applications of hospital-
ization prediction, our model aimed to strike a balance between 
sensitivity and specificity. With an AUROC of 0.8696, our GB model 
demonstrated a more equitable trade-off between specificity and 
sensitivity. Additionally, there were notable differences in the F1 
scores between classifiers according to Liew et al.48 For example, 
LR received an F1 score of 0.55, whereas RF received 0.37. Our 
models demonstrated a superior balance between precision and 
recall by achieving higher and more consistent F1 scores across 
several classifiers. 

Buenrostro-Mariscal et al.49 used the Mexican Health and Aging 
Study (MHAS) to predict hospitalizations in older persons. They 
created an RF model and used permutation importance and impu-
rity reduction approaches to evaluate the relevance of the vari-
ables. They obtained a specificity of 0.4935 and a sensitivity of 
0.7215. The model mostly used socioeconomic and functional 
health characteristics, and the best predictors were age, history 
of cerebrovascular accidents, and functional limits. Instead of con-
centrating solely on aging populations, our study is based on hos-
pitalization prediction for COVID-era patients with different 
clinical problems. To guarantee resilience, the model in49 

employed a variety of partitioning techniques including cross-
validation. Although our study’s validation methodology was sim-

ilar, our feature set was very different, emphasizing health condi-
tion predictions above functional limitations. 
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The use of XAI strategies to improve model interpretability is a 
significant difference in our research. Although Liew et al.48 

employed RFE to choose features, they did not go into great detail 
about model interpretability outside of feature ranking. Similarly, 
Buenrostro-Mariscal et al.49 did not use explainability techniques 
like SHAP in their variable importance study. Our method incorpo-
rates explainability to help with clinical interpretability by offering 
insights into the model’s decision-making process. 

5. Interpretability results 

To ensure transparency and a better understanding of the vari-
ables and features, interpretable ML is used to provide explana-
tions for the model’s behavior, addressing the gap in the 
literature regarding explainability and completing the cycle of cre-
ating an explainable ML model. The application of interpretation 
tools after model training is referred to as ”post hoc interpretabil-
ity.” These strategies can be applied to models that are intrinsically 
interpretable, such as GB, RF, and decision trees.50,51 Permutation 
feature importance51 provides a simple way for determining the 
significance of features in a ML model by calculating the increase 
in prediction error after permuting the feature’s values, thereby 
disturbing its association with the actual outcome.51 Another use-
ful technique for interpreting ML models is the partial dependence 
plot (PDP), which reveals the marginal effect of one or two param-
eters on the predicted outcome.50 PDPs are commonly used for 
looking into the relationship between features and the desired 
variable in ML models.50,51 

To better understand the contribution of individual features, 
ablation study was conducted by systematically removing each 
feature and evaluating its impact on AUC and accuracy. As shown 
in Fig. 3, removing critical clinical attributes, including pneumonia 
status resulted in a notable decline in model performance. This 
finding emphasizes the significance of pre-existing medical condi-
tions in predicting hospitalization outcomes. 

Conversely, demographic attributes such as smoking status, and 
prior contact with another COVID-19 case had minimal impact on



model performance, suggesting that they contribute less to hospi-
talization prediction. 
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Fig. 3. AUC and Accuracy after Feature Ablation. 

Fig. 4. Feature Importance Plot. 

SHapley Additive exPlanations (SHAP) is another way for 
explaining individual predictions provided by ML algorithms. Its 
key objective is to explain the prediction of a given instance by cal-
culating the contribution of each feature to that prediction.50,51 

In this paper, post hoc interpretability methods are utilized to 
interpret the GB model’s result including permutation importance, 

PDP, and SHAP. The permutation importance plot in Fig. 4 indicates 
that ”Pneumonia” is the most crucial feature for the model’s judg-
ment regarding the patients’ likelihood of being hospitalized or 
not, which is in line with our findings regarding the significance 
of RF features in Table 2. 
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Figs. 5a, 5b, and 5c, represent the PDP plots for the features 
’Pneumonia’, ’COPD’, and ’COVID’, respectively. The impact of Pneu-
monia on hospitalization cases is evident from the PDP plot in



Fig. 5a. When the ’pneumonia’ feature is zero, the hospitalization 
probability is low; however, it greatly increases when the ’pneu-
monia’ is one. This result is consistent with the previous analyses 
and emphasizes the significance of pneumonia as a predictor. 
Patients who have pneumonia have a significantly higher chance 
of being admitted to the hospital. 
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Fig. 5. Partial Dependence Plots. 

Fig. 6. Interaction PDP between Covid and Pneumonia. 
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The PDP plots for COVID-19 and COPD features in Figs. 5b and 
5c reveal a small increase in the likelihood of hospitalization when 
these symptoms exist. However, this rise is not as significant as the 
one seen with pneumonia. 

The interaction plot in Fig. 6 shows that when a patient does not 
have Covid or pneumonia, the model generally classifies them as 
non–hospitalized. In contrast, the model frequently classifies 
patients with pneumonia as hospitalized. When a patient has 
pneumonia as well as COVID-19, the likelihood of hospitalization 
increases significantly. 

For our SHAP analysis, we selected a singular instance from the 
dataset, focusing on non–hospitalized as the target variable, as 
depicted in Fig. 7a. The discernible trend indicates that in instances 
where pneumonia is absent (denoted by 0), the model tends to pre-
dict a non–hospitalized outcome. 

In Fig. 7b, the SHAP plot depicts that age and ’another_case’ fea-
ture have the most impact on the decision to hospitalize the 
patient. It also shows that women aged 45 and older who present 
with pneumonia alongside COVID-19 are notably predisposed to 
hospitalization. 

SHAP produces global explanations for the ML results using ker-
nel explainer. The SHAP plot summary in Fig. 8 shows that Pneu-
monia affects positively the model prediction of the 
hospitalization. 

6. Limitations and Challenges 

This study draws attention to a number of limitations in the 
dataset and methodology. The data imbalance, where one class 
greatly outweighs the other, is one prominent limitation that could 
cause skewed model predictions and decreased accuracy. More-
over, the dataset was gathered during the COVID-19 pandemic, 
making the results practical and suitable for COVID-19 pandemic 
situations. However, more research is needed to generalize these 
findings to the broader context of other pandemics or healthcare 
scenarios. 

Furthermore, the dataset’s features might be constrained 
because the ML models’ predictive power could be enhanced by 
integrating more comprehensive patient data, such as demograph-
ics, vital signs, and blood test results.
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Fig. 7. Local SHAP plots. 

Fig. 8. Global SHAP explanations for hospitalized patients.
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7. Conclusion and future work 

Hospital management presents significant challenges that call 
for effective solutions, particularly during pandemics. This paper 
uses ML on a dataset obtained during the COVID-19 pandemic as 
a case study to forecast hospitalizations, shedding light on the sig-
nificant role machine learning approaches may play in tackling the 
challenges of hospital management during pandemics. Several 
supervised learning algorithms were used and assessed through 
the examination of the dataset, yielding good prediction accuracy 
and insights into the variables impacting hospitalization outcomes. 
With the Gradient Boosting model, hospitalization cases may be 
predicted with 85.63% accuracy and AUC score of 0.8696. Notwith-
standing obstacles including unequal class distribution and data 
scarcity, the findings show that machine learning has the ability 
to enhance hospital management in the event of a pandemic. 

Moreover, the utilization of interpretability methods facilitates 
the understanding of machine learning models, developing confi-
dence and trust in their predictions. For Example, according to 
our analysis, the most important factor in determining whether 
or not the patients would be hospitalized is ”pneumonia”. The 
SHAP analysis underscores that elderly women diagnosed with 
both pneumonia and COVID-19 are at significantly elevated risk 
of hospitalization. Explainable machine learning helps stakehold-
ers and hospital managers make well-informed decisions about 
patient care and resource allocation by offering insights on feature 
relevance and model behavior. 

Acquiring a broader range of datasets, using sophisticated pre-
processing approaches, and directly collaborating with medical 
experts and hospital managers can improve the models’ accuracy 
and expand their applicability in predicting hospitalization out-
comes and guiding clinical judgment during pandemics. Further 
insights into patient demographics, regional variances, and socioe-
conomic aspects can be obtained by integrating novel and valuable 
datasets from other sources. Such richer set of data could help to 
strengthen and generalize ML models, increasing their usefulness 
in hospital management conditions. 
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