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Abstract: 

Background: Platelet activation is constrained by endothelial-derived prostacyclin (PGI2) through cyclic 

adenosine-5’-monophosphate (cAMP) signalling involving multiple isoforms of adenylyl cyclase (AC). The 

roles of specific AC isoforms in controlling haemostasis remain unclear and require clarification.  

Objectives: To understand the specific contribution of AC6 in platelet haemostatic and thrombotic function. 

Methods: A platelet-specific AC6 knockout (AC6-KO) mouse was generated. Biochemical approaches were 

used to determine intracellular signalling, with flow cytometry, tail bleeding time assays and in vivo thrombosis 

by ferric chloride were used to measure the haemostatic and thrombotic importance of platelet AC6.  

Results: Loss of AC6 resulted in diminished accumulation of platelet cAMP in response to PGI2, while basal 

cAMP was unaffected. We found no differences in phosphodiesterase 3A (PDE3A) activity, suggesting the 

defect was in generation rather than hydrolysis of cAMP. Consistent with this, phosphorylation of PKA 

substrates, vasodilator-stimulated phosphoprotein and glycogen synthase kinase were diminished but not 

ablated. Functional studies demonstrated that the inhibition of thrombin-induced fibrinogen binding and P-

selectin expression by PGI2 was severely compromised, while inhibition of GPVI-mediated platelet activation 

was largely unaffected. Under conditions of flow formed stable thrombi, but in the absence of AC6, thrombi 

were insensitive to PGI2. In vivo diminished sensitivity to PGI2 manifested as significantly reduced tail bleeding 

and accelerated occlusive arterial thrombus formation in response to vascular injury that were highly unstable 

and prone to embolisation in AC6-KO mice. 

Conclusions: These data demonstrate that AC6 is linked directly to PGI2-mediated platelet inhibition and 

regulation of haemostasis and thrombosis in vivo.  

Keywords: platelets, adenylyl cyclase 6, cAMP, PKA, thrombosis, haemostasis.  
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Introduction: 

Crosstalk between endothelial-derived mediators, such as prostacyclin (PGI2) and nitric oxide (NO) and 

platelets, is critical to the control of haemostasis [1-7]. PGI2 is the more potent of these two inhibitors based 

on the much higher expression of the downstream signalling apparatus and effectors [8]. In circulation, the 

marginalisation of platelets during blood flow facilitates their continual exposure to PGI2, ensuring they remain 

inactive. Ligation of the prostaglandin I2 (IP) receptor by PGI2 is coupled to a complex system involving 

enzymes and adaptors that facilitate the generation, propagation, and termination of 3',5'-cyclic adenosine 

monophosphate (cAMP) signalling. The binding of PGI2 to the IP receptor activates membrane adenylyl 

cyclase (AC) through Gαs and G protein-coupled receptors (GPCR), resulting in elevations in cAMP and 

activation of protein kinase A (PKA) isoforms. The subsequent phosphorylation of a plethora of key protein 

substrates results in the inhibition of multiple aspects of platelet function [9]. Increased platelet cAMP is 

associated with reduced Ca2+ mobilisation, dense granule secretion, integrin αIIbβ3 activation and aggregation 

in vitro [10], and reduced platelet accrual at sites of vascular injury in vivo [11]. However, much of the data 

regarding the role of cAMP in platelet function has been gained from in vitro studies, using cAMP mimetics 

that act as global cAMP modulators or bypass AC, as well as pharmacological inhibitors that have consistently 

been shown to have off-target effects [12]. Consequently, a precise understanding of the relationship between 

specific AC and PKA isoforms, individual substrates/signalling targets, and the distinct platelet functions 

highlighted above is still lacking. 

Seminal gene deletion studies demonstrated that loss of the IP receptor led to a prothrombotic phenotype 

confirming PGI2 as a key regulator of thrombosis in vivo and are supported by clinical studies suggesting 

impaired cAMP in subjects with acute coronary syndromes (ACS) [13-15]. However, our understanding of how 

cAMP signalling controls platelet function through a myriad of signalling enzymes and where the systems fail 

in atherothrombotic disease is unclear. Dissecting the functionality of the pathway downstream of the IP 

receptor has been hampered by a lack of pharmacological tools and genetic models [16]. The precise role of 

PKA isoforms has proved difficult because the deletion of PKA regulatory subunits is either embryonically 

lethal [17, 18] or results in compensation through upregulation of other subunits [17, 19]. Given this complexity, 

and as a first step to understanding the role of different components of the cAMP systems, we focussed our 

attention on the roles of AC. This first step in the pathway has recently been shown to be critical in ACS where 

dysfunctional AC activity is linked to reduced efficacy of P2Y12 receptor antagonists [20].  

The soluble AC isoform, AC9, was shown to be the most dominant isoform in mice with a copy number of 

~2493 [21, 22], however, because this isoform is not expressed in human platelets, we decided to focus our 

efforts on isoforms expressed in both human and murine platelets. Further studies indicate that AC6 is highly 

expressed in both human and murine platelets with a copy number of ~2166 in mice [21] and ~2500 in humans 

[23], with significantly lower expression of AC3 (human) and AC5 (murine), respectively [21-24]. The reason 

for multiple AC isozymes in platelets is unclear, and to explore the possibility that AC in platelets play 

functionally distinct roles we generated a platelet-specific deletion of AC6. Our data demonstrate that AC6 is 

responsible for selective inhibition of platelet activation and plays a central role in controlling haemostasis and 

thrombosis in mice. 
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Materials and methods: 

Reagents  

PAR4 peptide (Anaspec), CRP-XL (CambCol Laboratories), PGI2 and Forskolin (Cayman Chemical), 

Amersham cAMP Biotrak Enzymeimmunoassay (EIA) system (Cytiva), S-Nitrosoglutathione (GSNO), 8-CPT-

cAMP and Mouse Anti-Adenylate cyclase (sc-377243) (Santa Cruz Biotechnology), SQ22537 (Calbiochem), 

Annexin V APC ready flow conjugate, Fast RNA extraction with PureLink RNA Mini Kit (Invitrogen), phospho-

VASPSer239 (3114), phospho-VASPSer157 (3111), phospho-PKA Substrate (RRXS*/T*) (9624), phospho-

GSK3βSer9, GAPDH (2118) (Cell Signalling Technologies), BD Phosflow Lyse/Fix Buffer 5X, FITC Rat IgG1 λ 

isotype control (553995), FITC Rat Anti-mouse CD62P (553744), BB700 Rat Anti-mouse CD41 (742148), 

FITC Hamster Anti-rat CD49b (554999), FITC Hamster IgG1 κ Isotype control (553971), FITC Rat Anti-mouse 

CD41 (553848), FITC Rat IgG1 κ isotype control (553924), FITC Hamster Anti-mouse CD61 (553346) , and 

FITC Hamster IgG1 κ isotype control (553971) (BD Biosciences), PE Rat Anti-mouse Integrin αIIbβ3 (M023-

2), FITC Rat Anti-mouse GP1b alpha (M040-1), FITC Rat Anti-mouse integrin alpha 2 (M071-1), FITC Rat 

Anti-mouse GPVI (M011-1), FITC Rat IgG Polyclonal (P190-1) and PE Rat IgG Polyclonal (P190-2) (Emfret), 

Anti-phospho-PDE3ASer312 and Anti-PDE3A (MRC-PPU, University of Dundee), Collagen Reagens HORM® 

suspension (Takeda), RestoreTM Western Blot Stripping buffer, SuperSignal West Pico Plus PierceTM ECL, 

TaqManTM primers (Adcy6: Mm00475773_g1, Adcy5: Mm00674122_m1, Adcy3: Mm00460371_m1 and 

Gapdh: Mm99999915_g1) and TaqManTM Fast Advanced Master Mix (Thermo Fisher Scientific), Reverse 

Transcription System (Promega). All other reagents were from Sigma-Aldrich. 

Experimental animals  

All animal husbandry, housing and procedures were carried out in line with the regulations and guidelines of 

the University of Leeds Central Biological Services facility under the Animals (Scientific Procedures) Act 1986 

and carried out under United Kingdom Home Office approved project licences (PP0499799 and PP9539458). 

Animals received standard rat and mouse no.1 maintenance diet (RM1, Special Diet Services) and water by 

Hydropac pouches. All mice were housed in individually ventilated cages (GM500, Techniplast), with 12 hours 

of light/dark cycles, at 21˚C and 50-70% humidity.  

PF4-cre+/Adcy6fl/fl experimental mice were generated via a Cre-lox approach by crossbreeding Adcy6fl/fl 

(RRID:IMSR_JAX:022503) and PF4-cre+ (RRID:IMSR_JAX:008535) mice purchased from the Jackson 

Laboratory (Bar Harbour, ME, USA). Homozygous female Adcy6 floxed mice were bred with Hemizygous male 

mice expressing Cre recombinase under the control of the Platelet Factor 4 (PF4) promoter generating 

heterozygous floxed Adcy6 and hemizygous PF4-cre. Male mice hemizygous for PF4-cre and heterozygous 

for floxed Adcy6 were bred with females heterozygous for floxed Adcy6. This yielded animals homozygous for 

floxed Adcy6 with and without PF4-cre. Mice with PF4-cre expression have platelet-specific KO of Adcy6, while 

mice without PF4-cre function as littermate controls. Throughout this study, PF4-cre+/Adcy6fl/fl are denoted as 

AC6-KO and Adcyfl/fl littermate controls are denoted as WT. All mice generated were on a C57Bl/6 background 

and both male and female mice were used throughout this study. Prior to use, all pups were ear notched at 

weaning (~3 weeks of age) to allow for identification and isolation of genomic DNA (gDNA) for automated 

genotyping by Transnetyx. 
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mRNA expression, flow cytometry, immunoblotting, cAMP measurement, in vitro flow and in vivo 

thrombosis 

Detailed methods are described in the supplemental methods. 

Statistics 

Results are expressed as means ± SD unless otherwise stated and statistical analyses were performed using 

GraphPad Prism 9.0 (La Jolla, CA). Comparisons between WT and AC6-KO were performed by two-way 

ANOVA with Šídák’s multiple comparisons post-hoc test unless otherwise stated and statistical significance 

was accepted at p<0.05. 

Data sharing statement  

All raw data and protocols can be made available by emailing the corresponding author.  
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Results: 

Establishment of the platelet-specific AC6-knockout mouse  

The novel platelet-specific AC6-KO mouse was generated using the PF4 promotor to ensure the AC6 gene 

was deleted in cells of the megakaryocyte lineage (Figure 1A). To confirm the platelet specificity of the AC6-

KO mouse, we tested the mRNA levels of the AC6 gene (Adcy6) in WT and AC6-KO platelets using real-time 

q-PCR. AC6 was successfully deleted in platelets (Figure 1B) but not in other tissues (e.g. heart and kidney) 

(Suppl. Figure 1), confirming that the deletion of AC6 is restricted to the platelet-megakaryocyte lineage (Figure 

1B). This was confirmed via immunoblotting using a pan-AC antibody, whereby total AC protein expression 

was unchanged in WT vs AC6-KO in heart and kidney (Suppl. Figure 2). Further, we observed no change in 

the expression of AC9 and AC5, and consistent with other studies, we found no expression of AC3 in murine 

platelets [21, 24] (Figure 1B).  Immunoblotting for total AC showed a significantly reduced protein expression 

in platelets, with residual protein likely to be the remaining AC5 and AC9 (Figure 1C). Importantly, we observed 

no change in PDE3A and PDE2A mRNA expression in WT and AC6-KO platelets (Suppl. Figure 3).  In addition, 

we found no changes in protein expression of key components of the cAMP signalling system, including 

phosphodiesterase 3A (PDE3A) (Figure 2C), vasodilator-stimulated phosphoprotein (VASP) (Suppl. Figure 4) 

and key PKA subunits (Suppl. Figure 5). Importantly, we observed no difference in haematological blood 

parameters between WT and AC6-KO (Table 1). Analysis of the platelets from AC6-KO mice and littermate 

controls showed no major differences in the expression of key platelet receptors (Suppl. Figure 5A). Further, 

platelet numbers drawn from CD42b positive cells and young reticulated platelets from Thiazole Orange 

positive events showed no difference between WT and AC6-KO platelets (Suppl. Figure 5B & C), suggesting 

that platelet counts and turnover were similar in both groups of mice.  

Contribution of AC6 to platelet cAMP production and PKA-mediated phosphorylation events 

We first investigated the role of AC6 in platelet cAMP synthesis using a cAMP assay. Basal cAMP generation 

was unchanged between WT (303±161 fmol/107 platelets) and AC6-KO KO 224±65 fmol/107 platelets) mice. 

Treatment of platelets with PGI2 (0-100 nM, 30s) led to a concentration-dependent increase in cAMP in WT 

platelets, while in AC6-KO platelets, cAMP synthesis was severely compromised (Figure 2A). In response to 

PGI2 (100 nM) there was a 77.6% reduction in cAMP formation in AC6-KO compared to WT platelets 

(8860±2699 to 1984±417 fmol/107 platelets, p<0.0001). When cAMP synthesis was assessed as a function of 

time, we found that its generation was severely delayed in AC6-KO platelets; at 1 minute, the levels were 

8682±1896 fmol/107 platelets (WT) and 4385±1175 fmol/107 platelets (AC6-KO) (Figure 2B). Importantly, we 

found that in the absence of AC6, platelets retained some capacity to produce cAMP. Since cAMP 

concentrations are synergistically linked to synthesis and hydrolysis, we examined the potential role of PDE3A, 

the enzyme responsible for breaking down cAMP in platelets [25]. We observed no changes in the expression 

or activity of PDE3A between WT and AC6-KO platelets (Figure 2C and 2D). 

Given the reduced cAMP generation, we next examined the importance of AC6 in cAMP-mediated, PKA 

phosphorylation events, using established platelet PKA substrates. In both groups, PGI2 (1-100 nM) caused a 

concentration-dependent increase in phosphoVASPSer157, phosphoVASPSer239, phosphoGSK3βSer9 (Figure 3), 

and phosphoPDE3Aser312 (Suppl. Figure 7). The phosphorylation of VASPSer157, VASPSer239 and GSK3βSer9 was 

reduced in AC6-KO platelets at all concentrations of PGI2 but not abolished (Figure 3A). While phosphorylation 

of PDE3ASer312 appeared to be slightly reduced in the AC6-KO, this was not significant (Suppl. Figure 7A-B). 
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We then applied forskolin (0.1-10 µM), which directly activates AC 1-8 (excluding AC9) to produce cAMP in a 

non-compartmentalised manner, independent of the IP receptor. Consistent with reduced capacity for cAMP 

generation, we found compromised phosphorylation of VASPSer157, VASPSer239 and GSK3βSer9, but with little 

effect on PDE3ASer312 phosphorylation (Figure 3B and Suppl. Figure 7C-D). To assess cAMP production via 

receptors independent from the IP receptor, we measured VASPSer157 phosphorylation in response to 

adenosine (100 µM). Consistent with our findings in response to PGI2,  we found that VASPSer157 

phosphorylation was impaired to basal levels in the AC6-KO compared to WT platelets (p<0.01)(Suppl. Figure 

8). To confirm that the cAMP signalling apparatus downstream of AC6 was unaffected, we treated platelets 

with the non-hydrolysable analogue of cAMP, 8-CPT-cAMP (1-100 µM), and we observed no differences in 

the phosphorylation of VASPSer157 between WT and AC6-KO (Figure 3C). Using phosphoflow cytometry [26, 

27] we found that platelets from AC6-KO mice produced significantly less phosphorylation of VASPSer157 and 

VASPSer239 than WT mice when stimulated with PGI2 (100 nM) (16.9±5.1 WT versus 11.9±3.7 AC6-KO fold 

increase over basal phosphoVASPSer239; p<0.05) (Figure 3D), confirming that cAMP signalling is also 

compromised in whole blood. 

Loss of AC6 leads to selective platelet hyposensitivity to PGI2 

We next assessed whether AC6 was linked to multiple platelet functions in the physiological conditions of 

whole blood. We investigated the functional consequences using flow cytometric analysis of the key surface 

markers of platelet activation, active integrin αIIbβ3 (JON/A) and P-selectin (CD62P). We observed no difference 

in the ability of CRP-XL (1 µg/mL; Figure 4C) or PAR4 peptide (100 µM) to increase the surface expression of 

CD62P or active αIIbβ3 (data not shown). When whole blood was treated with PGI2 (1-100 nM) before the 

addition of PAR4 peptide (100 µM) or CRP-XL (1 µg/mL) or we observed a concentration-dependent inhibition 

of both markers in WT mice (Figure 4A-B). At 5 nM of PGI2, we observed almost complete inhibition of both 

surface markers in WT platelets. However, in AC6-KO platelets, we found that the ability of PGI2 to inhibit 

PAR4 peptide-stimulated P-selectin expression and activated αIIbβ3 were significantly impaired (Figure 4A). 

For example, at PGI2 (5 nM), we found 75±14% inhibition of P-selectin expression in WT platelets compared 

to 16±5% inhibition in AC6-KO platelets (p<0.0001). To examine another pathway of platelet activation, we 

considered procoagulant activity, here activated platelets facilitate coagulation by exposing procoagulant 

phosphatidylserine (PS) on their outer surface. In separate experiments, we assessed the inhibition of PS 

exposure by PGI2 upon CRP-XL alone and dual agonist stimulation with PAR4 peptide and CRP-XL. 

Consistent with earlier experiments, PGI2 inhibited CRP-XL-stimulated Annexin V binding to procoagulant PS 

in both AC6-KO and WT mice (Figure 4C). Dual stimulation with CRP-XL/PAR4 peptide led to increased PS 

exposure compared to CRP-XL alone, but here we observed a significant reduction in PS expression in 

response to PGI2 in WT but not AC6-KO platelets (Figure 4C). 

We next examined how the impaired cAMP signalling in AC6-KO platelets affected function. Measurement of 

static platelet adhesion showed that AC6-KO platelets adhered normally to both fibrinogen and collagen 

(Figure 4D). While it was not significantly different between WT and AC6-KO under direct comparison, the 

inhibitory actions of PGI2 were compromised in the AC6-KO mice (Figure 4D). The number of WT platelets 

adhering to fibrinogen decreased from 45.7 ± 2.6 per field of view (FoV) to 14.8 ± 5.6 per FoV in the presence 

of PGI2 (10 nM) (p<0.05), whereas AC6-KO platelets only displayed a slight reduction from 38.8 ± 6.7 per FoV 

to 28.2 ± 5.7 per FoV in the presence of PGI2 (10 nM) (Figure 4D). In contrast, platelet adhesion to collagen 

was significantly reduced in the presence of PGI2 (10 nM) in both WT and AC6-KO platelets (Figure 4D). Taken 

Jo
urn

al 
Pre-

pro
of



  AC6 mediates haemostasis and thrombosis 
 

 
 

8 

together, these data suggest that AC6 may play a role in inhibiting platelet adhesion to fibrinogen, but not to 

collagen. To examine the consequences of platelet AC6 deletion on thrombus formation under flow we 

perfused (1000s-1) whole blood from AC6-KO and WT over immobilised fibrinogen (1 mg/mL). Under these 

conditions, platelets from both AC6-KO and WT mice adhered to the fibrinogen to form a series of 

microaggregates with no differences in overall surface coverage (Figure 4E). Preincubation of the blood from 

WT mice with PGI2 (50 nM) led to a significant reduction in surface area coverage (7.1±1.5% to 3.0±1.5%, 

p=0.0005). In contrast, PGI2 did not affect platelet adherence and recruitment to fibrinogen in AC6-KO mice 

(Figure 4E & Suppl. Figure 9).  

AC6 controls haemostasis, thrombosis, and thrombus stability 

Platelet aggregation and adhesion are critical to haemostasis in vivo, and our in vitro and ex vivo observations 

suggested that AC6-KO mice could be prone to accelerated thrombus formation due to PGI2 hyposensitivity. 

To test this hypothesis, we first evaluated bleeding time using tail clip assays (Figure 5A). Here AC6-KO mice 

exhibited a significantly reduced bleeding time compared to WT mice, with bleeding time reduced from 228±91 

seconds for WT mice to 99±62 seconds for AC6-KO mice (p=0.005). Effective haemostasis is reliant upon the 

efficient formation of stable thrombi, and therefore we examined in vivo thrombus formation in response to 

ferric chloride (FeCl3)–induced injury to mesenteric arterioles using fluorescence microscopy. Following FeCl3 

treatment, we found the rate of thrombosis was accelerated in the absence of AC6 (Figure 5B and 5C) as 

evidenced by a significantly reduced occlusion time from 25.33±4.90 to 19.16±4.30 minutes (p=0.007). (Figure 

5B). Further, we found that the area of the thrombus formed post-injury was significantly bigger in AC6-KO 

mice (Figure 5D). While observing thrombosis in vivo, we noticed that the thrombi formed were less stable. To 

examine this we conducted individual kinetic analysis on thrombi by assessing sudden loss of fluorescence, a 

method we have used previously to measure embolisation [28]. Embolic events were defined as a loss in 

thrombus area greater than 15% between time points. We observed a 3.5-fold increase in the total number of 

embolic events in AC6-KO mice compared to WT mice (Figure 5E and 5F) (Welch's t-test, p=0.04), suggesting 

a reduction in thrombus stability in the AC6-deficient mice. 

Discussion: 

 

The tonic inhibition of platelets through endothelial-derived PGI2 is critical to the effective management of 

systemic haemostasis. However, our understanding of the complex signalling events that allow cAMP to 

control platelets and the contribution of key signalling nodes has remained elusive, primarily due to a lack of 

precise pharmacological and genetic tools. In this study, we generated a model to study AC6 mediated-cAMP 

signalling in platelets and show that AC6 is critical to haemostasis in mice while also highlighting potential 

redundancy in this signalling system. In our novel platelet-specific AC6-KO mouse we found that the deletion 

of the Adcy6 gene from the megakaryocyte lineage had no effect on platelet numbers and morphology but did 

reveal that (i) AC6 is linked to PGI2-induced cAMP generation and downstream PKA signalling, (ii) AC6 

generated cAMP is selectively coupled to the inhibition of PAR-mediated platelet activation, and (iii) AC6-KO 

mice have an aggressive prothrombotic phenotype that is associated with reduced bleeding times despite the 

presence of other AC isoforms. 

 

Our first key observation was that the loss of AC6 does not affect ‘basal’ cAMP generation in washed platelets 

in vitro in the absence of exogenous stimulation of the IP receptor/AC by PGI2, Consistent with other studies 
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[30, 31], this suggests that in vitro, the residual AC activity is relatively small compared to in vivo studies and 

could suggest AC5 or soluble AC9 may control unstimulated cAMP production, as suggested for other cells 

[32, 33]. In contrast, AC6-KO platelets exhibited impaired PGI2-mediated cAMP production, with both amount 

and rate of cAMP accumulation were diminished but not ablated. We confirmed that the reduced accumulation 

of cAMP was linked to synthesis rather than accelerated hydrolysis since there was no significant change in 

the expression of PDE3A and PDE2, or PDE3A activity, [15, 34, 35]. It has been well-established that platelet 

PDE3A activity is essential to maintain low equilibrium levels of cAMP and to determine a threshold for platelet 

activation [35, 36], which could account for a lack of PDE3A compensation in our AC6-KO mouse. These data 

suggest for the first time a potential redundancy between AC isoforms in platelets, and while the IP receptor is 

coupled to AC6, it must also be linked to other cAMP-generating enzymes. Mirroring the impaired cAMP 

production in the absence of AC6, there was diminished phosphorylation of established PKA substrates, VASP 

[37-41] and GSK [42]. The loss of signalling in the AC6-KO was not linked to changes in the expression of 

PKA regulatory or catalytic subunits. Furthermore, a loss of AC6 also significantly impaired adenosine-driven 

cAMP signalling as measured by VASPSer157 phosphorylation, suggesting that AC6 activity may be localised 

to multiple cAMP-generating receptors.  

 

The most relevant cell model to platelets are vascular smooth muscle cells (VSMCs), which share many 

features of cAMP signalling, including PKA isoforms and their known protein targets (VASP, IP3R1 and 

MYPT1). Among the AC isoforms expressed in VSMCs, AC3, AC5, and AC6 are the most prominent [43-47]. 

While studies have shown that AC6, in particular, is coupled to β-adrenergic receptors (βAR)-mediated 

signalling, the precise coupling of IP to specific AC isoforms requires further investigation though it is plausible 

given its regulatory role in cardiac muscle [47] and our own observations, that AC6 may be involved in IP 

signalling in VSMCs [46, 48]. In endothelial cells, ACs play a role in vascular permeability. It was found that 

prostacyclin-mediated signalling via AC6 (not AC5) contributed to a feedback loop that increases barrier 

function. Confirmed in HUVECs by adenoviral gene transfer of AC6 not AC5 led to an increase in IP receptor-

stimulated cAMP, while thrombin-stimulated increases in endothelial cell barrier function were reduced [49]. 

While beyond the scope of the current study, further investigation into the specific roles of platelet AC5, AC6 

and soluble AC9 are warranted. 

 

Interestingly, we found that cAMP-mediated phosphorylation of PDE3ASer312 [35] and PDE3A activity was 

unaffected by loss of AC6. We believe this is an important observation since it suggests for the first time that 

specific targets for PKA-mediated phosphorylation could be linked to distinct cAMP-generating systems. 

PDE3A can be phosphorylated and activated by Protein Kinase C (PKC) independently of PKA activity [50, 

51]. We have shown that in the absence of AC6, cAMP levels are reduced in response to PGI2, with impaired 

PGI2-mediated inhibition of PAR-stimulated platelet activity. It is well known that Thrombin and protease-

activated receptor peptides (SFLLRN and GYPGKF) activate PDE3A through PKC, thus increasing cAMP 

hydrolysis [35]. Our findings demonstrate that a loss of AC6 thereby tips the balance between cAMP generation 

and hydrolysis, resulting in impaired PGI2-mediated inhibition of PAR-stimulated platelet activity. The lack of a 

phenotype in response to inhibition of GPVI-meditated platelet activity by PGI2 indicates a potential role for 

novel PKC isoforms PKCδ or PKCθ, which have positive regulatory roles in PAR-stimulated responses but 

negative roles in GPVI signalling [51-54].  
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To understand the ability of AC6 to control platelet function, we focussed on studies with whole blood. Using 

phosphoflow, we were able to establish that PGI2 is active in whole blood and able to induce cAMP signalling 

in platelets, which was diminished but not abolished by the absence of AC6. We next moved through a series 

of progressively more physiological assays to pinpoint how diminished cAMP affects platelet function. Flow 

cytometry demonstrated that platelet activation was unaffected by the loss of the enzyme, which we believe is 

consistent with our observation that basal cAMP remains unaffected, as well as other studies in IP receptor-

null mice, whereby thrombosis was accelerated while platelet aggregation remained normal [30]. However, we 

did find that the ability of PGI2 to inhibit PAR-stimulated platelet activity was severely compromised, while 

GPVI-mediated activation was unaffected [55, 56]. We know that our observations demonstrate that AC6-

generated cAMP is not linked to all GPCRs since inhibition of U46619- and ADP-mediated platelet aggregation 

were also unaffected by AC6 deficiency (data not shown). The reason for this is unclear but is consistent with 

earlier studies demonstrating that early GPVI signalling is unaffected by cAMP signalling [57]. Previously, we 

demonstrated that cAMP signalling prevents thrombin-induced membrane compartmentalisation of RhoA [58]. 

This finding could explain why the PGI2 signalling defect observed in AC6-KO platelets is observed more 

prominently in PAR- and GPVI-mediated pathways. Interestingly, when we examined static platelet adhesion, 

inhibition of fibrinogen-mediated adhesion by PGI2 was compromised in AC6-KO but not in WT platelets, while 

inhibition of collagen-mediated adhesion was unchanged between the two genotypes. In many nucleated cells, 

cAMP signalling is partitioned to restrict signalling to intended targets and allows concurrent signals to drive 

specific functions [59]. We have shown previously that a similar system may exist in platelets, where anchored 

PKAI is responsible for controlling, at least in part, signalling downstream of GPIb [60]. Therefore, the inhibition 

of GPVI-mediated activation may be linked specifically to a distinct isoform of AC, potentially AC5 or AC9, 

although this would require significant further investigation to establish. Nevertheless, we did find that the loss 

of AC6 severely compromised the ability of PGI2 to inhibit in vitro thrombosis to immobilised fibrinogen, 

suggesting that the AC6 may be important in thrombosis. Indeed, we show that despite the absence of AC6 

not fully blocking cAMP synthesis and signalling, it has a profound effect on haemostasis and thrombosis in 

vivo. We found significantly reduced bleeding times in tail clip assays, which was coupled to a more aggressive 

and rapid thrombotic response to vascular injury. Interestingly, the thrombi formed in vivo in the AC6 deficient 

mice were inherently unstable, which may suggest potential problems with the speed of platelet deposition, 

fibrin generation or clot retraction. Taken together, we propose that the diminished bleeding time is related to 

accelerated thrombosis in the absence of AC6. This is likely due to a reduced downstream effect of PGI2 in 

controlling thrombosis. While it is difficult to measure platelet sensitivity to PGI2 in vivo because of the constant 

production and release by the endothelium, its short half-life and the presence of platelet PDEs, we believe 

that other pieces of evidence point to this being a probable explanation. Firstly, the reduced inhibitory effect of 

PGI2 on whole blood ex vivo thrombosis and secondly, the diminished PKA signalling events measured by 

phosphoflow in whole blood. The nature of the hyperthrombotic response is likely multifactorial including 

unchecked platelet secretion and pro-coagulant function supported by our flow cytometry findings. The 

increased generation of procoagulant platelets leads to exposure of PS on their surface to support the 

formation of both tenase and prothrombinase complexes required for thrombin and fibrin generation . Potent 

platelet activation leads to the generation of two core subpopulations that may enact distinct functional roles, 

and we have previously shown that PGI2 plays a key role in modifying these subpopulations in whole blood 

and, in particular, preventing PS exposure at the cell surface [26]. Our observation that in the absence of AC6, 

the ability of PGI2 to modulate PS in response to dual stimulation is compromised may render these platelets 
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more thrombogenic. Due to the broader nature of PF4-cre recombination beyond the megakaryocyte lineage, 

low-level PF4-cre recombination may occur in circulating leukocytes, which may lead to the excision of the 

Adcy6 gene in leukocytes [61-63]. While this may contribute to the thrombotic phenotype demonstrated in our 

AC6-KO mouse during in vivo thrombosis experiments, data regarding the expression of ACs and, in particular, 

AC6 in leukocytes is lacking [64, 65]. 

 

A general problem in studying AC biology is the lack of isoform-specific inhibitors or antibodies. This key issue 

is exemplified here where we were unable to precisely confirm the absence of AC6 through blotting and relied 

on RT-qPCR.  Nevertheless, the genetic approach has allowed us for the first time to describe functional links 

between an AC isoform and the regulation of activation by an individual agonist. Given in our hands that only 

activation through PARs is affected, it suggests that AC6-generated cAMP is not linked to general G-protein 

coupled activation but is compartmentalised. In airway smooth muscle cells, AC2 and AC6 generate distinct 

pools of cAMP, suggesting that they may regulate different cellular responses in separate compartments [44, 

66-68]. It is unclear if a similar model is present in platelets expressing AC5 and AC6, but there is evidence in 

cardiomyocytes for differential localisation [69]. This compartmentalisation occurs through the formation of 

macromolecular complexes with kinases and phosphodiesterases, coupled by A-kinase anchoring proteins 

(AKAPs).  In cardiomyocytes, AC5 forms an AKAP scaffolded complex with the AR, PKA and PDE4D3, from 

which AC6 is excluded, leading to AC5-specific actions. The role of AKAPS in platelet biology is unclear, 

although their presence is suggested by transcriptomic studies and our own work identifying the presence of 

AKAPs 7, 9,12, 13, 79, 95, 149 and moesin (Khalil and Naseem, unpublished)[23, 24]. Of potential interest is 

AKAP9, which is an AC-associated AKAP [70, 71]. Previously, we have shown that AC5/6 is localised to lipid 

raft fractions in human platelets but were unable to determine if the two isoforms were in distinct lipid-enriched 

fractions or were co-localised [72]. It is possible that the colocalization of thrombin receptors with AC6 could 

account for our observations and open the possibility that partitioned pools of cAMP downstream of individual 

AC isoforms control specific aspects of platelet function in a coordinated manner.  This may be a key area for 

understanding how cAMP and cGMP signalling pathways are coordinated to regulate platelet-driven 

haemostasis.  

 

In summary, our study provides the first direct evidence that AC6, which is expressed in both mouse and 

human platelets at similar levels, plays a primary role in regulating haemostasis and thrombosis. Despite the 

presence of AC5 and soluble AC9 and their potential role in platelet cAMP generation, AC6 may be the key 

mediator of thrombosis in mice. The potential functional redundancy between AC5, AC6 and soluble AC9 in 

controlling platelet responses to specific agonists requires further investigation.  
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Figure Legends and Tables: 

Figure 1: Confirmation of platelet-specific AC6-KO mouse. 

(A) Schematic representation of Adcy6-lox and PF4-cre constructs used in generating platelet-specific 

knockout (KO) of the Adcy6 gene. The top construct, platelet factor 4 (PF4)-Cre contains a mouse PF4 

promoter, an amino-terminal nuclear localisation sequence (NLS), a carboxy-terminal Myc epitope tag, iCre 

recombinase and a bovine growth hormone (BGH) PolyA sequence. The bottom construct is the floxed Adcy6 

gene with exons 3-12 (out of 21 exons) flanked by loxP sites and an FRT-flanked neomycin resistance gene. 

(B) mRNA expression of individual AC isoforms was analysed in washed platelets by RT-qPCR. Comparisons 

were made between WT and AC6-KO using an unpaired student’s t-test with Welch’s correction (means ± SD, 

n=3-4, **p<0.01, ns = not significant). (C) Total AC expression in washed platelets via immunoblot analysis 

with data presented as fold of gene of interest over GAPDH control. Representative blot image and 

densitometry relative to GAPDH control. Comparisons were made between WT and AC6-KO using an 

unpaired student’s t-test with Welch’s correction (means ± SD, n=4, **p<0.01). 

Figure 2: Contribution of AC6 to platelet cAMP production. 

(A) Washed platelets (2x108 platelets/mL) were treated with PGI2 in increasing concentrations or (B) over time 

at fixed (100 nM) concentration. Reactions were terminated by 2.5% Dodecyltrimeylammonium Bromide and 

intracellular cAMP generation was monitored. Data expressed as the concentration of cAMP (fmol) per 1x107 

platelets. Comparisons were made between WT and AC6-KO using two-way ANOVA with Šídák’s multiple 

comparisons test (means ± SD, n=3, ns=not significant, **p<0.01 and ****p<0.0001). (C) Total PDE3A 

expression in washed platelets via immunoblot analysis relative to GAPDH control presented as representative 

blot image and densitometry. (D) Washed platelets were treated with and without milrinone (10 µM) and 

assessed for PDE3A activity using a luciferase-based kinetic assay and comparisons were made between WT 

and AC6-KO by a two-way ANOVA with Šídák’s multiple comparisons test (means ± SD, n=3, ns = not 

significant).  

Figure 3: Contribution of AC6 to cAMP-mediated PKA phosphorylation events 

(A – C) Washed platelets (5x108 platelets/mL) were treated with increasing concentrations of (A) PGI2 (1 – 100 

nM), (B) Fsk (0.1-10 µM) or (C) 8-CPT-cAMP (1-100 µM) before lysis with Laemmli buffer and separation of 

proteins via SDS-PAGE. Phosphorylation of individual PKA substrates (VASPSer157, pVASPSer239 and GSK3β) 

was assessed via immunoblotting. Data presented as (i) representative images and (ii – iv) densitometry 

analysis relative to appropriate loading control. Comparisons were made between WT and AC6-KO by a two-

way ANOVA with Šídák’s multiple comparisons test (means ± SD, n=3-5, ns = not significant, *p<0.05, **p<0.01 

and ****p<0.0001). (D) Whole blood was treated with PGI2 (0.1 – 100 nM) phosphoVASPSer157, and 

phosphoVASPSer239 was measured by phosphoflow cytometry. The extent of phosphorylation is shown by 

representative heatmaps and data expressed as fold-over basal from median fluorescence intensity (MFI) 

(n=5). 

Figure 4: AC6 mediates inhibition of PAR4- but not CRP-XL-stimulated platelet activity.  

(A) Whole blood was treated with CRP-XL (1 µg/mL) or (B) PAR4 peptide (100 µM) in the absence or presence 

of PGI2 (1-100 nM) and incubated with fluorescently conjugated markers for platelet activation (CD62P and 
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JON/A) (n=5). (C) Whole blood was treated with CRP-XL (1 µg/mL) alone or in combination with PAR4 (100 

µM) and incubated with AnnV (platelet marker for phosphatidylserine exposure) (n=3). Data expressed as 

percentage inhibition of median fluorescence intensity (MedianFI) and percentage inhibition of mean 

fluorescence intensity (MeanFI). Comparisons were made between WT and AC6-KO by two-way ANOVA with 

with Šídák’s multiple comparisons test (means ± SD, ns = not significant, *p<0.05, ***p<0.001 and 

****p<0.0001). (D) Washed platelets (1x107 platelets/mL) were spread on fibrinogen (100 µg/mL) or collagen 

(50 µg/mL) for 30 min, washed twice with PBS to remove non-adherent platelets and then treated with PGI2 

(10 nM) for 2 min prior to fixation. Data presented as (i) representative images, (ii) average number of adhered 

platelets across eight images (FoV= 74.97 x 74.97 µm). Comparisons were made between absence and 

presence of PGI2 for each group by two-way ANOVA with Tukey’s multiple comparisons test (means ± SD, 

n=4, ns = not significant, *p<0.05, **p<0.01 and ****p<0.0001). (E) Whole blood was perfused over fibrinogen 

(1 mg/mL) coated biochips at 1000s-1 in the presence and absence of PGI2 (50 nM) for 2 minutes. Data 

presented as (i) representative images and (ii) percentage area covered. Comparisons were made between 

WT and AC6-KO using a two-way ANOVA with Šídàk’s multiple comparisons test (means ± SD, n=5, ns = not 

significant, ***p<0.001). 

Figure 5: AC6 mediates haemostasis, thrombosis, and thrombus stability ex vivo and in vivo. 

(A) To assess haemostasis, tail clip bleeding time assays were performed and compared using an unpaired 

student’s t-test with Welch’s correction (WT n=8, AC6-KO n=8, p<0.05). (B – D) In vivo thrombus formation 

following FeCl3 injury on mesenteric vessels of WT mice (n=8) was compared to AC6-KO mice (n=9). Data 

presented as (B) vessel occlusion time, (C) representative images, (D) (i) representative graph of thrombus 

area over time (D) (ii) percent thrombus area over time expressed as means ± SD per mouse from an average 

of up to 2 vessels (WT n=8, AC6-KO n=9). Mean vessel occlusion time data were compared between WT and 

AC6-KO mice using an unpaired students t-test with Welch’s correction (***p<0.001). Percentage thrombus 

size over time was compared between WT and AC6-KO mice using a two-way ANOVA with Šídàk’s multiple 

comparisons test (ns = not significant, *p<0.05, ***p<0.001 and ****p<0.0001). (E) The percentage of reduction 

in the thrombus area was calculated for each vessel. Black bars indicate a percentage reduction in thrombus 

size greater than 15%, while the red line indicates the average percentage area for WT versus AC6-KO. Data 

presented as individual injuries per group (WT n=11 vessels from 8 mice, AC6-KO n=12 vessels from 9 mice). 

(F) Total number of embolic events was compared between WT and AC6-KO using an unpaired student’s t-

test with Welch’s correction (*p<0.05). 

Jo
urn

al 
Pre-

pro
of



  AC6 mediates haemostasis and thrombosis 
 

 
 

19 

Table 1: Hematological parameters in WT and AC6-KO mice 

Parameter WT AC6-KO p-value 

WBC (109/L) 4.36 ± 1.29 4.74 ± 1.24 0.66 

RBC (1012/L) 6.36 ± 0.32 6.35 ± 0.44 0.90 

HGB (g/L) 91.40 ± 2.95 91.56 ± 4.61 0.65 

HCT (%) 30.78 ± 1.27 30.84 ± 1.75 0.96 

PLT (109/L) 402.50 ± 40.64 466.22 ± 138.00 0.50 

MPV (fL) 6.59 ± 0.16 6.66 ± 0.10 0.27 

LYMPH (%) 79.90 ± 2.07 76.00 ± 10.79 0.40 

MXD (%) 8.09 ± 1.31 9.53 ± 4.13 0.32 

NEUT (%) 12.01 ± 0.97 14.47 ± 6.95 0.46 

RBC: red blood cells; HGB: haemoglobin, HCT: haematocrit; PLT: platelets; MPV: Mean Platelet Volume; 

WBC: white blood cells; LYM: lymphocytes; NEU: neutrophils; and MXD: mixed white blood cells. 

*Data analysed by Mann–Whitney U test. WT n=10 and AC6-KO n=9. 

 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of


