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Genetic Programming-Based Model for Estimating Maximum  Pull Load of 

FRP-to-Concrete Bond Interfaces with GUI  Implementation 

Abstract 

This study presents a novel, interpretable machine learning framework for predicting the maximum 

pull load of fiber-reinforced polymer (FRP) bonded to concrete substrates. A comprehensive test 

database comprising 983 datasets was gathered from relevant existing studies. The datasets include 

key input parameters such as concrete compressive strength, bond length, width of FRP sheet, 

width of concrete block, FRP thickness, and elastic modulus of FRP sheets, with the maximum 

pull load as the output parameter. Utilizing this curated database, a symbolic regression model 

based on Genetic Programming (GP) was developed to uncover the nonlinear relationships among 

critical variables including axial stiffness of FRP, bond length, and concrete compressive strength. 

The model’s predictive performance was evaluated using standard regression metrics, achieving 

mean absolute error (MAE) and root mean square error (RMSE) values below 5 kN, mean absolute 

percentage error (MAPE) slightly above 10%, and coefficient of determination (R2) exceeding 

0.90 on both training and testing datasets. These results confirm the model’s accuracy and 

generalizability. Unlike black-box models, symbolic regression offers an explicit mathematical 

expression, ensuring transparency and interpretability for engineering applications. To facilitate 

practical deployment, a user-friendly graphical user interface (GUI) named MaxPLoad-FRP-

Concrete-GPaided-PredictionModel was developed, enabling practitioners to input key design 

parameters and obtain immediate, interpretable predictions. This tool serves as a valuable decision-

support system in structural design and quality control of FRP strengthened concrete structures. 

 

Keywords: Concrete, Fiber-reinforced polymer, Gene expression programming, and Machine 

learning technique, Pull load. 
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Graphical abstract 

 

 

1. Introduction  

Globally, some of the existing concrete structures have reached the end of their design service life. 

Besides, inappropriate maintenance, aging surface degradation, environmental action, and sudden 

increased service loads have caused concrete structures to weaken progressively. Hence, this led 

to a significant reduction in the load-carry capacity of the key structural components of 

infrastructures and subsequently resulted in safety issues. Accordingly, rehabilitation and 

retrofitting of the key structural components such as columnsbecome necessary. The application 

of fiber-reinforced polymer (FRP) has become a typical technology for strengthening and repairing 

aging and structurally deficient reinforced concrete structures [1–8]. The externally bonded 

reinforcement method is a common approach for applying FRP to strengthen and renovate 

structurally deficient reinforced concrete elements. Although FRP has many advantageous 

characteristics – such as high corrosion resistance, high durability under harsh environmental 

conditions, ease of handling, cost-effectiveness, and ease of transport, – there still exist some 

critical difficulties in the application of this technique. One of the most critical difficulties 

associated with externally bonded FRP technique is premature failure due to debonding. This may 

occur due to different debonding mechanisms between the  FRP and concrete [9]. Generally, FRP 

debonding mechanisms are related to the damage process at the interface of bonded FRP to 

concrete, which typically affects the concrete region near the FRP layer. The damage process and 

propagation are triggered by the stress concentration presence between the FRP and concrete, and 
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enhanced by the existence of concrete cracks. Also, the stiffness disparity of FRP and concrete, as 

well as localization mechanisms, significantly enhanced the FRP debonding mechanisms [10]. 

Generally, FRP debonding directly impacts the load-carrying capacity of the structure, with a 

subsequent outcome impairing the required ultimate capacity and desirable ductility of the 

structures. Typically, FRP debonding must be properly addressed for a safe structural design, to 

achieve the required nominal load-carrying capacity of the strengthened and rehabilitated 

structurally deficient reinforced concrete structures. 

To further understand the debonding mechanisms, several experimental and theoretical studies 

have been conducted resulting in diverse analytical and empirical models to assess the bond-slip 

relationships [9,11–25]. Although different experimental setups have been adopted to examine the 

bond-slip relationship, most studies concluded that the concrete compressive strength, effective 

bond length, axial stiffness of FRP material, and width of concrete block, are the major factors 

affecting the bond mechanisms between the concrete and the FRP wraps. Nevertheless, despite the 

significant and numerous studies that have been undertaken on the bond-slip relationship of FRP 

sheet to concrete, the definition of a unified approach for a safe and satisfactory structural design 

associated with the debonding of FRP from strengthened and/or retrofitted concrete structures can 

still be considered as an open issue. 

The existing developed models are based on the observations collected by various studies, hence 

making them more local to the experimental data. Also, most of the models are developed through 

conventional statistical analysis that might not consider high-level interaction or explicitly account 

for the randomness of the failure phenomenon [26]. Meanwhile, these limitations can be overcome 

through the use of machine learning techniques   that are capable of solving a wide range of 

complex engineering problems [29–40]. The techniques can develop predictive models from 

datasets, without a need for comprehensive knowledge of the primary physical mechanisms. To 

the authors’ best knowledge,  there is a dearth of studies on the use of  ML techniques to predict 

the bond strength of externally bonded FRP-to-concrete. Hence, this study aims to fill the 

knowledge and research gaps by using a gene expression model to develop a mathematical-based 

expression model for the prediction of the maximum pull load of externally bonded FRP-to-

concrete interface. 

2. Background of database development and machine learning 
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2.1 Overview of test database development 

Several factors such as the compressive strength of concrete and axial stiffness of FRP materials 

have been identified to affect the bond strength of FRP-concrete, and yet  the quantitative 

importance of such factors is unknown because debonding of FRP from strengthened concrete 

structures are typically regards as an open issue. For instance, an empirical model by Van Gemert 

[22] indicated that the width of FRP sheet, bond length, and tensile strength of concrete are the 

major factors affecting the bond strength, Yoshizawa and Wu [23] and Tanaka [41] stated that 

width of FRP sheet and the bond length are the main factors affecting the bond strength, while a 

group of authors [9,13,19,20] highlighted that axial stiffness of FRP, the width of FRP sheet, the 

width of concrete block, bond length, effective length, and compressive strength of concrete are 

the main factor affecting the bond strength of FRP-interface.  Owing to the variations in the factors 

identified, analyzing the bond strength of FRP-to-concrete through ML techniques becomes 

attractive because these techniques are primarily established to  handle variations in multiple 

parameters and solve complex real-world scenarios. As using these techniques to assess a 

phenomenon – in this study,  pull load of FRP-concrete – requires the availability of a well-

prepared database, thus a compressive review of the existing literature was carried out to locate 

bond strength test reports. 

Typically, performing a bond-strength data-driven analysis is quite different from the conventional 

analysis approach. The bond strength of FRP-to-concrete can be evaluated through ML techniques 

that analyze bond-slip observations to arrive at an understanding of this phenomenon. The 

rationale behind adopting these techniques to examine the bond strength of FRP-concrete stems 

from the following hypothesis: (i) if bond-slip observations are collected from bond-slip tests, is 

it possible to apply ML technique to analyze the test observations to have a better understanding 

of bond strength of FRP-to-concrete, or (ii) at least to identify the key factors that influence the 

bond-slip relationship. 

2.2 Machine learning 

Machine learning (ML) is a computational method that receives and processes information to reach 

a suitable representation that best illustrates the circumstances embodied in the dataset. Typically, 

ML mimics a human-like reasoning process to solve complex problems that may not be properly 

explained using conventional methods or require advanced computing software [42]. Existing 
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studies highlighted the successful application of contemporary ML techniques in civil engineering 

[43–46] and infrastructural management [47–49]. Typically, ML techniques provide four 

significant insights about a complex phenomenon (Fig. 1). These are i) descriptive insight – what 

happens between the data; ii) diagnostic insight – why did it happen; iii) predictive insight – what 

is likely to happen in the future because of the current observation; and iv) prescriptive insight – 

what is the best course of action. Irrespective of the type of insights to be provided, ML techniques 

often use evolutionary algorithms to learn the hidden pattern in the random points by conducting 

systematic analysis. Once a pattern is learned, the pattern becomes the benchmark in solving the 

scenario at hand via training and an adaptive learning process [42]. Hence, making the technique 

appropriate for a large dataset with a non-linear relationship between the variables and expected 

output, which is a typical relationship that occurs between the bond strength of FRP-concrete and 

input variables – axial stiffness of FRP, the width of FRP sheet, the width of concrete block, bond 

length, effective length, and compressive strength of concrete. 

 
Fig. 1. Representation of insights provided by ML technique 

Specifically, the ML technique in this study primarily uses gene expression programming (GEP), 

as a tool to derive a mathematical expression. GEP is a supervised ML technique mirroring 

biological evolution and human genetics based on the principles of Darwinian evolution for 

learning the hidden relations between several factors. This technique leverages genetic algorithms 

and genetic programming and advances their shortcomings [50,51] Usually, this ML technique 

performs symbolic regression using GEP operators to develop the mathematical function by 

programming chromosomes that are then conveyed as expression trees. By using bilingual and 

conclusive languages – known as Karva language – the genes in chromosomes are translated into 

head and tail accordingly. The genes are symbolized by functions, constants, and variables. The 

functions can be basic arithmetic, trigonometric, and/or any other mathematical operators (such as 

^, exp, etc.). Meanwhile, the tail consists of numerical constants and/or variables – which are the 

input parameters of the scenario under consideration. The ML analysis is initialized with a random 
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population of chromosomes and arrives at a solution. This solution is considered appropriate once 

a solution fulfills fitness criteria like correlation coefficients, mean absolute error, etc. 

With the hope of bridging the knowledge and research gaps, this study presents a data-driven 

model that takes advantage of the ML learning technique to learn what happens between the dataset 

(i.e., descriptive analysis) to arrive at what is likely to happen based on the input information (i.e., 

predictive analysis) as well as prescriptive analysis – that is to determine which variable is the best 

course of action. This study develops a GEP-based mathematical expression suitable for 

independently evaluating and predicting the bond strength of FRP-to-concrete. 

3. Research methodology 

This section presents the proposed research procedure for building the dataset that will be used for 

a data-driven mathematical expression model for the bond strength of FRP-to-concrete. The 

research methodology consists of three main stages. Stage one – data aggregation – discusses the 

process of data collection from the existing related literature. The criteria for including test results 

were highlighted in this section. Subsequently, the aggregated data was analyzed in the second 

stage – data processing. Lastly, the third stage of the methodology is the development of a 

mathematical expression/model capable of uncovering the pattern hidden within the aggregated 

data for the prediction of the maximum pull load for the externally bonded FRP-to-concrete.  Fig. 

(2) illustrates the general overview of the proposed research methodology adopted in this study. 

 
Fig. 2. Framework of the proposed methodology 

3.1 Data aggregation and processing 

The literature survey focuses on collecting test results on materials properties, sectional geometric, 

and compressive strength of concrete. The developed database compiled 990 data on bond-slip 

tests of FRP-concrete, all of which were conducted using different FRP materials and axial 
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stiffness and spanned the period between 1999 and 2020. Due to variation in the researchers’ 

backgrounds and norms of reporting test observations, some studies did not report certain 

information, and thus only 983 data points were appropriate for analysis. Inclusion of a test result 

into the database was based on the following criteria: (1) the FRP sheets were formed using the 

manual wet lay-up process; (2) No internal steel reinforcement was present (i.e., the specimen was 

made of plain concrete; and (3) the specimen was tested under pull-off tests, as illustrated in Fig. 

3. 

 
Fig. 3. Typical pull-off test setup 

The collected data on the bond-slip tests covered 8 independent parameters: type of FRP sheets; 

strength of concrete 
cof , bond length L , the width of the FRP sheet fb , width of concrete block 

cb , the elastic modulus of the FRP sheet fE , the thickness of the FRP sheet ft , and maximum pull 

load, 
uP . For convenience, the outline of the complied database is provided in Table 1. This 

database is compiled from the existing studies [12,20,52–78]. Full details and more information 

can be found in their respective references.  
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Table 1. Outline of the database used in the model 1 

Reference 
Number 

of tests 

Type of 

FRP sheets cof  (MPa) L (mm) fb (mm) 
cb (mm) 

fE (GPa) ft  (mm) 
uP  (kN) 

Bizindavyi and Neale [62] 4 C, G 42.5 160–320 25.4 150 29.2–75.7 0.33–2.00 8.5–21.4 

Nakaba et al. [72] 36 A, S, HS 23.8–57.8 300 50 100 124.1–425.1 0.165–0.193 9.35–25.63 

Dai et al. [73] 26 A, C, G 33.1–35.0 210–330 100 150 74–230 0.11–0.381 15.6–64.8 

Yao et al. [74] 72 C, G 18.9–27.1 75–240 15–100 100–150 22.5, 256 0.165, 1.27 3.81–19.07 

Dai et al. [12] 26 A, C, G 35 330 100 400 74–230 0.11–1.14 13.5–60.9 

Toutanji et al. [75] 12 C 17–61.5 100 50 200 110 0.495–0.99 7.56–19.03 

Ko and Sato [76] 54 A, C, P 31.4 300 50 100 35–261 0.167–0.706 8.24–31.16 

Hosseini and Mostofinejad [77] 9 C 44.2–46 100 48 150 238 0.131 9.32–11.83 

Bilotta et al. [78] 18 C 21.46–26.00 50–400 50–100 150 230.0–241.0 0.166 16.85–24.96 

Shi et al. [52] 27 B 44.6 200 50 100 81.5 0.156 15.01–20.9 

Wu and Jiang [20] 65 C 25.3–59.02 30–400 50 150 238.1–248.3 0.167–0.501 7.38–30.15 

Wu and Liu [53] 4 C 57.6 600 50 250 242 1.169 38.7–58.6 

Zhou et al. [54] 12 C, G 56.1 300 50 100 79.96–243.74 0.167–0.17 13.44–18.32 

Al-Allaf et al. [55] 55 C 40 100–200 50–150 200 240 0.118–0.236 0.47–29.69 

Irshidat and Al-Saleh [56] 10 C, G 30 50–100 50–100 150 73–230 1 9.12–30 

Shrestha et al. [57] 6 C 29.5 200 50 150 210–245 0.111–1.5 9.82–26.06 

Mostofinejad et al. [58] 84 C 20–43 150 48 150 230–238 0.130–0.260 9.71–24.83 

Sui et al. [59] 21 C 41.06 300 50 150 271.23 0.167 9.88–21.75 

Wan et al. [60] 39 C 31.2–32.6 400 50 150 231 0.167 12.43–30.19 

Yuan et al. [61] 12 B 39.87–44.24 200 50 150 73 0.12 8.27–11.44 

Gao et al. [63] 7 H 59 730–1230 50 150–250 250 0.167 21–82 

Moghaddas et al. [64] 94 C, G 22.68–48.28 200 30–60 150 76–230 0.11–0.34 3.90–20.76 

Moghaddas and Mostofinejad [65] 136 C, G 22.70–48.20 200 30–60 150 76.0–230.0 0.11–0.34 4.76–25.49 

Moshiri et al. [66] 10 C 38 240 50 150 165 1.4 25.29–77.73 

Mostofinejad et al. [67] 52 C 23–35 200 50 150 230 0.166 10.2–14.98 

Wei et al. [68] 12 B 30 210 100 100 84 0.167–0.501 17.6–25.4 

Yuan et al. [69]  8 B 39.68 250 40 150 71–191 0.12–0.647 4.61–17.54 

Li et al. [70] 62 C 24.32–48.48 200 35 100 251.49 0.167 6.63–24.32 

Wang et al. [71] 10 C, B 30.5 150 50 100 91.0–231.0 0.111–0.167 13.76–36.63 

Total 983  17.0–61.5 30–1230 15–150 100–400 22.5–425.1 0.11–2.00 0.47–230.4 

Type of FRP sheets: A=Aramid, B=Basalt, C=Carbon, G=Glass, H=Hybrid, HS=High stiffness, and P=Polyacetal. 2 

 3 
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3.2 Normalization and evaluation metrics 

The aggregated data in this study have different units of measurement that can lead to overfitting 

of a data-driven model. Existing studies stated that such datasets should be normalized to eliminate 

the effect of overfitting, [32,40]. Therefore, the aggregated data presented in Table 1 were 

normalized within the range of 0 and 1 using Eq. (1) 

 max min min
min

max min

( )( )

( )
nm

n n x x
x n

x x

− −
= +

−
 (1) 

where nmx  is the normalized model parameter, minx  and maxx  are the minimum and maximum 

values of the actual model parameter 𝑥, minn  and maxn  are the minimum and maximum values of 

the required normalization range. 

To evaluate the performance of the proposed data-driven model, average value AV and integral 

absolute error IAE, as presented in Eqs. (2) and (3) were used as the error metrics and fitness 

indicators were adopted. The fitness indicators measure the degree of fitness of the predicted value 

to the aggregated data [6,79–81]. 
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where 
ivP  is the predicted values, 

idA  is the aggregated data and N is the number of datasets. 

3.3 Development of data-driven model using gene expression programming 

The proposed data-driven model learns the pattern hidden between six input variables - cof , L , 

fb , 
cb , fE , and ft  - and output variable uP . The model development was performed in the 

GeneXproTools 5.0 software [82]. The variables were randomly gathered such that no specific 

aggregated data point was considered as a reference point. The data were separated into training 

and testing phases at the proportion of 70% and 30% of the aggregated dataset, respectively. Based 

on the existing studies and several test runs, the model fitting parameters were decided. The 

prediction model for the maximum pull load is encoded for solution and error metrics fitness 
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functions are specified. The ML technique arbitrarily creates chromosomes and converts the 

chromosomes into expression trees. Thereafter, the error metrics fitness criteria for the solution 

are determined. If the error metrics fitness is sufficiently good, a solution is deemed appropriate.  

Hence, the analysis stops, and a typical prediction is obtained. Otherwise, the chromosomes are 

reproduced using roulette-wheel sampling and then converted to obtain a new generation 

[51,83,84]. Fig. (4) presents the closed-loop procedure for the development of the data-driven 

mathematical expression model. 

 
Fig. 4. Closed-loop procedure for the data-driven expression model 

4. Results and discussion  

4.1 Graphical illustration of the aggregated data 

The distributions of the test database for the input parameters are shown in Fig. (5). The assembled 

database has 467 data points of bond length ranging from 100 – 200 mm, 211 and 170 data points 

of bond length ranging from 30 – 100 mm and 200 – 300 mm, respectively, while the remaining 

number of data points are distributed as shown in Fig. (3a). As shown in Fig. (3b), more data points 

– 397 – are concrete of 30 – 40 MPa strength followed by concrete strength of 20 – 30 MPa with 

263 data points and 40 – 50 MPa concrete strength with 218 data points. Meanwhile, the database 

comprises many data points for the concrete block with a width of 100 – 150 mm and 244 data 

points for a concrete block with a width of less than 100 mm. A larger number of assembled 

observations falls within 25 – 50 mm FRP strip width, and the elastic modulus and thickness of 
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the FRP have a substantial number of datasets within 200 – 250 GPa and 0.11 – 0.20 mm, 

respectively. 

  
(a) Bond length (b) Concrete strength 

  
(c) Width of concrete block (d) Width of FRP strips 

  
(e) Elastic modulus of FRP sheets   (f) Thickness of FRP strips 

Fig. 5. Distribution of test database 

4.2 Gene expression programming-based prediction model 

Using the closed-loop procedure given in Fig. (4), the model was developed using the function 

fitness.  Existing studies highlighted that an optimum solution is attained once the solution satisfies 
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the fitness criteria governed by error metrics [51,83,84].  After running the model with the 

maximum error metrics fitness as the ending criteria, the obtained data-driven mathematical model 

is presented in Eq. (4). 

 1 2 3 4 5 6uP y y y y y y= + + + + +  (4) 

 ( ) ( )1 0.05 118.34 101.60 fy L L t= − + −    (4a) 

 ( ) ( )1 3
2 tan 1 co co f fy L f f t E−  = − − + +

 
 (4b) 

 ( )3 3
3 tan 9.68 f f f fy L E b t b= + − −  (4c) 

 

1

4 1.13
3

f f co

f c f

E b f
y b b Lt

−

 + +  
= −   

  
 (4d) 

 ( ) ( ) ( )
1

5 tan 2 ( , ) 0.15, tanc f cy GOE A b L avg b b
−

= + +    (4e) 

 
( )

( )1

6 exp ln tan
, , 40.23

f

f

f

b
y L b

avg L b

−
 

= + − 
−  

 (4f) 

where GOE2A: if x ≥ y, then x, else y. 

By using the mathematical-based expression in Eq. (4), the predicted results are presented in Figs. 

(5) and (6). As illustrated in Fig. (5a), the predicted values and aggregated data were plotted on 

the y-axis and x-axis, respectively. The slope of the regression lines was observed as 92% and 94% 

for testing and training data respectively, which indicates a strong correlation between the 

aggregated data and predicted values by the mathematical-based expression model [85]. The 

correlation coefficient between the predicted values and aggregated data is 94.3%. Similarly, as 

presented in Fig. (5b), the average value for the model is approximately 1.0 and the integral 

absolute error of  0.09 is small, , suggesting that model's predictions are closer to the actual data. 

Existing studies highlighted that the closer the average value to 100% and the smaller the integral 

absolute error, the more accurate the model is indicating a the better overall  result[79,86,87]. 

Hence, the developed mathematical-based expression model can predict the maximum pull load 

of externally bonded FRP-to-concrete.  
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(a) Regression plot   (b) fitness indicators  

Fig. 6. Results comparison 

The matching between the results generated based on the mathematical-based expression model 

and aggregated data is illustrated in Fig. (7a). The developed model's reliability was 

unquestionably shown by a small difference between the model-predicted and aggregated values. 

A similar observation could be seen when the predicted results and aggregated data were plotted 

against the axial stiffness of FRP materials (Fig 7b). Thereby, it can be inferred that the GEP-based 

mathematical expression model is appropriate and good. 

  
(a) Predicted and aggregated values   (b) Maximum pull load against axial stiffness 

Fig. 7. Performance of the developed model 

The sensitivity analysis establishing the strength of each input parameter in the proposed models 

is conducted using the Cosine Amplitude method (CAM). This method has been used by various 
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researchers [31,38] and has been adjudged suitable for the evaluation of model sensitivity due to 

its robustness in understanding how multiple parameters simultaneously affect a system. [88].  The 

proposed CAM equation is presented in Eq. (21). 
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2 2

1 1
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where IIF is the influence of the inputs, 
in

iM  and 
out

iM  are the model inputs and output, 

respectively. The importance of the input parameters based on the sensitivity analysis is presented 

in Fig. 8. 

 
Fig. 8. Importance of the input parameters on the developed model 

The order of influence of the model parameters on the predicted Pu is L > fb > fE > ft >
cof >

cb . 

5. Conclusion 

This paper presents a gene expression programming model trained on existing data on the 

maximum bond strength of externally bonded FRP-to-concrete. A test database of 983 datasets 

was aggregated from the existing studies. The datasets comprise a wide range of strength of 

concrete, bond length, width of FRP sheet, width of concrete block, axial stiffness of FRP sheet, 

and maximum pull load. The strength of the concrete, bond length, width of FRP sheet, width of 

concrete block, and axial stiffness of FRP sheet, are the input parameters used to predict the 

maximum bond strength. The results of the current study show the potential of utilizing modern 

computing techniques in predicting the maximum bond strength and identifying the importance of 

input parameters that affect the maximum bond strength of FRP-to-concrete. The following 

significant conclusions could also be drawn from the results of this study: 
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• The slope of the regression lines for the testing and training data is above 90%, which 

resulted in a correlation between the predicted values and the aggregated data, as well as a 

small integral absolute error. 

• The performance of the developed mathematical-based expression shows an undeniably 

small disparity compared to the aggregated data and different axial stiffness of the FRP 

materials. 

• Based on the sensitivity analysis, all the input parameters have an importance of greater 

than 60%. The bond length and width significantly affect the maximum bond strength of 

FRP-to-concrete. Then followed by the elastic modulus and the thickness of the FRP 

materials. 

Include any limitation to inform recommendation for further study. 

Conflict of Interest  

The author declares no conflict of interest. 

References 

The authors would like to thank the Editor and Reviewers for their beneficial recommendations 

that helped shape this study. 

References 

[1].  Dalgic K.D., Ispir M., and Ilki A. Cyclic and monotonic compression behavior of CFRP-

jacketed damaged noncircular concrete prisms. J Compos Constr. 2016, 20(1):04015040.  

[2].  Ma G., Li H., and Wang J. Experimental Study of the Seismic Behavior of an Earthquake-

Damaged Reinforced Concrete Frame Structure Retrofitted with Basalt Fiber-Reinforced 

Polymer. J Compos Constr. 2013, 17(6):04013002.  

[3].  Lim J.C., and Ozbakkaloglu T. Lateral strain-to-axial strain relationship of confined 

concrete. J Struct Eng. 2015, 141(5):04014141.  

[4].  Wu Y.F., and Wei Y.Y. General stress-strain model for steel-and FRP-confined concrete. J 

Compos Constr. 2015, 19(4):04014069.  

[5].  Tsonos A.G. Effectiveness of CFRP-jackets and RC-jackets in post-earthquake and pre-

earthquake retrofitting of beam–column subassemblages. Eng Struct. 2008, 30(3):777–93.  



16 

[6].  Tijani I.A., Jiang C., Lim C.W., and Wu Y.F. Effect of Load Eccentricity on the Mechanical 

Response of FRP-Confined Predamaged Concrete under Compression. J Compos Constr. 

2020, 24(5):04020057.  

[7].  Tijani I.A., Wu Y.F., and Lim C.W. Effects of pre-damage on stress-strain relationship of 

partially confined concrete. ACI Struct J. 2020, 118(1):61–72.  

[8].  Tijani I.A., Jiang C., Lim C.W., and Wu Y.-F. Eccentrically Loaded Concrete under 

Nonuniform Passive Confinement. J Struct Eng. 2022, 148(1).  

[9].  Chen J.F., and Teng J.G. Anchorage Strength Models for FRP and Steel Plates Bonded to 

Concrete. J Struct Eng. 2001, 127(7):784–91.  

[10].  Monaldo E., Nerilli F., and Vairo G. Effectiveness of some technical standards for 

debonding analysis in FRP-concrete systems. Compos Part B Eng. 2019, 160:254–67.  

[11].  Savoia M., Ferracuti B., and Mazzotti C. Non linear bond-slip law for FRP-concrete 

interface. In: Fibre-Reinforced Polymer Reinforcement for Concrete Structures. World 

Scientific Publishing Company; 2003. p. 163–72.  

[12].  Dai J., Ueda T., and Sato Y. Development of the Nonlinear Bond Stress–Slip Model of 

Fiber Reinforced Plastics Sheet–Concrete Interfaces with a Simple Method. J Compos 

Constr. 2005, 9(1):52–62.  

[13].  Wu Z., Islam S.M., and Said H. A Three-Parameter Bond Strength Model for FRP—

Concrete Interface. J Reinf Plast Compos. 2009, 28(19):2309–23.  

[14].  Wu Y.F., and He L. Width effect of interfacial bond characteristics. Constr Build Mater. 

2019, 220:712–26.  

[15].  FIB. Externally bonded FRP reinforcement for RC structures. International Federation for 

Structural Concrete (fib). 2001.  

[16].  Arya C., Clarke J.L., Kay E.A., and O’Regan P.D. TR 55: Design guidance for stengthening 

concrete structures using fibre composite materials: a review. Eng Struct. 2002, 24(7):889–

900.  

[17].  Serbescu A., Guadagnini M., and Pilakoutas K. Standardised double-shear test for 



17 

determining bond of FRP to concrete and corresponding model development. Compos Part 

B Eng. 2013, .  

[18].  Dai J.G., and Ueda T. Local bond stress slip relations for FRP sheets-concrete interfaces. 

In: Fibre-Reinforced Polymer Reinforcement for Concrete Structures. World Scientific 

Publishing Company; 2003. p. 143–52.  

[19].  Lu X.Z., Teng J.G., Ye L.P., and Jiang J.J. Bond-slip models for FRP sheets/plates bonded 

to concrete. Eng Struct. 2005, 27(6):920–37.  

[20].  Wu Y.F., and Jiang C. Quantification of bond-slip relationship for externally bonded FRP-

to-concrete joints. J Compos Constr. 2013, 17(5):673–86.  

[21].  Pan J.L., and Wu Y.F. Analytical modeling of bond behavior between FRP plate and 

concrete. Compos Part B Eng. 2014, 61:17–25.  

[22].  Van Gemert D. Force transfer in epoxy bonded steel/concrete joints. Int J Adhes Adhes. 

1980, 1(2):67–72.  

[23].  Yoshizawa H., and Wu Z. Analysis of debonding fracture properties of CFS strengthened 

member subject to tension. Proceedings of 3rd international symposium on non-metallic 

(FRP) reinforcement for concrete structures. 1997.  

[24].  Khalifa A., Gold W.J., Nanni A., and Abdel Aziz M.I. Contribution of externally bonded 

FRP to shear capacity of RC flexural members. J Compos Constr. 1998, .  

[25].  Chaallal O., Nollet M.J., and Perraton D. Strengthening of reinforced concrete beams with 

externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure. 

Can J Civ Eng. 1998, 25(4):692–704.  

[26].  Naser M.Z. Machine learning assessment of fiber-reinforced polymer-strengthened and 

reinforced concrete members. ACI Struct J. 2020, 117(6).  

[27].  Perera R., Barchín M., Arteaga A., and Diego A. De. Prediction of the ultimate strength of 

reinforced concrete beams FRP-strengthened in shear using neural networks. Compos Part 

B Eng. 2010, 41(4).  

[28].  Tanarslan H.M., Kumanlioglu A., and Sakar G. An anticipated shear design method for 



18 

reinforced concrete beams strengthened with anchoraged carbon fiber-reinforced polymer 

by using neural network. Struct Des Tall Spec Build. 2015, 24(1).  

[29].  Fathollahi-Fard A.M., Ahmadi A., Goodarzian F., and Cheikhrouhou N. A bi-objective 

home healthcare routing and scheduling problem considering patients’ satisfaction in a 

fuzzy environment. Appl Soft Comput. 2020, 93:106385.  

[30].  Naderpour H., and Mirrashid M. Estimating the compressive strength of eco-friendly 

concrete incorporating recycled coarse aggregate using neuro-fuzzy approach. J Clean Prod. 

2020, 265:121886.  

[31].  Lawal A.I., Kwon S., Hammed O.S., and Idris M.A. Blast-induced ground vibration 

prediction in granite quarries: An application of gene expression programming, ANFIS, and 

sine cosine algorithm optimized ANN. Int J Min Sci Technol. 2021, 31(2):265–77.  

[32].  Lawal A.I., and Idris M.A. An artificial neural network-based mathematical model for the 

prediction of blast-induced ground vibrations. Int J Environ Stud. 2020, 77(2):318–34.  

[33].  Shahmansouri A.A., Yazdani M., Ghanbari S., Akbarzadeh Bengar H., Jafari A., and 

Farrokh Ghatte H. Artificial neural network model to predict the compressive strength of 

eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean 

Prod. 2021, 279:123697.  

[34].  Emamian S.A., and Eskandari-Naddaf H. Effect of porosity on predicting compressive and 

flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. 

Constr Build Mater. 2019, 218:8–27.  

[35].  Mahdinia S., Eskandari-Naddaf H., and Shadnia R. Effect of cement strength class on the 

prediction of compressive strength of cement mortar using GEP method. Constr Build 

Mater. 2019, 198:27–41.  

[36].  Sadowski Ł., Piechówka-Mielnik M., Widziszowski T., Gardynik A., and Mackiewicz S. 

Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly 

concrete screeds with high volume of waste quartz mineral dust. J Clean Prod. 2019, 

212:727–40.  

[37].  Ashrafian A., Taheri Amiri M.J., Rezaie-Balf M., Ozbakkaloglu T., and Lotfi-Omran O. 



19 

Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete 

incorporating nano silica using heuristic regression methods. Constr Build Mater. 2018, 

190:479–94.  

[38].  Lawal A.I., Aladejare A.E., Onifade M., Bada S., and Idris M.A. Predictions of elemental 

composition of coal and biomass from their proximate analyses using ANFIS, ANN and 

MLR. Int J Coal Sci Technol. 2021, 8(1):124–40.  

[39].  Lawal A.I., and Kwon S. Application of artificial intelligence in rock mechanics: An 

overview. J Rock Mech Geotech Eng. 2021, (1):248–66.  

[40].  Said K.O., Onifade M., Lawal A.I., and Githiria J.M. An Artificial Intelligence-based Model 

for the Prediction of Spontaneous Combustion Liability of Coal Based on Its Proximate 

Analysis. Combust Sci Technol. 2020, :1–18.  

[41].  T.S. Tanaka. Resisting Mechanism of Reinforced Concrete Beams with CFS as Shear 

Reinforcement. Hokkaido University, Hokkaido, Japan; 1996.  

[42].  Naser M.Z. Heuristic machine cognition to predict fire-induced spalling and fire resistance 

of concrete structures. Autom Constr. 2019, 106:102916.  

[43].  Algaifi H.A., Alqarni A.S., Alyousef R., Bakar S.A., Ibrahim M.H.W., Shahidan S., et al. 

Mathematical prediction of the compressive strength of bacterial concrete using gene 

expression programming. Ain Shams Eng J. 2021, .  

[44].  Tijani I.A., Lawal A.I., and Kwon S. Machine learning techniques for prediction of ultimate 

strain of FRP-confined concrete. Struct Eng Mech An Int＇l J. 2022, 84(1):101–11.  

[45].  Alabi S.A., Arum C., Adewuyi A.P., Arum R.C., Afolayan J.O., and Mahachi J. 

Mathematical model for prediction of compressive strength of ternary blended cement 

concrete utilizing gene expression programming. Sci African. 2023, 22.  

[46].  Tijani I.A., Lawal A.I., Ogunsola N.O., and Kwon S. Prediction of ultimate strength of FRP-

confined predamaged concrete using backward multiple regression motivated soft 

computing methods. Sci Iran. 2023, 0(0).  

[47].  Fares A., Tijani I.A., Rui Z., and Zayed T. Leak detection in real water distribution networks 



20 

based on acoustic emission and machine learning. Environ Technol. 2022, :1–17.  

[48].  Tijani I.A., Abdelmageed S., Fares A., Fan K.H., Hu Z.Y., and Zayed T. Improving the leak 

detection efficiency in water distribution networks using noise loggers. Sci Total Environ. 

2022, 821:153530.  

[49].  Liu R., Tariq S., Tijani I.A., Fares A., Bakhtawar B., Fan H., et al. Data-Driven Approaches 

for Vibroacoustic Localization of Leaks in Water Distribution Networks. Environ Process. 

2024, 11(1).  

[50].  Ferreira C. Gene expression programming: A new adaptive algorithm for solving problems. 

Complex Syst. 2011, 13(2):87–129.  

[51].  Tijani I.A., and Zayed T. Gene expression programming based mathematical modeling for 

leak detection of water distribution networks. Measurement. 2022, 188:110611.  

[52].  Shi J., Zhu H., Wu Z., Seracino R., and Wu G. Bond Behavior between Basalt Fiber–

Reinforced Polymer Sheet and Concrete Substrate under the Coupled Effects of Freeze-

Thaw Cycling and Sustained Load. J Compos Constr. 2013, 17(4):530–42.  

[53].  Wu Y.F., and Liu K. Characterization of Mechanically Enhanced FRP Bonding System. J 

Compos Constr. 2013, 17(1):34–49.  

[54].  Zhou Y., Fan Z., Du J., Sui L., and Xing F. Bond behavior of FRP-to-concrete interface 

under sulfate attack: An experimental study and modeling of bond degradation. Constr 

Build Mater. 2015, 85:9–21.  

[55].  Al-Allaf M.H., Weekes L., Augusthus-Nelson L., and Leach P. An experimental 

investigation into the bond-slip behaviour between CFRP composite and lightweight 

concrete. Constr Build Mater. 2016, 113:15–27.  

[56].  Irshidat M.R., and Al-Saleh M.H. Effect of using carbon nanotube modified epoxy on bond-

slip behavior between concrete and FRP sheets. Constr Build Mater. 2016, 105:511–8.  

[57].  Shrestha J., Zhang D., and Ueda T. Bond-Slip Models for FPR-Concrete Interfaces 

Subjected to Moisture Conditions. Int J Polym Sci. 2017, 2017.  

[58].  Mostofinejad D., Heydari Mofrad M., Hosseini A., and Heydari Mofrad H. Investigating 



21 

the effects of concrete compressive strength, CFRP thickness and groove depth on CFRP-

concrete bond strength of EBROG joints. Constr Build Mater. 2018, 189:323–37.  

[59].  Sui L., Luo M., Yu K., Xing F., Li P., Zhou Y., et al. Effect of engineered cementitious 

composite on the bond behavior between fiber-reinforced polymer and concrete. Compos 

Struct. 2018, 184:775–88.  

[60].  Wan B., Jiang C., and Wu Y.F. Effect of defects in externally bonded FRP reinforced 

concrete. Constr Build Mater. 2018, 172:63–76.  

[61].  Yuan C., Chen W., Pham T.M., and Hao H. Bond behavior between basalt fibres reinforced 

polymer sheets and steel fibres reinforced concrete. Eng Struct. 2018, 176:812–24.  

[62].  Bizindavyi L., and Neale K.W. Transfer lengths and bond strengths for composites bonded 

to concrete. J Compos Constr. 1999, .  

[63].  Gao L., Zhang F., Liu J., Lu X., and Gao H. Experimental and numerical study on the 

interfacial bonding characteristics of FRP-to-concrete joints with mechanical fastening. 

Constr Build Mater. 2019, 199:456–70.  

[64].  Moghaddas A., Mostofinejad D., and Ilia E. Empirical FRP-concrete effective bond length 

model for externally bonded reinforcement on the grooves. Compos Part B Eng. 2019, 172.  

[65].  Moghaddas A., and Mostofinejad D. Empirical FRP-Concrete Bond Strength Model for 

Externally Bonded Reinforcement on Grooves. J Compos Constr. 2019, 23(2):04018080.  

[66].  Moshiri N., Tajmir-Riahi A., Mostofinejad D., Czaderski C., and Motavalli M. 

Experimental and analytical study on CFRP strips-to-concrete bonded joints using EBROG 

method. Compos Part B Eng. 2019, 158:437–47.  

[67].  Mostofinejad D., Sanginabadi K., and Eftekhar M.R. Effects of coarse aggregate volume on 

CFRP-concrete bond strength and behavior. Constr Build Mater. 2019, 198:42–57.  

[68].  Wei M.W., Xie J.H., Zhang H., and Li J.L. Bond-slip behaviors of BFRP-to-concrete 

interfaces exposed to wet/dry cycles in chloride environment. Compos Struct. 2019, 

219:185–93.  

[69].  Yuan C., Chen W., Pham T.M., Hao H., Jian C., and Shi Y. Strain rate effect on interfacial 



22 

bond behaviour between BFRP sheets and steel fibre reinforced concrete. Compos Part B 

Eng. 2019, 174:107032.  

[70].  Li Z.X., Zhang X.., and Shi Y.. Experimental study on the dynamic bond behavior between 

CFRP and concrete under different slip rates. Eng Struct. 2020, 216.  

[71].  Wang Y.L., Guo X.Y., Shu S.Y.H., Guo Y.C., and Qin X.M. Effect of salt solution wet-dry 

cycling on the bond behavior of FRP-concrete interface. Constr Build Mater. 2020, 

254:119317.  

[72].  Nakaba K., Kanakubo T., Furuta T., and Yoshizawa H. Bond Behavior between Fiber-

Reinforced Polymer Laminates and Concrete. ACI Struct J. 2001, 98(3):1–9.  

[73].  Dai J., Sato Y., and Ueda T. Improving the load transfer and effective bond length for FRP 

composites bonded to concrete. In: Proceedings of the Japan Concrete Institute. 2002. p. 

1423–8.  

[74].  Yao J., Teng J.G., and Chen J.F. Experimental study on FRP-to-concrete bonded joints. 

Compos Part B Eng. 2005, 36(2):99–113.  

[75].  Toutanji H.A., Saxena P., Zhao L., and Ooi T. Prediction of Interfacial Bond Failure of 

FRP–Concrete Surface. J Compos Constr. 2007, 11(4):427–36.  

[76].  Ko H., and Sato Y. Bond Stress–Slip Relationship between FRP Sheet and Concrete under 

Cyclic Load. J Compos Constr. 2007, 11(4):419–26.  

[77].  Hosseini A., and Mostofinejad D. Effect of groove characteristics on CFRP-to-concrete 

bond behavior of EBROG joints: Experimental study using particle image velocimetry 

(PIV). Constr Build Mater. 2013, 49:364–73.  

[78].  Bilotta A., Ludovico M. Di, and Nigro E. FRP-to-concrete interface debonding: 

Experimental calibration of a capacity model. Compos Part B Eng. 2011, 42(6):1539–53.  

[79].  Tijani I.A., Wu Y.F., and Lim C.W. Energy balance method for modeling ultimate strain of 

fiber-reinforced polymer-repaired concrete. Struct Concr. 2020, 21(2):804–20.  

[80].  Cao Y.G., Wu Y.F., and Li X.Q. Unified model for evaluating ultimate strain of FRP 

confined concrete based on energy method. Constr Build Mater. 2016, 103,:23–35.  



23 

[81].  Arιoglu N., Girgin Z.C., and Arιoglu E. Evaluation of ratio between splitting tensile strength 

and compressive strength for concretes up to 120 MPa and its application in strength 

criterion. ACI Mater J. 2006, 103(1):18–24.  

[82].  Ferreira C. Gene expression programming: Mathematical modeling by an artificial 

intelligence. In: Studies in Computational Intelligence. 2nd ed. Springer; 2006. p. 478.  

[83].  Lawal A.I., Olajuyi S.I., Kwon S., and Onifade M. A comparative application of the 

Buckingham π (pi) theorem, white-box ANN, gene expression programming, and 

multilinear regression approaches for blast-induced ground vibration prediction. Arab J 

Geosci. 2021, 14(12):1073.  

[84].  Teodorescu L., and Sherwood D. High energy physics event selection with gene expression 

programming. Comput Phys Commun. 2008, 178(6):409–19.  

[85].  Iqbal M., Zhao Q., Zhang D., Jalal F.E., and Jamal A. Evaluation of tensile strength 

degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based 

models. Mater Struct. 2021, 54(5):190.  

[86].  Wu Y.F., and Cao Y.G. Energy balance method for modeling ultimate strain of confined 

concrete. ACI Struct J. 2017, 114(2):373–81.  

[87].  Girgin Z.C., Arioglu N., and Arioglu E. Evaluation of strength criteria for very-high-

strength concretes under triaxial compression. ACI Struct J. 2007, 104(3):278–84.  

[88].  Jong Y.H., and Lee C.I. Influence of geological conditions on the powder factor for tunnel 

blasting. Int J Rock Mech Min Sci. 2004, 41:533–8.  

 


