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Abstract

One of the largest future applications of computer vision is in the healthcare industry.
Computer vision tasks are generally implemented in diverse medical imaging scenarios,
including detecting or classifying diseases, predicting potential disease progression, an-
alyzing cancer data for advancing future research, and conducting genetic analysis for
personalized medicine. However, a critical drawback of using Computer Vision (CV)
approaches is their limited reliability and transparency. Clinicians and patients must com-
prehend the rationale behind predictions or results to ensure trust and ethical deployment
in clinical settings. This demonstrates the adoption of the idea of Explainable Computer
Vision (X-CV), which enhances vision-relative interpretability. Among various methodolo-
gies, attribution-based approaches are widely employed by researchers to explain medical
imaging outputs by identifying influential features. This article solely aims to explore how
attribution-based X-CV methods work in medical imaging, what they are good for in real-
world use, and what their main limitations are. This study evaluates X-CV techniques by
conducting a thorough review of relevant reports, peer-reviewed journals, and methodolog-
ical approaches to obtain an adequate understanding of attribution-based approaches. It
explores how these techniques tackle computational complexity issues, improve diagnostic
accuracy and aid clinical decision-making processes. This article intends to present a path
that generalizes the concept of trustworthiness towards Al-based healthcare solutions.

Keywords: attribution; XCV; artificial intelligence; explainability; medical imaging

1. Introduction

Medical imaging benefits from artificial intelligence (Al) and deep-learning technology,
which helps in diagnosis, treatment planning and prediction modeling. Through the inte-
gration of deep learning and Al into medical imaging diagnostics, the accuracy of diagnosis
has increased while the efficiency improved, leading to earlier detection and individualized
treatment approaches. Convolutional Neural Networks (CNNs) represent deep learning’s
foundation for medical image pattern extraction which exceeds traditional methods in
tumour detection and fracture and cardiovascular abnormality identification within X-rays
and MRIs and CT scans. Recent research shows that CNNs perform similarly to radiolo-
gists in two applications: breast cancer detection from mammograms [1] and pneumonia
identification from chest X-rays [2]. The implementation of Al tools in healthcare facilities
enables the automation of complex image processes and reduces radiologist fatigue, and
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speeds up [3] diagnosis through workflow optimization. The adoption of Al technology
remains challenging because data quality issues and model interpretability problems and
generalizability challenges across different patient demographics represent [4] essential
obstacles. The ongoing research and adoption of Al systems to enhance clinical decision-
making continues because of their potential benefits. Generative adversarial networks
and transformer architectures have enabled progress in solving rare disease data scarcity
problems which enhances image reconstruction techniques and noise reduction, and pro-
duces training images [5]. Artificial intelligence models show great promise in forecasting
disease development through analysis [6] of longitudinal imaging information such as
brain MRIs for Alzheimer’s disease staging. The analysis of medical imaging through Al
becomes more detailed by integrating electronic health records with multi-modal data
which enhances [7] both risk assessment and treatment effectiveness. Medical imaging Al
deployment requires strong ethical guidelines [8] that address algorithmic bias and protect
patient privacy. The complete benefits of artificial intelligence for medical imaging will
become accessible by fostering joint work between doctors and engineers and legislators
throughout the development of these technologies.

Figure 1 refers to the procedure of explanation-based vision model’s help in medical
image analysis based in the healthcare sector.

r-r——>~~>F~FF~FF~F~ "~ ~"~"~"~""~"~"~"~>"~>"~""~""~""~""~"~>"~"~"F*~""*~""~~~"~ "~~~ "~ ~~""~""~F"*~ """~~~ ~"~" ">~ ~*>"®~*~"\"~"¥~"~"¥“*“"*~"*~"*~"~"¥*¥"¥ /”"/¥V¥7/¥ /V7/V "~~~ — !
| |
I o i
| [ |
| ot |
! J_. R |
| RS |
| & I
| b 4 — 0 |
| . . |
| o |
| I
| |
} Patient End ~— Medical Evaluation Advanced Al Analysis t
| I
| |
| |
| f a ’ » I
I " V - |
! w [ ] lvw) |
} - . Vision-based {
| Explanation |
| I
| i
| I
i v i
| Precise Healthcare Medical Expert Evaluation X~CV Outcome !
! Analysis & Suggestions and Decision-making ‘K
| |
- J

Figure 1. X-CV procedure: a guide to how the XCV process works in healthcare.

The rapid adoption of artificial intelligence (Al) in medical applications has spotlighted
the “black box” nature of many deep learning models, particularly in high-stakes domains
like diagnostics and treatment planning. These models, often based on complex neural
networks, deliver impressive predictive accuracy but lack transparency in how they arrive
at decisions, raising concerns [9] about reliability and accountability. Explainability in
medical Al is critical to demystify these processes, enabling clinicians to understand the
rationale behind Al-generated recommendations, such as identifying a malignancy [10]
in a scan or predicting patient outcomes. Without interpretable outputs, there is a risk of
over-reliance on opaque systems, which could lead [11] to misdiagnosis or inappropriate
interventions. Techniques like saliency maps and feature attribution are being developed to
address this, but their effectiveness [12] in conveying meaningful insights to non-technical
users remains limited. Thus, bridging the gap between model complexity and human
comprehension is essential for safe integration into clinical workflows.

From ethical, legal, and clinical perspectives, explainable Al is not just a technical
desideratum but a prerequisite for responsible healthcare delivery. Ethically, patients and
clinicians deserve transparency to ensure informed consent and trust in Al-assisted deci-
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sions, particularly when outcomes affect life-altering treatments [13]. Legally, regulations
like the EU’s General Data Protection Regulation (GDPR) emphasize [14] the “right to
explanation,” mandating that automated decisions impacting individuals be justifiable.
Clinically, trust is paramount; physicians are less likely to adopt Al tools [15] if they cannot
scrutinize the reasoning behind recommendations, fearing liability or harm. In addition,
explainability mitigates biases [8] embedded in training data, which could otherwise per-
petuate disparities in care. For patients, transparent Al fosters confidence, reducing anxiety
about machine-driven decisions. As Al continues to permeate healthcare, prioritizing
explainability will be crucial to align technology with human-centered values.

Explainable computer vision or XCV [16] refers to the approaches and techniques to
understand the black-box models built to analyze images and videos [17]. It is a subdomain
of explainable Al or XAl which is dedicated to image and/or video analysis in terms of
explainability and legitimacy of the models. Explainable computer vision seeks to help [18]
users better understand how these systems make predictions while also allowing them
to spot and correct any potential biases or errors in the results. XCV methods are widely
spread in different vision based understandings, especially to understand how different
models behave, and predicts their outcomes and how they focus on important areas within
the image to draw their prediction.

This is a growing sector of vision research with significant applications in industries
like healthcare, where it can help practitioners better comprehend and believe the assump-
tions [19] made by computer vision systems. The field of explainable computer vision
(X-CV) recognizes attribution-based methods as key solutions [20] because they generate
vision-based explanations that connect model decisions to image regions, which proves
essential for medical imaging applications. These methods [21,22] which include saliency
maps Grad-CAM and integrated gradients show pixels or areas like tumours in MRIs or
fractures in X-rays that most affect an Al’s output while giving clinicians a visual under-
standing of model decision-making. Medical imaging requires this level of transparency
because accurate abnormality localisation determines whether Al diagnoses are correct or
incorrect while building healthcare professional trust in validating Al recommendations
against their expertise [23,24]. The spatially explicit nature of attribution-based approaches
sets them apart from non-attribution methods because they provide [25,26] rule-based
explanations and global feature importance scores that do not link predictions to image
locations. The heatmaps generated by Grad-CAM enable researchers to check if models cor-
rectly concentrate on lesions instead of irrelevant artifacts which helps both error detection
and model improvement [22]. The detailed interpretability of attribution methods provides
better results than non-attribution approaches in critical medical procedures such as can-
cer detection and intervention guidance because these methods fail to deliver sufficient
contextual information [27] for clinical decisions. The use of attribution-based explana-
tions reveals [28] potential biases through the identification of spurious correlations which
leads to fairer treatment outcomes for diverse patient populations. The implementation of
attribution-based X-CV creates a connection between Al operations and human comprehen-
sion which leads to better diagnostic confidence while meeting transparency requirements
of ethical and regulatory standards and, thus, becoming essential [25] for medical imaging
and vision-critical fields, which will be discussed thoroughly in this article.

This paper provides a comprehensive analysis of attribution-based explainable com-
puter vision (X-CV) methods in medical imaging, offering the following contributions:

1. A systematic taxonomy of X-CV methods, categorizing them into gradient-based,
perturbation-based, CAM-based, backpropagation-based, and meta-attribution ap-
proaches, with detailed technical explanations.
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2. A thorough review of their applications across radiology, dermatology, pathology
and ophthalmology, supported by real-world examples and performance metrics.

3. An in-depth evaluation of validation methods, combining human assessment, ax-
iomatic properties and quantitative metrics to assess clinical utility.

4.  Identification of key challenges, such as computational complexity and data variability,
with proposed future directions for improving fairness, standardisation and multi-
modal integration.

These contributions aim to guide researchers and clinicians in leveraging X-CV for
trustworthy Al-driven healthcare solutions.

This investigation was carried out by taking advantage of a systematic literature search
spanning databases such as ResearchGate, PubMed, IEEE Xplore, Scopus and Google
Scholar, with articles ranging from 2015 to 2025. Keywords included “explainable computer
vision,” “attribution-based XAI,” “medical imaging,” “Grad-CAM,” “Integrated Gradients,”

Va7

“LIME,” “SHAP,” and domain-specific phrases including “trust-worthy”, “clinical decision”,

” o

“radiology,” “dermatology,” “pathology,” and “ophthalmology.” Peer-reviewed papers and
preprints on attribution-based X-CV algorithms used in medical imaging, with an emphasis
on clinical relevance and performance measures, were included. Non-English studies were
excluded, as were those without empirical validity. More than one hundred studies were
examined, and 101 were chosen for in-depth analysis, resulting in a complete assessment.

This article is organised in the following manner: Section 2 discusses the detailed
attribution-based methods and their workflow based on previous research articles and
literature, Section 3 contains a summary of applications of attribution based X-CV methods
in medical imaging, critical analysis on these attribution based methods and their relativ-
ity and comparison to other XAI methods, and Section 4 concludes the discussion and
future suggestions.

2. Fundamentals of Attribution in Explainability

The goal of explainable computer vision (X-CV) approaches is to make the decision-
making process of vision-based Al models more understandable by providing insights
into their projections, especially for critical areas like medical imaging. Attribution-based
methods in computer vision based Al analysis help explain why a model makes a certain
prediction by pointing to specific parts of an image, like a tumour in an X-ray. They create
visual maps, often called heatmaps, to show which areas matter most. In industries like
healthcare, where medical professionals require precise reasons for an Al’s diagnosis to be
trusted and acted upon, these techniques are extremely beneficial. Non-attribution-based
techniques address things differently, explaining predictive choices without emphasizing
precise image locations. Rather, they can imitate the Al’s reasoning by using less compli-
cated models or examining images. These techniques are outstanding for grasping the
general justification of the neural network but might not offer the precise, directional solu-
tions required in certain scenarios. Figure 2 describes the full taxonomy of X-CV methods.

In medical imaging, attribution-based approaches are frequently used because they
are capable of showing precisely which components of an image, such as a lesion in a scan,
contributed to the classification of Al based models. This accuracy allows clinicians to
confirm findings and feel comfortable utilizing Al techniques. Although non-attribution
approaches provide insightful analysis, they could lack the particular information needed
for life-or-death choices in medicine.

2.1. Attribution-Based X-CV Methods

The X-CV methods based on attribution measure the relevance of image pixels and
regions and features to model outputs which results in heatmaps that serve as vital expla-
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nations for medical imaging diagnosis validation. The methods are divided into two cate-
gories: feature attribution methods (gradient-based, perturbation-based, and hybrid/meta-
attribution) and class activation mapping (CAM-based) methods which have different
technical mechanisms and properties for tasks such as tumour or lesion identification, as

highlighted in Algorithm 1.
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Figure 2. X-CV Taxonnomy: all categories and sub-categories of different X-CV methods.

Algorithm 1 Unified Attribution-Based X-CV Pipeline

Require: Dataset D = {(x1,y1),.-., (Xn,¥n)}
Ensure: Attribution maps {A(x1),..., A(xx)}

1: Preprocess dataset: resize images to 224 x 224 x 3
: Train or load model f (e.g., ResNet50)
: fori =1tondo

x = x;, predict class 7 = f(x)

Choose attribution method type:

Gradient-based / Perturbation / CAM / Backprop / Meta

Apply selected attribution method to x

Store result A(x)
end for
: Visualize or evaluate A(x)

R B ol

—_
o

2.1.1. Gradient-Based Methods

Gradient-based methods leverage the gradients of a model’s output with respect to its
input to highlight influential image regions, offering computationally efficient explanations.
These methods are summarised in Algorithm 2.

*  Saliency Map: Saliency maps compute [29] the absolute gradient of the model’s output
score (e.g., the likelihood of a disease class) with respect to input pixels in order to
illustrate sensitivity to pixel changes. An region impacted by pneumonia is indicated
by high gradient values on a chest X-ray, and a heatmap is produced by backpropa-
gating from the output to the input layer; areas that are brighter indicate [12] greater
effect. Their benefits include low computing cost and model-agnostic applicability,
but they suffer [9] from saturation and noise issues that may point out irrelevant
regions if gradients vanish. In medical imaging, saliency maps facilitate rapid viewing;
nevertheless, because of their complexity, they require thorough validation.

*  Vanilla Gradients: Similar to saliency maps [29], vanilla gradients [30] employ the
output’s raw gradients with respect to the input without any modifications. The way
they maintain gradient signals, which indicate whether pixel changes lead to a better
or lower output score, is where they differ. On an MRI, positive gradients could
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highlight a tumour’s core. They are straightforward but vulnerable [12,31] to noise
and lack resilience in deep networks. Their application in medical imaging, where
they are commonly employed as a foundation for more complex methods, is limited
by these issues.

Integrated Gradients: The integrated gradients function computes gradients through
input-baseline differentiation while addressing [20] gradient saturation by creating
gradients that span from baseline images to input images. The technique provides
precise micro-calcification detection in mammography images. The method shows
three main characteristics including reduced noise levels together with complete sen-
sitivity to all features and axiomatic fairness [11,20] which guarantees that output
changes match their corresponding attributions. The main disadvantage of this ap-
proach is its high computational cost which demands multiple gradient evaluations.
Medical imaging applications benefit from its precision to detect lesions and define
their borders.

Guided Backpropagation: The approach reduces [32] noise levels while improv-
ing visualisation by spreading only positive gradients through positive activations
which modifies backpropagation. A retinal scan could show microaneurysms in dia-
betic retinopathy. The modified ReLU activations during backpropagation produce
heatmaps that show better readability than standard gradients. The system produces
enhanced visual displays [9] with strong emphasis on positive elements yet it has
the potential to distort certain information and hide negative data points. Medical
imaging benefits from this method to achieve better visualisation yet requires proper
evaluation to prevent biased results.

SmoothGrad: The SmoothGrad algorithm reduces gradient-based map noise through
multiple rounds of input image noise application (e.g., Gaussian noise addition).
The CT scan would generate a continuous heat map of the lung nodule through
its application. The method works by sampling noisy inputs to calculate their gra-
dients before averaging the results [33]. The method provides better visual clarity
and robustness [31] although it increases computational cost and reduces fine de-
tails. The method improves the clinical review consistency of gradient-based medical
imaging explanations.

Algorithm 2 Gradient-Based Attribution Methods

Require: Trained model f, input image x € RF*W>3
Ensure: Saliency maps S(x)

1: Preprocess image x (resize to 224 x 224 x 3)

2: Compute model prediction § = f(x)

3: for each gradient-based method do

4
5
6:
7
8
9

10:
11:
12:
13:
14:

if method == Vanilla Gradients then

S(x) = 9f (x)

ox

else if method == Integrated Gradients then

S(x) = (x — %) x ) LEEED) gy
else if method == SmoothGrad then

Add Gaussian noise to x, average gradients over N noisy samples
else if method == Saliency Map then

S(x) = | %2
else if method == Guided Backpropagation then

Modify ReLU in backprop and compute gradients
end if

15: end for
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2.1.2. Perturbation-Based Methods

Perturbation-based methods evaluate feature importance by altering the input and

observing changes in the model’s output, offering model-agnostic explanations. These
methods are implemented through various techniques, as outlined in Algorithm 3.

Occlusion Sensitivity: This technique measures [34] the impact of obstructing each
region on the output score by sliding a patch, such as a gray square, across the image.
A decrease in the likelihood of pneumonia in an X-ray when a lung region is obscured
shows how important it is. It creates a rough heatmap by methodically altering
areas and documenting output variations. Although it is sensitive to patch size and
computationally costly, its properties include [11] intuitiveness and independence
from model internals. It aids in locating important areas in medical imaging but has
trouble with fine-grained details.

LIME for vision: By altering superpixels (image segments) and fitting a basic model
(such as linear regression) to forecast [35] the output of the original model, LIME
approximates a model’s behavior locally. It could draw attention to the uneven
border of a melanoma in a skin lesion image. The surrogate model is trained by
creating perturbed images and weighing them according to how similar they are
to the original. Flexibility and local fidelity are among its advantages; however,
superpixel segmentation is computationally demanding and may introduce errors [36].
Although LIME is less accurate than gradient-based techniques, its interpretability
helps non-experts in medical imaging.

SHAP for vision: By calculating the marginal contribution of each segment across
all possible combinations, SHAP uses Shapley values [37] from game theory to as-
sign importance to superpixels. A retinal scan may reveal hemorrhages that are the
basis for a diagnosis. It generates additive attributions by using sampling to approxi-
mate Shapley values. Although its high computational cost frequently necessitates
approximations [11], which reduce accuracy, its properties include theoretical fair-
ness, consistency, and robustness to complex interactions. Although difficult to scale,
SHAP’s thorough explanations are helpful in complex medical imaging cases.

Algorithm 3 Perturbation-Based Attribution Methods

Require: Trained model f, input image x
Ensure: Attribution map A(x)

1: Preprocess image x

2: for each perturbation method do

3:

10:
11:
12:
13:
14:
15:
16:

if method == Occlusion Sensitivity then
for each patch in x do
Occlude patch — x’
Af = f(x) - F(x!)
Update A(x) with Af
end for
else if method == LIME then
Generate N perturbed samples around x
Train local linear model g to approximate f locally
A(x) = weights from g
else if method == SHAP then
Compute Shapley values for pixel coalitions
A(x) = average marginal contribution across subsets
end if

17: end for
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2.1.3. Meta Attribution-Based Methods

Hybrid /meta-attribution methods combine perturbation and gradient approaches for

robust explanations. These methods are summarised in Algorithm 4.

RISE (Randomized Input Sampling): RISE produces importance maps through a
process where it applies random masks to images and calculates [38] weighted av-
erage output scores based on mask presence. The approach demonstrates model
independence and noise resistance yet demands significant computational resources
and generates maps at a general level. The flexible nature of RISE makes it suitable [36]
for various medical imaging tasks yet it fails to detect small features with precision.
External Perturbations: This method identifies [39] the minimal image region needed
to preserve a model’s prediction by optimizing a mask to maximize the output score.
In a CT scan, it might isolate a lung nodule’s core. It works by iteratively adjusting
the mask using gradient descent, balancing attribution sparsity and prediction fidelity.
This method differs from other ‘Perturbation” methods like occlusion sensitivity and
LIME by optimizing that mask through gradient descent to identify minimal image re-
gions critical for predictions, combining perturbation with gradient-based techniques.
Properties include high specificity and focus on critical regions, but optimisation can
be unstable [11], and it is computationally demanding. In medical imaging, it excels
at pinpointing key features for surgical planning.

Algorithm 4 Meta-Attribution Methods

Require: Model f, image x
Ensure: Attribution map A(x)
1: for method in Meta-Attribution Methods do

2:  if method == RISE then

3: Generate N random binary masks M;

4: for each M; do

5: Xi=x0OM,;

6: si = f(xi)

7: end for

8: A(x) = ¥ siM;

9: else if method == External Perturbation then
10: Modify semantic/feature-level inputs
11: Measure change in f(x), update A(x)
122 endif
13: end for

2.1.4. Class Activation Map (CAM)-Based Methods

CAM-based methods produce region-based heatmaps by leveraging convolutional

layer activations, offering robust explanations for CNNs. These methods are summarised

in Algorithm 5.

GradCAM: In order to create a heatmap, Grad-CAM calculates gradients of the target
class score [40] in relation to the feature maps of the final convolutional layer, averages
them to determine neuron weights, and then combines them with feature maps.
It could draw attention to a brain tumour in an MRI. Robustness, compatibility
with any CNN, and coarse but dependable localisation [9] are among its attributes.
Although fine details are limited by its lower resolution, its balance of clarity and
generality makes it a popular choice for medical imaging.

GradCAM++: It is an extension of Grad-CAM that improves [41] localisation for
multiple instances of a class by using higher-order gradients to weight pixels within
feature maps. GradCAM++ mapping improves heatmap accuracy by adding pixel-
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level gradient contributions. Although it is a little more complicated, its properties
include enhanced granularity and resilience to occlusions [9]. It is useful for complex
scenes, such as multifocal diseases, in medical imaging.

ScoreCAM: By using each feature map as a mask to calculate its contribution to the
output, Score-CAM substitutes [42] activation scores for gradients. It could draw
attention to classification in a mammogram without gradient noise. Feature maps are
normalized, then used as masks, and scores are aggregated. High visual quality and
gradient-free robustness are among its attributes, but it requires [7] a lot of computing
power. It is recommended for noise-sensitive tasks in medical imaging.

XGradCAM: Grad-CAM [40] is altered by XGrad-CAM to meet axiomatic require-
ments [43] such as conservation and normalizing weights to guarantee that attributions
match the output score. It guarantees balanced hemorrhage highlighting for a retinal
scan. In order to satisfy theoretical constraints, gradient weighting is modified. Fair-
ness and stability are among its attributes, and its resolution is comparable [16] to that
of Grad-CAM. It increases the credibility of explanations in medical imaging.

Algorithm 5 Class Activation Mapping-Based Methods

Require: CNN model f, input image x
Ensure: Class activation map M,
1: Preprocess image x

2: Obtain feature maps F from last convolutional layer
3: for each CAM method do

4:  if method == Grad-CAM then
5 Compute gradients 5
6: Compute weights a = GlobalAngool(g—gi)
7 M, = ReLU(Y; axFy)
8: else if method == Grad-CAM-++ then
9: Use higher-order gradients for refined ay
10:  else if method == Score-CAM then
11: Mask input using Fy, forward pass for each
12: Weight each F; by softmax scores
13:  else if method == XGrad-CAM then
14: Normalize and use absolute gradients
15 end if
16: end for

2.1.5. Backpropagation-Based Methods

Backpropagation-based methods trace gradients of the output with respect to input

pixels to highlight which regions most influence the model’s prediction. A summary of

these methods is provided in Algorithm 6.

LRP: LRP distributes output prediction scores throughout neural network layers by
following conservation rules which maintain overall relevance at each stage [44].
The method distributes each neuron’s importance through proportional values to
the neurons located above it without requiring [8] gradient calculations. In medical
imaging perspective, LRP is robust because it generates detailed spatial attributions
that support disease localisation although rule adjustment might be needed for various
design configurations.

DeepLIFT: The output variance in DeepLIFT is tracked [45] through “contribution
scores” that measure how input modifications affect each neuron’s activity relative to
its reference activation. The method maintains consistent attribution by propagating
these discrepancies from input to output while considering both positive and neg-
ative contributions. In this method, selection of baseline images requires attention
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because DeepLIFT facilitates contrastive interpretation in medical imaging which
helps distinguish normal from diseased states.

Algorithm 6 Backpropagation-Based Attribution Methods

Require: Model f, input image x
Ensure: Relevance map R(x)
1: Forward pass: § = f(x)
2: Initialize relevance: R = §
3: for each layer | from output to input do

4:  if method == LRP then
5: Redistribute R using relevance conservation rules
6: else if method == DeepLIFT then
7: Compute reference activation x
8: Attribution = Aactivation x 53Put
: - Ainput
9: endif
10: end for

These attribution-based techniques are excellent in medical imaging and allow clini-
cians to verify Al results against clinical findings [9], by offering spatially explicit and visu-
ally intuitive explanations. While hybrid approaches strike a balance between robustness
and specificity, gradient-based approaches offer speed and accuracy, perturbation-based
approaches guarantee model-agnosticism, and CAM-based approaches offer trustwor-
thy region-level insights. Although they have drawbacks such as sensitivity to model
perturbations, resolution trade-offs, and computational costs, their capacity to pinpoint
important features makes them invaluable for applications [11] such as diagnosis and
treatment planning. A comparative overview of these methods is presented in Table 1.

Table 1. Comparison of attribution-based explainable CV methods.

. Interpretability
Method Type Key Techniques Nature Characteristics
Saliency Maps, Integrated . .
Gradient-Based Gradients, SmoothGrad, Local, Post }.K?C’ Sensitive tq gradler}ts, fast,
Model-specific sometimes noisy

Guided Backpropagation

Intuitive, costly (needs

. LIME, SHAP, Occlusion Local, Post-hoc,
Perturbation-Based . . many forward passes),
Sensitivity Model-agnostic .
robust to noise
CAM.-Based Grad-CAM, Grad-CAM++, Local, Post-hoc, Highlights class-specific
Score-CAM, XGrad-CAM Model-specific (CNNs) regions, intuitive heatmaps

Backpropagation-Based

Decomposes prediction into
input relevance, rule-based
redistribution

Local, Post-hoc,

LRE, DeepLIFT Model-specific

Meta Attribution-Based RISE, External Perturbations

Randomized sampling,
useful when gradients
are unavailable

Local, Post-hoc,
Model-agnostic

2.2. Non-Attribution-Based X-CV Methods

The non-attribution-based X-CV approaches such as concept-based methods and
model analytics [25] using surrogate models explain globally or abstractly by focusing
on high level concepts or model behaviour as opposed to localizing individual image
areas. This limits their direct usefulness in medical imaging where spatial specificity is
important but increases their interpretability. Concept-based methods, such as prototypes
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and criticisms, explain models through abstractions by identifying representative image
patches (prototypes) and outliers (criticisms) to summarize behavior, as seen in cluster-
ing skin lesion patches [46] to highlight typical melanoma patterns or ambiguous cases.
In contrast, nearest neighbor explanations compare a test image (e.g., a lung CT scan)
to training examples for similarity-based predictions [47], influence functions estimate
the impact of training samples on predictions [48], and training data attribution tracks
gradient-based contributions [49] of training data. Meanwhile, complicated models are
reduced to interpretable approximations via surrogate models and model analytics. In or-
der to generate rules such as “if texture variance is high, classify as malignant” for a skin
image [50], decision trees (local surrogates) fit trees to perturbed inputs. Similarly, linear
classifiers, which act as surrogates, mimic predictions locally with coefficient-based insights,
and conceptual explanations that explain model logic in natural language, like summariz-
ing [51] a brain MRI abnormality flag. By training interpretable models on complicated
model outputs, these methods prioritize transparency and regulatory utility. However,
they compromise accuracy and lack visual localisation, which restricts their application
in clinical procedures that demand accurate, image-specific explanations [9]. However,
while non-attribution approaches are more effective in non-visual applications or high level
model audits, attribution-based methods are more appropriate for such jobs [33,52].

3. Applications in Medical Imaging

The advanced explainable field of medical image analysis depends on attribution-based
methods which provide understanding of deep learning model decision-making. Multiple
XCV techniques include gradient-based (e.g., saliency maps, integrated gradients, Smooth-
Grad), perturbation-based (e.g., LIME, SHAP, occlusion sensitivity), class-activation-based
(e.g., Grad-CAM, Grad-CAM++, Score-CAM, XGrad-CAM), backpropagation-based (e.g.,
LRP, DeepLIFT), and meta-attribution-based (e.g., RISE, external perturbation) techniques
which improve Al interpretability and user trust in healthcare applications. These meth-
ods provide visual explanations that show image regions crucial to model predictions
so they connect complex algorithms to clinical work. This article evaluates these tech-
niques through their use in particular medical imaging types and clinical operations and
demonstrates their effectiveness based on existing research findings.

3.1. Specific Medical Imaging Modalities

Various medical imaging modalities require different approaches for Al interpretabil-
ity because each modality brings distinctive obstacles and possibilities for interpretation.
The following section examines their implementation within radiology, pathology, dermatol-
ogy and ophthalmology domains through relevant examples with performance assessment.

3.1.1. Radiology (X-Rays, MRI, CT)

The medical field of radiology uses X-rays CT, and MRI to diagnose and track numer-
ous health conditions. The interpretation of deep learning models by attribution methods
has gained extensive use because these methods provide visual explanations that match
clinical expertise.

Chest X-rays and Scans: Researchers extensively employed Gradient-weighted Class
Activation Mapping (Grad-CAM) for detecting COVID-19 in chest X-rays and CT scans.
The research shows that the [53] Grad-CAM was able to demonstrate infected lung ar-
eas while reaching accuracy levels of 89.47% to 96.55% in different dataset evaluations.
The analysis generated heatmaps with intense areas that indicated infected tissues, which
improved quick diagnostic capabilities. The model robustness evaluation through occlusion
sensitivity involved systematic image region perturbations to reveal [54] essential areas for
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pneumonia detection. SHAP analysis of lung cancer detection data enabled researchers to
determine feature significance [55] which improved model transparency.

MRI: Brain imaging uses Layer-wise Relevance Propagation (LRP) and integrated
gradients to detect multiple sclerosis and brain tumours. LRP was used [56] to detect
hyperintense lesions in MRI scans for multiple sclerosis diagnosis by improving model
interpretability. Musthafa et al. [57] applied Grad-CAM with ResNet50 for brain tumour
detection, which resulted in excellent localisation precision. The application of SmoothGrad
to reduce noise in gradient-based explanations improved [58] visualisation clarity during
tumour grading processes.

CT Imaging: The CT scan application of DeepLIFT provides detailed feature attribu-
tions which detect liver tumour boundaries [12] during segmentation tasks. Score-CAM
produces [59] precise lung nodule detection heatmaps, demonstrating better specificity
than Grad-CAM.

Figures 3 and 4 demonstrate X-CV in clinical settings by visualizing model attention
using Grad-CAM and LIME, revealing critical regions in chest X-ray and CT images that
give predictions for pneumonia and COVID-19, respectively.

(a) Original Chest X-ray (b) Gard-Cam XAl Results (c) LIME superpixels (d) LIME XAl Results

with Pneumonia

(h) LIME XAl Results

(e) Original Chest X-ray (f) Gard-Cam XAl Results (g) LIME superpixels
without Pneumonia

Figure 3. XCV visualisations (Grad-CAM and LIME) for pneumonia detection [60] in chest X-rays.
v

(a) Original Chest CT (b) Gard-Cam XAl Results (c) LIME superpixels

with COVID-19

(e) Original Chest CT (f) Gard-Cam XAl Results (g) LIME superpixels (h) LIME XAl Results
without COVID-19

Figure 4. XCV visualisations (Grad-CAM and LIME) for COVID-19 detection [60] in chest CT scans.
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Table 2 demonstrates the attribution methods on radiological applications.

Table 2. Applications of attribution methods in radiology.

Modality Attribution Method Application Performance Ref.
X-ray/CT Grad-CAM COVID-19 Detection Accuracy: 89.47-96.55% [53]
X-ray/CT SHAP Lung Cancer Detection Enhanced Transparency [54]
MRI LRP Multiple Sclerosis Diagnosis High Interpretability [56]
MRI Grad-CAM Brain Tumour Detection High Accuracy [57]
CT DeepLIFT Liver Tumour Segmentation Precise Attribution [12]
CT Score-CAM Lung Nodule Detection High Specificity [59]

3.1.2. Dermatology (Dermoscopic Images)

Dermatoscopic images are critical for diagnosing skin conditions, particularly skin
cancer, where accurate classification is essential due to lesion variability. Attribution
methods provide visual explanations aligned with dermatologists’ criteria.

Skin Cancer Diagnosis: Grad-CAM has been used to explain deep learning mod-
els for basal cell carcinoma (BCC) diagnosis. Matas et al. [61] reported a 90% accuracy
rate, with Grad-CAM heatmaps highlighting irregular borders and colour variations. Re-
searchers proposed a Vision Transformer-based approach [62] with Grad-CAM, improving
detection across multiple lesion types.

Melanoma Detection: To understand melanoma, researchers [63] developed an in-
terpretable model using SmoothGrad and Score-CAM, enhancing visualisation clarity for
skin cancer categorization. Using multiple datasets, a robust approach was employed [64]
using Grad-CAM to improve trust in melanoma diagnosis, with heatmaps aligning with
clinical features. XGrad-CAM was applied to refine heatmap granularity, offering improved
localisation [65] for melanoma detection.

Figure 5 shows explanation results [66] on ISIC and HAM10000 samples using Grad-
CAM, LIME, and occlusion sensitivity to highlight key regions influencing the Xception
model’s skin cancer predictions.

ISIC Data sample

. 0

“
|
i
\
|
|
L a4

Figure 5. XCV visualisations [66] on ISIC and HAM10000 datasets for skin cancer classification using
Grad-CAM, LIME, and occlusion sensitivity.
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Table 3 demonstrates the attribution methods on dermatological applications.
Table 3. Applications of attribution methods in dermatology.

Modality Attribution Method Application Performance Ref.
Dermatoscopic Grad-CAM BCC Diagnosis Accuracy: 90% [61]
Dermatoscopic Grad-CAM Skin Lesion Classification Improved Detection [62]
Dermatoscopic  SmoothGrad, Score-CAM  Skin Cancer Categorisation =~ High Interpretability [63,64]
Dermatoscopic XGrad-CAM Melanoma Detection Improved Localisation [65]

Image Patch

3.1.3. Pathology (Histopathology Images)

Histopathology images, characterized by high resolution and complex cellular struc-
tures, are essential for cancer diagnosis. Attribution methods enhance model interpretability
by localizing pathological features.

Breast Cancer Classification: Grad-CAM has been pivotal in histopathology for breast
cancer classification. DALAResNet50 with Dynamic Threshold Grad-CAM (DT Grad-CAM)
was introduced by Ulyanin [67], achieving accuracies between 94.3% and 98.7% across dif-
ferent magnifications. Through adaptive thresholding, DT Grad-CAM improved heatmap
clarity and enabled better highlighting of cancerous regions. Grad-CAM was also used [68]
within a deep mutual learning model, resulting in enhanced classification performance.

Multi-Cancer Analysis: Menon et al. employed [69] Grad-CAM to explore histological
similarities across cancers, identifying shared morphological patterns. LIME and SHAP
were applied to explain the model predictions in the survival analysis of nasopharyngeal
cancer, helping [70] identify the key characteristics that influence outcomes. Attention-
based multiple instance learning with Grad-CAM was implemented [71] to achieve robust
localisation in breast cancer histopathology. Additionally, RISE was utilized [72] to generate
randomized input sampling-based explanations, offering a complementary approach to
feature attribution.

Figure 6 shows attribution maps [73] from multiple XAI methods applied to mam-
mogram patches, highlighting image regions that influenced the deep learning model’s
predictions for breast cancer detection. Figure 7 shows Grad-CAM visualisations [50]
comparing classification and segmentation networks, illustrating how differing focus areas
can lead to inconsistent tumour predictions in histopathology tiles.

Occlusion Integrated Gradient Input x Gradient
- "
P =
- & A
LIME KernelShap Guided Guided

Backpropogation Grad-CAM

Figure 6. Attribution maps from XCV methods [73] for breast mass detection in mammogram patches.
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Figure 7. Comparison of Grad-CAMs [50] from classification and segmentation networks with
correlation metrics on tumour tiles.
Table 4 demonstrates the attribution methods on pathological applications.
Table 4. Applications of attribution methods in pathology.

Modality Attribution Method Application Performance Ref.
Histopathology Grad-CAM Breast Cancer Classification Accuracy: 94.3-98.7% [67]
Histopathology Grad-CAM Multi-Cancer Analysis Biomarker Identification [69]
Histopathology LIME, SHAP Nasopharyngeal Cancer Survival Feature Importance [70]
Histopathology RISE Breast Cancer Localisation Complementary Attribution [72]

3.1.4. Ophthalmology (OCT, Fundus Images)

Ophthalmology relies on optical coherence tomography (OCT) and fundus images
for diagnosing eye diseases like glaucoma and diabetic retinopathy. Attribution methods
highlight relevant anatomical features.

Glaucoma Detection: With the help of CAM based methods, researchers were able to
interpret glaucoma detection models in fundus images, with optic disc features such as
the cup-to-disc ratio highlighted and high sensitivity and specificity achieved [74]. Grad-
CAM combined with VGG-19 was employed for cataract detection [75], with visualisations
aligned closely with clinical findings.

Diabetic Retinopathy: Integrated gradients were applied [76] for diabetic retinopathy
detection in OCT images, allowing lesion-specific regions to be identified with high accuracy.
Grad-CAM was utilized for multi-label diabetic retinopathy classification [77], resulting
in robust performance. LIME was also used to enhance evaluation quality, providing
finer-grained explanations for retinal disease diagnosis [78], with a particular focus on
assessing diabetic retinopathy severity among patients.

Figure 8 shows heatmaps of abnormal fundus images [79] generated by unsupervised
Grad-CAM strategy, highlighting lesion regions and demonstrating the effectiveness of the
approach, even in difficult cases with subtle lesions where performance matches contrastive
learning models. Figure 9 shows contours drawn on the input fundus image based on
prediction scores [80], with green indicating reliable predictions and red for uncertain areas.
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Original Epiretinal
image Mild DR membrane

Cropped Epiretinal
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Figure 8. Heatmaps of abnormal fundus images [79] with DR and AMD lesions generated using
unsupervised Grad-CAM, including lesion annotations and evaluation metrics. Columns (i-iv) display
the original fundus images, while columns (v—viii) show their cropped counterparts. The annotated
diagnoses are as follows: (A) Mild diabetic retinopathy (D) and epiretinal membrane (O); (B) Mild
diabetic retinopathy (D) and drusen (O); (C) Mild diabetic retinopathy (D), glaucoma (G), and vitreous
degeneration (O).

Figure 9. Grad-CAM visualizations [80] on original and cropped fundus images, annotated for
various eye diseases. The top two rows depict cases with Diabetic Retinopathy (DR), while the
bottom row illustrates Age-related Macular Degeneration (AMD). Green contours indicate expert-
annotated lesion masks. Each image is accompanied by Dice Similarity Coefficient (DSC) and Area
Under the Curve (AUC) values for lesion prediction, computed at a threshold of 0.5.

Table 5 demonstrates the attribution methods on opthalmological applications.

Table 5. Applications of attribution methods in ophthalmology.

Modality  Attribution Method Application Performance Ref.
Fundus Grad-CAM Glaucoma Detection High Sensitivity and Specificity [74]
OCT Integrated Gradients Diabetic Retinopathy Detection High Accuracy [76]
Fundus Grad-CAM Cataract Detection Clinical Alignment [75]
Fundus LIME Retinal Disease Diagnosis Finer-Grained Explanations [78]

3.1.5. Comparative Analysis of Other Performance Metrics

The evaluation process involves assessing attribution methods on different medical
image types using precision, recall, and F1-score metrics along with accuracy. In the field
of radiology, Grad-CAM demonstrates a precision of 92.1% and an F1-score of 91.2% for
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the detection of COVID-19 [23]. The localisation capabilities of Grad-CAM result in supe-
rior performance compared to SHAP, which attains an Fl-score of 87.7% for lung cancer
detection [3]. The recall rate of XGrad-CAM in dermatology for melanoma detection is
93.0%, indicating its proficiency in fine-grained localisation. The F1-score for Grad-CAM in
breast cancer classification pathology applications [71] is 96.5%, whereas RISE offers com-
plementary attribution with a precision of 90.2%. The F1-score for Integrated gradients in
ophthalmology, specifically in the detection of diabetic retinopathy [77], is 92.8%. The met-
rics indicate that Grad-CAM performs effectively across various modalities, while SHAP
perturbation-based methods offer significant transparency in complex situations. Compar-
ing metrics is challenging due to variations in datasets and the absence of standardized
reporting methods, highlighting the necessity for uniform evaluation protocols.

3.2. Clinical Tasks and Applications

Several clinical applications achieve advantages from attribution approaches that
strengthen both model understanding and credibility. This paper demonstrates their
applications within disease diagnosis and classification, together with lesion detection and
segmentation and treatment response prediction and biomarker discovery.

3.2.1. Disease Diagnosis and Classification

Medical practitioners depend on attribution maps to understand disease classification
decisions, which helps them develop trust. Research [53] applied Grad-CAM to diagnose
COVID-19 and reached high accuracy levels in radiology. Ulyanin et al. [67] utilized
DT Grad-CAM to classify breast cancer samples, which produced results that matched
pathological analysis. The research by Matas et al. [61] relied on Grad-CAM for BCC
diagnosis in dermatology and Phene et al. [74] along with Ling et al. [77] applied Grad-
CAM for glaucoma and diabetic retinopathy in ophthalmology. The use of saliency maps
in tuberculosis diagnosis on chest X-rays produced better model transparency [81] by
identifying essential areas.

3.2.2. Treatment Response Prediction

Features determining treatment response predictions have been explained through
attribution methods. Deep learning was employed to forecast rectal cancer response,
with Grad-CAM potentially revealing important features (AUC: 0.95) [82]. Grad-CAM
was proposed for making predictions about breast cancer response [68,81]. Grad-CAM
was found to be useful for supporting decisions regarding skin cancer treatments [61].
Evaluation of model robustness in lung cancer treatment response prediction utilized
external perturbation [83] to generate alternative explanations.

3.2.3. Lesion Detection and Segmentation

Exceptional performance in pinpointing lesions has been demonstrated by attribution
methods. Grad-CAM was shown to be effective for brain tumour localisation in MRI,
leading [57] to improved segmentation outcomes. CAM was utilized to detect different [62]
types of skin lesions. The medical application of Grad-CAM assisted in detecting breast
cancer lesions [68]. Integrated gradients were employed [76] to identify retinal lesions in
patients with diabetic retinopathy. Hybrid methods [84] were also used to improve the
definition of lesion boundaries in histopathology images.

3.2.4. Biomarker Discovery

Attribution methods have been used to detect specific areas in images associated with
medical conditions and outcomes. Unsupervised learning was applied to detect retinal
biomarkers, while Grad-CAM was noted as promising [85] for pattern discovery. LIME and
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SHAP were employed to detect biomarkers for nasopharyngeal cancer [70]. Grad-CAM
was proposed as a potential tool for identifying [68] breast cancer biomarkers. Additionally,
RISE was used to enable the discovery of new biomarkers in histopathology images [72]
through randomized sampling-based approaches.

3.2.5. Clinical Workflow Examples

A dermatologist uses Grad-CAM to diagnose melanoma with an AI model which
received training from the ISIC dataset evaluates a dermoscopic image to show a 90%
chance of melanoma [15]. The dermatologist examines the heatmap produced by Grad-
CAM which shows irregular borders and color variations together with clinical guidelines.
The heatmap shows characteristics which match melanoma features, thus, leading to a
biopsy recommendation. The clinical workflow benefits from Al insights through this
process which strengthens diagnostic confidence and enables joint patient decisions.

The practical application of attribution maps by clinicians occurs during ICU outcome
prediction through model analysis of admission notes to forecast hospital death rates.
The combination of XAI techniques [86] including LIME and attention-based highlights
and similar patient retrieval and free-text rationales enables clinicians to see important
clinical indicators such as “intubated” or “unresponsive” that influence model predic-
tions. The explanations enable medical staff to evaluate risks and create treatment plans
and explain their findings during brief situations. The combination of similar patient
retrieval with free-text rationales enables healthcare providers to compare current cases
to past outcomes and receive human-readable justifications that match clinical relevance.
The integration of such explanations into routine clinical procedures shows promise to
enhance both practitioner confidence and trust in clinical choices made during patient care.
Representative clinical tasks and applications of attribution methods are summarised in
Table 6.

Table 6. Clinical tasks and applications of attribution methods.

Clinical Task Attribution Method Applications Outcome Ref.
COVID-19, Breast
Diagnosis and Grad-CAM, Cancer, BCC, .
Classification Saliency Map Glaucoma, High Accuracy, Trust  [1,9,15,20,23,25]
Tuberculosis
Grad-CAM, Brain Tumours, Skin

Lesion Detection and

Integrated Gradients, Lesions, Breast Cancer

Improved Localisation  [5,10,16,22,26]

Segmentation Vanilla Lesions,
Backpropagation Retinal Lesions
Treatment Grad-CAM, Rectal Cancer, Breast AUC: 0.95, [10,15,27.28]
Response Prediction ~ External Perturbation = Cancer, Skin Cancer Novel Insights e
. . Grad-CAM, LIME, Retinal Patterns, . .
Biomarker Discovery SHAP, RISE Cancer Biomarkers Potential Insights [10,12,14,29]

3.3. Validation and Evaluation of Attribution Methods

The medical imaging reliability and clinical usefulness of attribution methods must
be supported by proper validation and evaluation processes. This section discusses the
evaluation methods used for these methods which include human assessment, axiomatic
features and quantitative measurements, as well as the difficulties that arise during clinical
evaluation for better validation methods in the future [87].
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3.3.1. Human Evaluation

Human evaluation stands as the fundamental method for validating attribution
methods especially when medical imaging applications require high clinical relevance.
The method requires clinicians to view attribution maps, such as Grad-CAM heatmaps
or integrated gradients, to verify whether the highlighted sections match important clin-
ical features. The validation process for DT Grad-CAM in breast cancer classification by
Ulyanin et al. [67] utilized pathologists’ annotations to assess heatmaps resulting in both
high concordance and better trust in model decisions. Researchers [76] demonstrated dia-
betic retinopathy detection using integrated gradients while clinicians verified the clinical
importance of highlighted microaneurysms and haemorrhages.

Human evaluation faces challenges due to its intrinsic subjectivity because clinical
professionals interpret results differently depending on their experience levels and current
contexts. Medical professionals must invest significant time along with substantial effort to
conduct this evaluation process. Human evaluation stands as an essential requirement [15]
to verify that attribution methods create explanations which can be understood and used
effectively in medical practice.

3.3.2. Axiomatic Properties

In the theoretical evaluation of attribution methods, axiomatic properties play a crucial
role by defining essential characteristics [88] that these methods should uphold. Commonly
emphasized properties include Local Accuracy, which ensures that the model assigns high
importance [11,19] to features that significantly contribute to its predictions, and Missing-
ness, which states that features absent from the input should have zero attribution values.
Another critical property is Consistency, requiring that attribution values remain similar
across different models that produce the same output for the same input. These princi-
ples form the foundation [8] for assessing the reliability and interpretability of attribution
methods in XCV medical imaging analysis.

According to research [89], the mentioned properties provide fundamental bench-
marks for evaluating method quality. The fulfillment of axiomatic properties does not
ensure that a method will be clinically useful. A method fulfills all properties requirements
yet creates heatmaps which medical professionals cannot interpret making the method
impractical [28] for medical imaging use.

3.3.3. Quantitative Metrics

Quantitative metrics play a vital role in establishing measurable and objective cri-
teria [90] for evaluating attribution methods, with a particular emphasis on technical
precision, robustness, and system stability. Among the most widely used metrics is the
Deletion Metric, which measures the extent to which a model’s confidence drops when
pixels with high attribution scores are systematically removed, thereby illustrating the true
importance of highlighted regions. Complementing this, the Insertion Metric evaluates
how rapidly the model’s confidence increases when attributed pixels are progressively
inserted into an otherwise empty or neutral image, serving as a positive indicator [9] of
attribution performance. Another important metric, Sensitivity-n, focuses on analyzing
prediction outcomes based on the top-n most influential features, providing insights into
how well the attribution concentrates on the most critical parts of the input. Furthermore,
Infidelity offers a reliability check by comparing the model’s outputs with and without its
attributed features, thereby assessing the faithfulness [91] of the attribution.

Different methods had been applied [33] upon various metrics to evaluate 14 attri-
bution methods specifically by testing Grad-CAM and LIME among them. These metrics
have proven useful in medical imaging to validate attribution methods. The evaluation
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of Grad-CAM for brain tumour localisation [57] was used for deletion and insertion met-
rics [76] and similar metrics for evaluating integrated gradients in diabetic retinopathy
detection. Quantitative metrics remain objective yet their focus on technical performance
does not guarantee clinical relevance in medical imaging applications. The combination of
quantitative metrics [91] with human evaluation provides a thorough assessment method.

3.3.4. Challenges in Validation

Multiple hurdles exist when validating attribution methods in medical imaging.
The absence of definitive ground truth in medical imaging stands in contrast to gen-
eral image classification [92] because clinical experts do not agree on what constitutes
correct attribution. The establishment of validation standards becomes difficult due to
this challenge. Medical images display extensive variability in both image quality and
resolution and acquisition methods which produce inconsistent attribution results. Re-
searchers [93] stressed that reliable validation techniques must handle the high degree of
variability present in medical imaging data. The attributions need to be useful for clinical
practice while remaining consistent with established medical knowledge. According to
Rudin et al. [50], technical accuracy of explanations is not enough because they need to
guide clinical choices. The system should provide explainable attributions which clinicians
who are not Al experts can easily understand. Research by Nguyen et al. [94] showed that
accurate attribution results may not help human-AlI collaboration when they lack intuitive
understanding. The complexity of these challenges requires validation through multiple
approaches which combine technical assessment with clinical evaluation.

3.4. Future Directions

Future research must develop evaluation frameworks that bridge technical require-
ments with clinical needs. Clinically meaningful metrics should assess diagnostic accuracy
and treatment outcomes derived from attributions. Standardized validation protocols
have been proposed [93] to facilitate cross-study comparisons across imaging modalities.
Regulatory integration, particularly with FDA standards, is essential to ensure the safety
and effectiveness of AI/ML-based medical devices [26]. The FDA requires that attribution
methods like Grad-CAM and integrated gradients offer transparent, clinically interpretable
explanations. Developing standardized evaluation frameworks that align X-CV outputs
with clinical metrics, such as diagnostic accuracy and patient outcomes is necessary for
regulatory compliance. Addressing bias and fairness in attribution techniques will im-
prove healthcare outcomes for all populations, and collaboration between Al developers,
clinicians, and regulators will be key to successful integration into clinical workflows.
The validation process must be rigorous and reproducible to instill confidence in clinical
environments where decisions are critical. This includes not only quantitative measures like
sensitivity and specificity but also expert-reviewed qualitative assessments. Frameworks
must consider variability across patient demographics and imaging settings to ensure
generalisation. These evaluation standards will be the first step in turning advanced X-CV
research methods into practical tools that doctors can use in real-life situations.

Equally important is the advancement of multi-modal imaging systems that combine
modalities like MRI and CT with electronic health records to enhance attribution robustness
through richer context [95]. For example, integrating Grad-CAM heatmaps with clinical
data improves Alzheimer’s staging by linking imaging biomarkers to patient history [6].
To achieve clinical adoption, X-CV methods must evolve to effectively integrate multi-
modal data while adhering to FDA-approved validation pathways [26]. Success hinges
on establishing protocols that evaluate attribution techniques against clinical outcomes,
promote fairness-aware methods, and meet regulatory standards. Together, these efforts
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will enable the trustworthy deployment of X-CV systems in real-world healthcare settings.
Expanding multimodal X-CV also opens opportunities for improved personalisation in
diagnosis and treatment planning, allowing Al systems to factor in comprehensive health
profiles. These models can bridge gaps between radiological evidence and broader clinical
indicators like lab results, genomic data, or physician notes. However, this integration
demands new techniques in data fusion, privacy protection, and interpretability at both the
data and attribution levels.

Future prospects should develop practical decision guides that match particular clini-
cal tasks to improve X-CV technique adoption. The selection between SmoothGrad and
Grad-CAM++ depends on whether high-resolution saliency and visual clarity or fast and
robust real-time inference are needed. Integrated gradients should be used when feature
completeness and theoretical fairness are required but Score-CAM is best for tasks that
need strong visual quality without backpropagation. The SHAP method provides excel-
lent interpretability through model-agnostic explanations which are particularly useful in
multi-modal scenarios. The model-agnostic noise resistance of RISE makes it suitable for
black-box settings. LIME, on the other hand, is ideal for interdisciplinary use due to its
intuitive surrogate models. A task-specific decision guide summarising these preferences
is presented in Table 7, helping streamline tool selection in clinical workflows and connect
technical complexity to everyday clinical utility.

Table 7. Task-specific decision guide for selecting X-CV methods in medical imaging.

Clinical Requirement Recommended Method Rationale
. . . Reduces noise through input perturbation;
High-resolution saliency needed SmoothGrad highlights fine-grained anatomical features.
Fast inference or real-time settings Grad-CAM Efﬁgenjc and compatible with CNN; improves
localisation over standard rule-based explainers.
Fair and complete attributions Integrated Gradients Offers co'mpletene.ss'and. sensitivity; strong for
rigorous clinical interpretation.
Gradient-free with visual clarity Score-CAM Bypasses ?backp1.‘opagat1c?n; produces sharp,
noise-resistant saliency maps.
Model-agnostic and consistent SHAP Based on Shapley Va'lues; ensures fairness and works
across different model types.
Black-box explanation RISE Requires no model 1nter.na%s; ?ffectlve when
transparency is limited.
Simple for non-experts LIME Creates intuitive surrogate models; good for

interdisciplinary use.

4. Conclusions

Research on attribution-based explainable computer vision (X-CV) techniques in med-
ical imaging shows their ability to bridge complex Al systems with clinical applications.
The imaging modalities including radiology, pathology, dermatology and ophthalmology
benefit from techniques like Grad-CAM, LIME, SHAP and integrated gradients which
provide essential clinical functions such as disease diagnosis, lesion detection, treatment
response prediction and biomarker identification. The decision-making processes of deep
learning models become transparent through these methodologies which produce visual
explanations including heatmaps and feature significance ratings that align with clinical rea-
soning. The emphasis on key image areas through their capabilities enhances transparency
while aiding model debugging and bias detection and new clinical insights discovery which
makes them vital instruments for precision medicine.
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The full potential of attribution-based X-CV approaches remains unattainable because
several barriers need to be solved before their peak effectiveness. The application of
these methods faces methodological barriers which include hyperparameter sensitivity
and interpretation challenges as well as robustness issues that affect their trustworthiness.
Medical images with considerable variability together with limited annotated datasets
create additional challenges for their practical implementation. The evaluation process
remains a major challenge because current assessment indicators fail to measure clinical
value and unclear standards prevent broader adoption. The distortions in attributions due
to biased training data require fairness-aware frameworks to ensure equal outcomes across
different patient groups. These restrictions demonstrate the need for continuous research
to improve these approaches and establish strong validation methods.

The advanced development of attribution-based X-CV in medical imaging requires
new approaches to overcome existing barriers. Future success will depend on creating de-
pendable methods and multimodal data integration between imaging records and clinical
files and developing evaluation systems that prioritize clinical relevance. The reliability
and relevance of these methods will increase through better fairness-aware attribution
approaches and regulatory standard integration. Overcoming these obstacles will enable
attribution-based X-CV approaches to become fundamental components of Al-based health-
care systems which provide physicians with transparent and dependable and actionable
information. Their successful integration holds the potential to revolutionize medical
imaging by enabling more accurate diagnoses along with personalized treatments and
better patient results in an Al-driven clinical environment.
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