
MatchCom: Stable Matching-Based Software
Services Composition in Cloud Computing

Environments

Satish Kumar1, Renyu Yang2, Rajiv Ranjan Singh3, Rami Bahsoon4,
Jie Xu5, and Rajkumar Buyya6

1 School of Built Environment, Engineering and Computing, Leeds Beckett
University, UK

s.kumar@leedsbeckett.ac.uk
2 School of Software, Beihang University, China

renyu.yang@buaa.edu.cn
3 Department of Cyber Security and Networks, Glasgow Caledonian University, UK

rajiv.singh@gcu.ac.uk
4 School of Computer Science, University of Birmingham, UK

r.bahsoon@cs.bham.ac.uk
5 School of Computing, University of Leeds, UK

j.xu@leeds.ac.uk
6 School of Computing and Information Systems, University of Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. User preferences on throughput, latency, cost, service loca-
tion, etc. indicate specific requirements when choosing a web service from
the cloud marketplace. Service providers can also adopt preferences to
prioritize a set of end-users based on their Service Level Agreement and
service usage history. An effective matching between preferences from
both parties enables fair service marketing in the cloud marketplace. The
existing approaches are insufficient in capturing both parties’ preferences
in the service composition process. To address this limitation, we propose
MatchCom, a novel service composition approach driven by diverse pref-
erences and formulate it as the stable marriage problem. Particularly, we
present a novel fair preference ordering mechanism – in the context of a
cloud marketplace, for enabling users to specify services provider rank-
ing based on the capability they can provision, and for helping providers
select the most suitable users to be served given users’ profile. MatchCom
extends the Gale-Shapely Algorithm with a service composer algorithm
for optimising the stable service composition. We evaluate MatchCom on a
service-oriented system with 10 abstract services, each of which has 100
candidate web services. We establish through the experimental results
that MatchCom outperforms other baseline approaches and can maximize
end-user satisfaction in the composition process.

Keywords: Service Composition · Quality of Services · Stable Matching

1 Introduction

The shift of industrial IT services to cloud-based service models has made service
composition a key driving force for building on-demand service-oriented software

2 S. Kumar et al.

applications by composing multiple existing web services from the cloud mar-
ketplace [1]. However, the emergence of multiple functionally equivalent web
services with different Quality of Service (QoS) values in the cloud marketplace
can present challenges when selecting an optimal web service for composing soft-
ware applications [2]. Further, it can be challenging when multiple users express
different preferences and constraints to get the same service in the cloud mar-
ketplace. On the other hand, cloud service providers aim to maintain a positive
service reputation while maximizing service revenue [2] [3]. To achieve this, it
is important to prioritize users who have long-term business potential based on
their Service Level Agreements (SLAs), service usage or other factors. In this
context, preferences could be an effective mechanism for creating fair marketing
in the cloud marketplace. Users express their preferences on service QoS con-
straints, service location, service cost, and reputation; and service providers rank
the users based on their SLAs and service matches. However, existing research
studies [4] [5] [6] have the limitation of supporting only end-user preferences, ne-
glecting service provider’s preferences when provisioning suitable web services.

To address these challenges, we present a novel Stable Matching Based Ser-
vice Composition called MatchCom that explicitly captures the end user’s and
service provider’s preferences and optimizes the preference stability-aware ser-
vice composition. We employ Stable Marriage Problem [7] to model our service
composition approach. Our key idea is to capture the end-user’s preferences from
their SLAs. Further, we use these preferences to rank all similar functionally
equivalent web services that exhibit different QoS values. Similarly, the service
provider ranks end users based on their SLA types. Then, we apply GSA-based
MatchCom to find the stable service matches to form the composition solutions.

In a nutshell, the major contributions of this paper are 1○ we formulate the
service composition as a stable marriage problem. 2○ we model a preference
generation scheme for both end users and service providers in the global cloud
marketplace. This scheme facilitates finding stable service matches driven by
the service provider’s and end-user’s preferences over each other. 3○ we tailor a
Gale-Shapley Algorithm (GSA) and present a serviceComposer algorithm that
tends to maximize the end-user’s satisfaction in the composition process. 4○
we evaluate MatchCom on a service composition system with up to 10 abstract
services workflow, each of which has 80 to 100 candidate web services, under
different QoS values derived from the real-world WS-DREAM dataset [9].

2 Stable Matching Based Service Composition

The stable marriage problem, introduced by Gale and Shapley in 1962 [7], in-
volves matching two sets of agents, such as men and women. A crucial aspect
of this problem is the ordering of preferences, where each man and woman rank
each other in a strict order of preference and then a Gale and Shapley algorithm
exploits these preferences to generate stable matches. We leverage this approach
in our research with a particular focus on the diverse preferences-based service
compositions in the global cloud marketplace; where QoS constraints, service
budget, service region, and SLA types are considered the most preferred param-
eters for both entities to establish a strict order of preference over each other.

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 3

2.1 Preference Order Modelling

Here, we assume that there are x number of users Ui, i = (1, 2, 3, ...x) and
each user requests y number of tasks in the composite software application
Uij , j = (1, 2, 3, ...y) with z dimension service constraints (e.g., QoS, Cost, ser-
vice region/location Sloc) Uijk, k = (1, 2, 3, ...z) for choosing a web service in the
composition. On the other side, based on functional (e.g., task) and QoS require-
ments, the service providers offer m set of web services Sp, p = (1, 2, 3, ...m) in
the global cloud marketplace and each set contains n candidate web services that
are functionally equivalent to perform jth task of user Uij , Spq, q = (1, 2, 3, ...n)
and each candidate web service has l dimension QoS values Spqr, r = (1, 2, 3, ...l)
and SLAs type provisioned by cloud service providers as part of service deliv-
ery. Therefore, a matching model is defined M(U, S), where each user Ui needs
to rank all candidate web services in a set Spq for a jth task that satisfies the
service location constraint CL; otherwise, underlying candidate web service will
be discarded from the ranking process using Eq. 1.

(Spq) =

{
1 if CL = Sloc

pq

0 if otherwise
(1)

Similarly, the service provider ranks all users Ui based on their SLAs type
and service QoS values Spqr legally provisioned in the SLA [2]. Therefore, the
preference of jth task of a user Ui over the qth candidate web service Spq is
computed by aggregating the preference of each QoS constraint over QoS value
exhibited by the candidate web service or vice-versa [4]. Further, we compute
the best-case and worst-case values of each QoS objective (e.g., QoS constraint)
imposed by a user or offered by the service providers as part of their service
delivery. In the case of positive QoS (e.g., throughput) constraints criteria CQ+,
the best case indicates the expected rth QoS value of a web service must be
larger than or equal to the required constraint value of kth objective (constraint
weight) of a user Ui, otherwise expected objective value consider as the worst-
case value for the kth constraint of a user Ui [6]. However, we calculate the exact
values for the best-case and worst-case of each QoS objective required by the
users over candidate web services. Further, the best-case and worst-case values
are multiplied by +1 and -1, respectively, which shows how much the expected
value is good or bad for each required objective of the user, as shown in Eq. 2.

CQ+(Spq) =

{
Uijk

Spqr
× (−1) ifSpqr < Uijk

Spqr

Uijk
× (+1) ifSpqr ≥ Uijk

(2)

CQ−(Spq) =

{
Spqr

Uijk
× (−1) ifSpqr > Uijk

Uijk

Spqr
× (+1) ifSpqr ≤ Uijk

(3)

where k indicates the zth constraint weight for the jth task of user Ui.
Similarly, for the negative QoS (e.g., response time) constraints criteria CQ−,

best-case shows the expected objective value should be smaller than the required
objective value of a user Ui, other than shows the worst-case value. These values
are calculated using Eq. 3.

4 S. Kumar et al.

We generate ith user preference P(Uij) for the jth task over candidate web
services by computing the net ranking value using Eq. 4.

P(Uijk) = Σl
r=1CQ

+(Spqr) +Σl
r=1CQ

−(Spqr) (4)

Psla(Ui) =

ws if Ui = (sla = Silver)
wg if Ui = (sla = Gold)
wp if Ui = (sla = Platinum)

(5)

P(Spqr) = [Σz
k=1CQ

+(Uijk) +Σz
k=1CQ

−(Uijk)]× Psla(Ui) (6)

On the other hand, we consider diverse types of SLAs offered by cloud service
providers as part of web service delivery in the cloud marketplace. Suppose end-
users negotiated different types of SLAs such as silver, gold and platinum with
the cloud service providers [11]. In this respect, the cloud service provider gives
the highest priority to a user who has platinum SLA rather than gold and silver
users SLA, as shown in Eq. 5. For the sake of simplicity, in this work, we give
some weight to distinguish each SLA says silver (ws = 0.1), gold (wg = 0.3) and
platinum (wp = 0.5). The cloud service provider gives preference over the users
Ui based on their SLA types and service QoS provision documented in their
SLA. We compute the net ranking over each user service demand using Eq. 6.

2.2 Software Services Composition

After generating the preference matrices PU and PS using Eq. (4) and (6)
respectively, Algorithm 1 shows the process of applying the Gale-Shapley Algo-
rithm (GSA) to find the optimal stable match M(j, q) between the jth task of
user ui and qth web service of set sp. The preference matrices of all users PU
and service provider’s web services PS are provided as input to the algorithm
and initialize all parameters that will be used in the next phase (Lines 5-17).
From Lines 5-9, the user ui selects the most preferred qth web service from the
candidate web services set sp and form the matching M(uij , spq) if it is not
matched with other tasks of user ui in the PU list. From Lines 10-13, if a jth

task of user ui has already had the match of nth candidate web service in the
PS list but jth task prefers to qth web service in the PS list over the current
nth web service match. Then, a new optimal match M(uij , spq) is formed and
further, makes the nth web service free in the PS list of candidate web services.
However, the jth task of user ui rejects the q

th web service request in the match-
ing process if it already had the higher preference ranking web service match
than the preference ranking of qth web service (Lines 14-16). From Lines 5-17,
this process is repeated until the first task of all users ui in PU list assigned
the optimal web service from the PS list. After completing the first iteration,
the qth web service assigned to the first jth task of all users U are stored in the
array matrix C (line 19), and this step is repeated until all users’ tasks assigned
the set of optimal web services (Lines 4-19).

However, algorithm 1 produced the sets of concrete web services to form the
composition solutions for all the users requesting services in the cloud market-
place. Further, C is provided as input to algorithm 2 for performing a next-level

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 5

Algorithm 1: matchGenerator(U,PU, PS)

1 Input: The set of users U and service provider’s web services S. Users
preferences PU (∀uij ∈ PU) and candidate web services PS (∀spq ∈ PS)

2 Output: array matrix C
3 Initialization: ∀uij ∈ PU and ∀spq ∈ PS to be free, M ← ∅
4 for ∀ uij ∈ U do
5 while spq ∈ PS is free and PS ̸= ∅ do
6 uij = jth task of user ui highest ranked on qth web service of set sp to

whom qth has not proposed yet
7 if uij is free then

8 assign qth web service to jth task of ui

9 M ← M ∪ (uij , spq)

10 end

11 else if (uij prefers qth web service over previous assigned nth web
service of set sp) then

12 assign qth web service to jth task of ui

13 M ←M(uij , spq)

14 assigned nth web service to be free M ←M/(uij , spn)

15 end
16 else

17 jth task of uij rejects qth web service of set spq (and qth remain
free)

18 end

19 end
20 C ←M

21 end
22 serviceComposer(C,U)

composition process that guarantees to satisfy all constraints imposed by end-
users. In line 6, we calculate the aggregated QoS values and cost of all web
services in Ci for the user ui using QoS aggregation methods [11] and then check
whether the global constraints are satisfied or not imposed by ith user ui (line
7). If true, then form the composite service for the user ui (line 8), otherwise,
user ui rejects the composition plan and demands a new service composition
plan, such user IDs are recorded in array ud. This process is repeated until all
web service sets in C are checked (4-11). In line 13, the current users set U is
updated with users set ud who demand the new service composition plans over
the current infeasible plan. Further, algorithm 1 is invoked with updated user
set U to find the optimal set of web services for the users ud. The whole process
is repeated until users set U to get empty and then return the optimal service
compositions plans ui(cs) for all the users ui.

3 Performance Evaluation
Our experiments aim to answer the research questions – RQ1: Is MatchCom

approach more stable than the baseline approach?; RQ2: How MatchCom can
outperform other baselines including evolutionary algorithm-based approaches?;

6 S. Kumar et al.

Algorithm 2: serviceComposer(C, U)

1 Input: C and U
2 Output: service composition matrix ui(cs)
3 Initialization: ui(cs)← ∅, ud ← ∅
4 while U ̸= ∅ do
5 for ∀ ui ∈ U do
6 Cglobal ← checkQoS(ui, Ci)
7 if (Cglobal satisfy user ui constraints) then
8 ui(cs) ← Ci

9 else
10 ud ← Ci

11 end

12 end
13 U ← ud

14 matchGenerator(U)

15 end
16 return ui(cs)

RQ3:What is the running overhead of MatchCom compared to other approaches?

3.1 Experiment Setup

For experiment purposes, we employed a service composition system with 10
abstract services, which are sequentially connected to construct a service com-
position workflow [8]. Further, we deployed 100 candidate web services to per-
form each abstract service in the composition workflow. However, each candidate
web service exhibits different QoS values, which are randomly picked from the
real-world WSDream dataset [9]. Further, the service cost value and service re-
gion are generated randomly for each candidate web service participating in the
composition. Apart from that, we randomly create end-user service requirements
(number of tasks in the service, throughput, response time, service cost, and
service region), which are generally documented in the end user’s SLA.

3.2 Results and Discussion

To answer the above RQs, we examine the performance of MatchCom against
Baseline (GSA) [10] and MOEAD [11] based approaches.

RQ1: SLAs Stability of MatchCom against Baseline: To answer RQ1, we
plot the service composition plans optimized by MatchCom and GSA approaches
as shown in Fig. 1. In particular, we examine the end-users SLA constraints such
as throughput, response time and cost on whether the composed service compo-
sitions are satisfied or not. As can be seen from Fig. 1a and 1b, SLA throughput
and response time constraints are violated by the composition solutions gener-
ated by GSA approach for the end-users u4, and u6, whereas, MatchCom satisfies
all users SLA constraints. Further, an interesting insight is shown from a cost

MatchCom: Stable Matching-Based Software Serv Com in Cloud Comp Env 7

(a) Throughput (b) Response Time (c) Cost

Fig. 1: Users SLA constraints achieved by MatchCom and GSA approaches (users = 10,
workflow: number of tasks = 10, number of candidate web service for each task = 100).

(a) Throughput (b) Response Time (c) Cost (d) Running Time

Fig. 2: Throughput, Response Time, Cost and Running Time yield by MatchCom, GSA
and MOEAD approaches.

perspective as shown in Fig. 1c, GSA satisfies the QoS constraints for the end-
user u10 but fails to meet the service budget requirement. However, MatchCom
does not guarantee the higher values of QoS constraints satisfaction but satisfies
all constraints under given budget requirements.

RQ2: Performance of MatchCom: To investigate RQ2, we assess the perfor-
mance of MatchCom by comparing with baseline and evolutionary algorithm
(MOEAD) based approaches. We run all approaches 30 times and record the
best QoS value of throughput, response time and cost objectives from the opti-
mal set of service composition solutions generated in each run. As shown in the
boxplots of Fig. 2a and Fig. 2b, we see that MatchCom achieve much better QoS
values for throughput and response time objectives with small variance than
GSA and MOEAD approaches. Also, GSA obtains better QoS objectives values than
MOEAD. Further, as we can see from Fig. 2c, overall MatchCom achieves better QoS
values with less cost than GSA and MOEAD. Overall, MatchCom outperforms other
approaches in achieving a better QoS value for each objective in the composition.

RQ3: Running Time of MatchCom: To understand RQ3, we plot the running
time of all approaches as shown in Fig. 2d. As we can see MOEAD is the slowest
due to exploiting a huge search space of XN (X denotes an abstract service, and
N = 100 is the number of candidate services to perform X abstract service).
However, GSA and MatchCom take less execution time than MOEAD because they
reduce the search space by discarding all candidate web services they are unable
to satisfy the service region constraints mentioned in the end-user’s preferences
(constraints). But, MatchCom is slower than GSA because it favors maximising

8 S. Kumar et al.

the end-user satisfaction in the composition process whereas GSA does not care
to satisfy all user’s constraints, as we have shown in answering RQ1 and RQ2.

4 Conclusions

In this paper, we proposed a stable matching-based service composition approach
called MatchCom leveraging stable marriage problem. We introduced a novel bi-
lateral preference model that gives equal ownership to service providers and end
users for fairly serving and consuming services in cloud marketplace. MatchCom
service composer can generate fair preference ordering for both service providers
and end users. The GSA produces stable service matches which the built-in
service composer further uses to optimize the service composition solutions. Ex-
perimental results show that MatchCom is more effective than baseline approaches
and favors to maximize the end-user’s satisfaction in the composition.

References

1. Bi, X., Yu, D., Liu, J., Hu, Y.: A preference-based multi-objective algorithm for
optimal service composition selection in cloud manufacturing. Int. Journal of Comp.
Integ. Manuf. 33(8), 751−768 (2020)

2. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: DebtCom: Technical Debt-Aware Ser-
vice Recomposition in SaaS Cloud. IEEE Trans. on Serv. Comp. 16(4), 2545−2558
(2023)

3. Pudasaini, D., Ding, C.: Service Selection in a Cloud Marketplace: A Multi-
Perspective Solution. In: 2017 IEEE 10th International Conference on Cloud Com-
puting (Cloud), pp. 576−583 IEEE(2017)

4. Wang, H., Ma, P., Yu, Q., Yang, D., Li, J., Fei, H.: Combining quantitative con-
straints with qualitative preferences for effective non-functional properties-aware
service composition. Journal of Parallel and Dist. Comp. 100, 71−84 (2017)

5. Choi, C.R., Jeong, H.Y.: A broker-based quality evaluation system for service se-
lection according to the QoS preferences of users. Info. Sci. 77, 553−566 (2014)

6. Wang, H., Chiu, W., Wu, S.C.: QoS-driven selection of web service considering group
preference. Computer Networks 99(1), 111−124 (2015)

7. Gale D., Shapley. L. S.: College Admissions and the Stability of Marriage. The
American Math. Monthly. 69(1), 9−15 (1962)

8. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: DATESSO: Self-Adapting Ser-
vice Composition with Debt-Aware Two Levels Constraint Reasoning. In: 2020
IEEE/ACM 15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pp. 96−107 IEEE/ACM (2020)

9. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating qos of real-world web services. IEEE
trans. on serv. comp. 7(1), 32−39 (2012)

10. Li, F., Zhang, L., Liu, Y., Laili, Y.: QoS-Aware Service Composition in Cloud
Manufacturing: A Gale-Shapley Algorithm-Based Approach. IEEE Trans. on Syst.
Man and Cyber.: Syst. 50(7), 2386−2396 (2020)

11. Kumar, S., Chen, T., Bahsoon, R., Buyya, R.: Multi-Tenant Cloud Service Com-
position using Evolutionary Optimization. In: 2018 IEEE 24th International Con-
ference on Parallel and Distributed Systems (ICPADS), pp. 972−979 IEEE (2020)

