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Latent class analysis (LCA) and latent profile analysis (LPA) are powerful techniques that 

enable researchers to glean insights into “hidden” psychological experiences to create typologies 

and profiles to provide better-informed community-based policies and practice.  These analytic 

methods have been used in a variety of domains, such as: psychosis symptomatology in the 

general population (Kibowski & Williams, 2012; Murphy, Shevlin, & Adamson, 2007; Shevlin, 

Murphy, Dorahy, & Adamson, 2007);  substance abuse (Cleveland, Collins, Lanza, Greenberg, 

& Feinberg, 2010; James, McField, & Montgomery, 2013), peer victimization (Nylund, 

Bellmore, Nishina, & Graham, 2007), and anti-social/self-defeating behavior (Rosato & Baer, 

2010). LCA and LPA are versatile methods of dealing with data of interest to community-based 

researchers in a deep and psychologically grounded way.  This chapter will address the nuances 

of how and when to use LCA and LPA. Case studies of LCA and LPA will also be presented to 

illustrate the applicability of these techniques.  

 Introduction to Latent Class Analysis 

The main aim of LCA is to split data that are apparently homogeneous overall into sub-

classes of two or more different homogeneous groups or classes.  Study participant responses to 

a questionnaire, structured interview, or behavioral checklist would be used as the basis for 

making probabilistic assessments of the likelihood of each participant being assigned to one of 

these classes.  A participant’s likelihood of belonging to any of the other latent classes would 

also be calculated, and then decisions would be made as to the ultimate class membership that 

each respondent would assume.  The beneficial role that LCA can have is that, once class 

membership has been assigned to each participant in relation to the pattern of responses or 

behaviors, this class membership can be used to inform policies and practice-based interventions 

aimed at targeting a specific latent class that has emerged from the analysis.  An example of the 
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potential for this method can be seen in a study of the transportation-related attitudes and 

experiences of workers (Williams, Murphy, & Hill, 2008).  In this study, latent class analysis 

was deployed to examine the role of multimodality (i.e. using more than one mode of 

transportation) versus single transport mode use on commuters’ psychological well-being. 

Other community-level analyses have utilized LCA to investigate how to encourage sections 

of the population to engage more in community-based arts activities (Biggins, Cottee, & 

Williams, 2012). LCA is also helpful for testing population-wide phenomena and 

epidemiological trends, such as the potential existence of psychosis symptom experiences being 

measured along a continuum throughout the general population (e.g. Murphy et al., 2007; 

Shevlin et al., 2007), rather than as a dichotomous, psychiatrically driven and rare phenomenon. 

LCA is usually appropriate for samples of at least 100 participants, although there is 

evidence that Monte Carlo simulation could be used to model probable class solutions with data 

sets of smaller size and to thus extrapolate likely class numbers for hypothetical larger data sets 

(Nylund, Asparouhov, & Muthen, 2007).  The method of LCA is grouped within the family of 

structural equation modeling (SEM) techniques, such as confirmatory factor analysis (CFA).  In 

contrast to CFA, however, which could be construed to be primarily variable-centered, LCA is 

more of a person-centered approach because of its focus on participants’ characteristics and on 

how a pattern of responding to questions can provide insight into different participant groups’ 

experiences, behaviors, emotions and cognitions. However, although LCA and LPA could be 

termed to be largely person centered in orientation, it has been argued that person-centered and 

variable-centered methods are rarely independent of each other (Masyn, 2013).  

LCA is exploratory in emphasis and concerns itself with unearthing heterogeneity from 

seemingly homogeneous samples.  The drive to find this potential diversity also underpins why 
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LCA is more generically labeled as “mixture modeling,” as the analyst will use probabilistic 

techniques to draw inferences about the possible mix of subgroups within a population that can 

be ”unmixed.” This mixture can be explained by something the variables have in common or by 

something the subgroups of people have in common, or, alternatively, both persons and variables 

could share this commonality.  

The Process of Undertaking an LCA 

Extraction of homogeneous classes with LCA would adhere to the following process. Before 

conducting an LCA, the coding of the indicator variable data and the likely class type to be 

extracted should be borne in mind.  Data coding is mainly categorical and often dichotomous, 

although LCA is sufficiently versatile to accommodate ordinal coding, (e.g. Cleveland, Collins, 

Lanza, Greenberg, & Feinberg, 2010; LaFramboise, Hoyt, Oliver, & Whitbeck, 2006).  

Dichotomous coding could reveal the presence or absence of: an occurrence (e.g., a traumatic 

event), a psychological phenomenon (e.g., a symptom of ill health, such as hallucinations), or a 

diagnosis (e.g., classing someone as having obsessive-compulsive disorder); the coding could 

encompass a feeling, either as a dichotomously (e.g. ”satisfied” versus ”unsatisfied”) or 

differently (e.g., “never”,”sometimes” and ”often”) scaled state. With LCA, the process is mainly 

exploratory, and, although the indicator variables could be coded as categorical or ordinal, the 

resultant latent classes will always be categorical.  Although some studies seem to demonstrate 

the presence of latent classes that may be scale-like as if on a continuum (e.g., Murphy et al., 

2007; Shevlin et al., 2007), this appearance can be deceptive, as LCA is primarily involved in 

extracting classes that are essentially categorical.   

To achieve the aim of establishing categorical latent classes, one can employ the Expectation 

Maximization algorithm, which utilizes the full information maximum likelihood method of 
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class extraction (Masyn, 2013) by randomly allocating people into classes and estimating a one-

class solution, a two-class solution, and so on, until inspection of a range of fit statistics 

demonstrates the presence of a best-fitting solution.  Model fit is evaluated with the Likelihood 

Ratio chi-square (LRχ
2
), Bayesian Information Criterion (BIC), Sample Size Adjusted BIC 

(SSABIC), Akaike Information Criterion (AIC), Consistent AIC (CAIC) and the Lo-Mendell-

Rubin adjusted Likelihood Ratio Test (LMR-LRT).  Of all of these fit statistics, the BIC has been 

identified as performing the most reliably, although the Bootstrapped Likelihood Ratio Test 

(BLRT) has also been commended (Nylund, Asparouhov, et al., 2007). 

Evaluation of the class solutions takes place by appraising when the class solutions have the 

lowest BIC, SSABIC, AIC, and CAIC values.  Lower LRχ
2
 values are also desired, and ideally 

these should be associated with a nonsignificant test value, although this is often a rare finding 

because the chi-square statistic is adversely affected by larger samples (Bollen, 1989; Tanaka, 

1987), with a higher risk of committing a Type I statistical error.  By contrast, a statistically 

significant LMR-LRT value is indicative of better fit.  With the BLRT, this statistic helps to 

evaluate whether a model improves significantly from the model with k – 1 classes, where k is 

the number of classes for each analysis and there is an assessment as to whether a more 

parsimonious fit is available (Asparouhov & Muthén, 2012; Dziak, Lanza, & Tan, 2014).  The 

entropy value (i.e. ranging from 0 to 1) for each class solution could be used, with higher entropy 

values indicating better probabilities of being able to successfully classify participants into a 

latent class, depending on the number of latent classes being extracted (Masyn, 2013).  Finally, 

the ultimate decision on the optimal number of classes to be extracted rests on whether the class 

solutions make sense through inspection of the posterior probabilities for class membership in 

relation to each indicator variable.  Higher posterior probabilities for some indicator variables 



6 

 

(e.g., 70% likelihood or higher of endorsing an item/behavior) may offer clues as to the probable 

label to be given to the class and the persons who belong in it.  Very low probability of endorsing 

certain indicator variables may also provide insights into what the class could be called.  The 

posterior probabilities can be mapped out as a graphical plot (see Figure 1), with the likelihood 

of endorsing an item ranging from 0% to 100% and being marked from 0.00 to 1.00 on the y-axis 

or in tabular form.   

As can be seen in Figure 1 (adapted from Williams et al., 2008),  some respondents in this 

United Kingdom-wide study of work-related travel had a 100% likelihood of endorsing the 

”cycle” item and had a 10% chance of endorsing the ”train” item.  Another class was labelled the 

”rail” class, as there was a high chance of respondents endorsing the ”train” item and (relative to 

those in the other classes) a higher probability of endorsing the ”tram” or ”tube” (i.e. the London 

Underground).  There was also a ”bus” class and a ”car” class that represented higher likelihood 

levels of endorsing items relating to these modes of transport.  It should be noted that this 

analysis took into account multimodality by entertaining the possibility that commuters may use 

more than one method of travel to get to and from work.  This study was able to uncover whether 

data obtained from commuters could be split into a two-class solution (e.g., public transport class 

versus private transport class) or other potential solutions.  The study found four latent classes in 

relation to commuting behavior, and we were able to see how certain latent classes of commuting 

could be related to greater risk of commuting-related stress.   

With a tabular example of posterior probabilities in Table 1, which has been adapted from 

Ronzio, Mitchell, and Wang’s (2011) study of witnessed community violence among African 

American mothers living in urban environments, we can see that a two-class solution was 

extracted from these 209 participants’ data: (a) a “higher witnessed community violence 
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exposure” class and (b) a “lower witness community violence exposure” class.  Table 1 

demonstrates that women in a “higher witnessed community violence exposure” class had a 

relatively higher probability of hearing a gunshot “often” when compared with the “lower 

witnessed community violence” class.  In fact, although the probabilities of hearing a gunshot 

“sometimes” was similar for both groups (i.e., 56% vs. 49%), the differences between the two 

classes in hearing a gunshot “never” or “often” were quite stark (12% vs. 51% and 31% vs. 0% 

respectively). This table also demonstrates the versatility of the LCA method in being able to 

accommodate differently coded indicator variables when comparing various categorical-type 

latent classes and the likely class membership in accordance with the probability of endorsing 

certain items at varying levels of agreement.  The following section provides further insights into 

how to deploy LCA in community-based research, along with outlining the nuances involved in 

employing this method. 

Case Study of LCA 

An illustrative example of the potential for LCA in community-based research can be seen 

from the following study by the first author and his colleagues (Williams, Humberstone, & 

Harris, 2010) that was conducted with a sample of more than 4,000 participants drawn from one 

county in the East Midlands in England.  This study was commissioned by the Derbyshire Arts 

Development Group and was aimed at inquiring into the reasons why some members of the 

general population did not engage with arts and cultural activities  organized in the region.  

Respondents were asked about their participation in a number of arts and cultural activities and 

were also prompted to give reasons why they did not take part in these kinds of activities.  The 

reasons for not taking part are depicted in Table 2.   
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After excluding “don’t know” responses, there were 17 possible reasons that participants 

could choose.  Respondents could endorse any (or none) of these reasons, so there were 2
17

 (i.e. 

131,072) different response patterns that could be obtained (e.g., “yes” to all items was one 

possible response pattern; other permutations might be endorsing the first item out of the list of 

reasons and not endorsing any of the others).  From this sample, 654 response patterns were 

elicited, but clearly we would not want to extract 654 different latent classes. A more 

parsimonious and manageable solution was needed.  A six-class solution was chosen through 

inspection of the fit statistics (Table 3).  This decision was attributed to the BIC value reaching 

its nadir at the six-class solution.  The LMR-LRT also declined in value and was statistically 

significant up until the seven-class solution, which was when the value became nonsignificant (p 

= 0.15), which was interpreted as the six-class solution being markedly better than the seven-

class solution. The entropy value for the six-class solution also showed that 71% of the sample 

could be accurately categorized on the basis of their class membership. Although the entropy 

value for the seven-class solution was also 0.71, we have already uncovered with the LMR-LRT 

statistic that this solution is not significantly better than the six-class solution. As a result of the 

profile of these fit statistics, the six-class solution was chosen to be the most accurate 

representation of how people were responding in relation to reasons given for not taking part in 

the arts. 

The posterior probabilities could have been mapped out in a profile plot, but this may have 

been difficult to interpret from visual inspection of the probability of endorsing 17 items in 

relation to being a member of any one of six latent classes.  Instead, we examined the table of 

conditional probabilities, and inferences were made about what would be appropriate labels for 

each latent class.  Through this process, we were able to identify the classes, which included: an 
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“arts resistant” class (i.e., high likelihood of endorsing “not really interested” and moderate 

levels of probability of endorsing “don’t really know enough about it”, “It’s difficult to find the 

time,” and “I wouldn’t enjoy it”) and an “uninformed” class (i.e., high probability of endorsing 

“not enough information on what is available” and moderate levels of likelihood of endorsing 

“not enough notice about the event”), to name but a few of the latent classes that could be 

unearthed.  Overall, this approach proved advantageous in modeling the mentalities and 

behaviors of a population within a certain region. After interventions  addressing these types of 

hidden barriers uncovered through LCA, a follow-up study could be carried out to examine 

whether the latent classes still existed in the general population within a region and the 

prevalence of such barriers to participation.  Such a follow-up study was indeed conducted with 

another sample of 4,000 participants within the same locality (Biggins et al., 2012) and showed 

reductions in some of the barriers to participation latent classes, such as the prevalence of an 

“isolated” class of respondents declining from 17.7% of the sample in 2008 to 5.0% in 2011. 

Clearly, LCA has the capacity to see if a typology of phenomena, such as barriers to arts 

participation, can exist over time when assessing data from two time points with two different 

samples studied with a cross-sectional design.   

 Introduction to Latent Profile Analysis 

LPA can also offer something new and useful to a community-based researcher.   

Community-based studies employing LPA have, for example, analyzed coping among ethnic 

minority youth (Aldridge & Roesch, 2008) and profiles of urban-based African American 

adolescents (Copeland-Linder, Lambert, & Ialongo, 2010) involving combinations of the three 

variables of violence exposure, parental monitoring, and parental involvement. The latter study 

examined how their obtained profiles differentially predicted depressive symptoms and 
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aggressive behavior. Specifically, Copeland-Linder et al. (2010) were able to compile three class 

profiles (a “vulnerable” class, a “moderate risk/medium protection” class, and a “moderate 

risk/high protection” class), which could aid in the development of targeting at-risk youth and 

creating programs to help young people’s well-being levels when violence in the community is 

salient and/or frequent.  

Overall, LCA and LPA are two kinds of person-centred mixture modeling analyses that are 

used to identify subgroups of an underlying categorical latent variable with data obtained from 

cross-sectional designs. As such, the two types of analyses are very similar, and fit statistics that 

are scrutinized in LCA are also used in LPA. Rather than repeat for the reader what these 

statistics entail, we would note that the main difference between LCA and LPA is in the type of 

indicator variables used. While LCA is often undertaken on categorical indicator variables, LPA 

is used for continuous indicator variables. 

In turn, there are some differences between LCA and LPA in the nuances of the analyses 

undertaken. In LCA, the shapes of the latent classes are defined by the assumption of local 

independence (i.e., the indicator variables are independent of each other within the latent 

classes), and the latent classes are described by the differing posterior probabilities (i.e., 

specified after the class solution has been extracted) of endorsing each indicator variable based 

on class membership. In contrast, the shape of the latent classes in LPA is not specified by the 

assumption of local independence, and the resultant best-fitting LPA solution is described by the 

different mean scores on each indicator variable, depending on class membership. With respect  

to the specification of what the latent classes are shaped like in LPA, Masyn (2013) suggested 

that four different specifications should be tested alongside the best-fitting solution. The first, 

most restrictive, specification describes a model in which the shapes of the resultant classes are 
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constrained to be the same (i.e., variances and covariances are restricted to be the same across 

classes) and the assumption of local independence is implemented (i.e., the indicator variables 

are not allowed to covary within a class). The second and third specifications relax either one of 

these restrictions (i.e., local independence is assumed or not, and variances and covariances are 

restricted to be the same across classes, or not, respectively). The fourth, and final, specification 

relaxes both of these constraints;the variances and covariances are not restricted to be the same 

across classes (i.e., differing shapes across the classes), and the error variances of the indicator 

variables are allowed to covary (i.e., no local independence is assumed).  Masyn (2013) 

suggested that these four specifications should be assessed alongside the different number of 

classes to arrive at a best-fitting solution of the LPA that takes into account both the best-fitting 

shape and best-fitting number of classes. 

This best-fitting solution in LPA is described by the different mean scores on each indicator 

variable, depending on class membership.  Figure 2 provides an example of how data from the 

National Comorbidity Survey of more than 8000 participants in the United States were analyzed 

with LPA to elicit five homogeneous groups that were then compared on three different 

behaviors labelled as psychopathological and operating on continuous dimensions of 

“externalizing”, “internalizing”, and “psychosis” type profiles (Fleming, Shevlin, Murphy, & 

Joseph, 2014). 

Case Study of LPA 

Geiser, Okun, and Grano (2014) provided an excellent applied example of LPA. They were 

interested in what motivates people to volunteer and provide unpaid services to the community at 

large. The study was specifically focused on how different forms of motivation (i.e., amotivation, 

extrinsic motivation, and intrinsic motivation) interact and predict frequency of volunteering. 
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Furthermore, differences in sex and nationality were examined in this cross-national study of 

American and Italian participants.  

Mean scores for six items (i.e. amotivation, intrinsic motivation, and four items for varying 

degrees of autonomy in extrinsic motivation) were evaluated. In order to undertake the LPA, it 

was assumed that there would be local independence (i.e., no covariance between indicator 

variables within the identified latent classes) and equal variances and covariances across the 

identified latent classes (i.e., same shape across classes). This is just one of the four 

specifications for the shapes and sizes of the latent classes that Masyn (2013) had advised to 

explore when deciding on the best-fitting class solution. However, the researchers were 

interested in inspecting the latent profile solutions for each of the two nationalities (American vs. 

Italian) and their respective sex (female vs. male). It would have added far too much complexity 

to take these four models (nationality paired with sex) and test each of them for the best-fitting 

shape and best fitting class solution to test four specifications (i.e., local independence, or not, 

paired with equal variances/covariances, or not) for each number of classes examined. Checking 

a two-class through to a six-class solution would have meant 20 solutions (i.e., 5*4 

specifications) solely based on the best-fitting shape and best-fitting class solution. These would 

then need to be checked for each model (nationality by sex), resulting in 80 solutions (i.e. 20*4 

models). 

Geiser et al. (2014) based their initial analyses on Nylund, Asparouhov, et al.’s (2007) 

recommendations that the BIC, SSABIC, BLRT and LMR-LRT should be compared for a one- 

through to a seven-class solution for the four different models (nationality by sex). Due to these 

fit statistics not providing a consistent result for the best-fitting solution, Geiser et al. (2014) 

followed Marsh, Lüdtke, Trautwein, and Morin’s (2009) recommendation of ensuring  that the 
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best-fitting solution described not only quantitative changes but also qualitative changes between 

the classes. The researchers judged the six-class solution to be the most interpretable with both 

qualitative and quantitative changes for all four models. A further multigroup LPA was 

undertaken to test similarities of the class solutions for the four different models (nationality by 

sex). A six-class solution was decided upon for the four models (nationality by sex), in which 

each model had differing class sizes for these six classes.  The frequency of actually volunteering 

was then added to the model, and the researchers’ original hypothesis-that participants who 

scored highly on intrinsic motivation and high in extrinsic motivation would volunteer the most 

frequently-was supported. 

Limitations of LCA and LPA 

One of the main limitations of LCA and LPA is that the identified classes may not 

necessarily always (and without further validation) refer to existing subgroups within the 

population. Superfluous classes can be identified due to nonnormality of the data, nonlinear 

relationships between the indicator variables, or a misspecification of the model (Bauer & 

Curran, 2004). As both LCA and LPA are types of finite mixture modeling analyses, the 

assumption is that heterogeneous data can be explained by homogeneous subgroups that are 

mixed together. Thus, the nonnormality and nonlinearity that are observed in the heterogeneous 

data could be hypothesized as being attributed to the mixture of these subgroups that have been 

identified through the use of LPA and LCA. However, there are other possible explanations 

beyond the presence of latent classes as to why data may be distributed in a nonnormal and 

nonlinear fashion (Bauer & Curran, 2004). This may lead to the erroneous identification of 

classes that are meant to explain nonnormality or nonlinear relationships that are found within 

the data.  
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If the aim of community-based research that utilizes LCA or LPA is to make an explicit 

statement of having identified real subgroups in the population, then other possible explanations 

for nonnormality and nonlinearity of the data need to be investigated and potentially ruled out 

(Bauer & Curran, 2004). Simply deciding on a best-fitting solution by undertaking an LCA or 

LPA would not be sufficient to prove that these classes actually exist as tangible groups of 

people, so community-based researchers would still need to be cautious of reifying any classes 

that have been extracted. 

Conclusion 

 LCA and LPA offer versatile solutions to community-based researchers for dealing with 

data obtained through cross-sectional designs, especially with large samples of data. These 

analytic methods can be powerful tools to guide theory generation and testing.  Most 

importantly, LCA and LPA can inform the development of typologies of underlying behaviors, 

attitudes, and perceptions that may not be noticeable otherwise.  These methodological 

approaches can help form the basis for informed decision making and the development of 

evidence- based policies, practices, and interventions aimed at improving people’s quality of life 

and well-being. 
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Table 1 

Posterior Probabilities in Relation to Latent Class for Urban African American Mothers 

Who Had Witnessed Community Violence (WCV)  

 Latent class 

Type of exposure Higher WCV exposure Lower WCV exposure 

Heard a gunshot   

Never 0.12 0.51 

Sometimes 0.56 0.49 

Often 0.31 0.00 

Saw an arrest   

Never 0.16 0.72 

Sometimes 0.58 0.28 

Often 0.26 0.00 

 

Note. From “The Structure of Witnessed Community Violence Amongst Urban African 

American Mothers: Latent Class Analysis of a Community Sample,” by C. R. Ronzio, S. J. 

Mitchell, and J. Wang, 2011, Urban Studies Research, p. 5.  Reprinted with permission. 
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Table 2 

Reasons Given for Not Attending Arts and Cultural Events 

 

 

Item 

Number (% of 

those who 

responded to 

item) 

It’s difficult to find the time 1,494 (34.54%) 

It costs too much 1,419 (32.80%) 

Not enough information on what is available 1,123 (26.0%) 

Not enough notice about the event 784 (18.1%) 

It’s not close enough to where I live/work 687 (15.9%) 

Not really interested 653 (15.1%) 

Nothing stops me from attending arts and cultural 

events 

617 (14.3%) 

I don’t know enough about it 542 (12.5%) 

Lack of transport 529 (12.2%) 

Health isn’t good enough 367 (8.5%) 

I don’t have anyone to go with 343 (7.9%) 

Never occurred to me 185 (4.3%) 

I might feel uncomfortable or out of place 171 (4.0%) 

I wouldn’t enjoy it 147 (3.4%) 

Other reasons 156 (3.6%) 

Don’t know 77 (1.8%) 

It is often too complex or confusing 63 (1.5%) 

Against my religion/beliefs 25 (0.6%) 



21 

 

Table 3 

Reasons Given for Nonparticipation in Arts and Cultural Activities–Fit Statistics for the Latent Class Analysis 

 

Model  

Log 

likelihood 

Free 

parameters 

LRχ2 (df) 

p 

AIC BIC SSABIC LMR-LRT 

(p) 

Entropy 

 

Two 

classes   

-23177.58 39 3599.39 

(262040) 

1.00 

46433.15 46681.67 46557.75 2111.90 

(0.00) 

0.64 

Three 

classes 

-22834.32 59 2942.01 

(262023) 

1.00 

45786.64 46162.61 45975.13 682.44 

(0.00) 

0.63 

Four 

classes  

-22623.55 79 2538.01 

(262005) 

1.00 

45405.09 45908.51 45657.48 419.04 

(0.00) 

0.70 

Five 

classes    

-22435.54 99 2432.92 

(262003) 

1.00 

45069.09 45699.95 45385.37 373.20 

(0.0461) 

0.68 

Six 

classes  

-22283.91 119 2186.01 

(261986) 

1.00 

44805.83 45564.14 45186.01 301.46 

(0.0035) 

0.71 

Seven 

classes  

-22201.58 139 2045.14 

(261968) 

1.00 

44681.17 45566.93 45125.25 164.04 

(0.1456) 

0.71 

 

Note. LRχ2 = likelihood ratio chi-square, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion, SSABIC = 

Sample Size Adjusted BIC, LMR-LRT = Lo-Mendell-Rubin Likelihood Ratio Test.
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Figure 1. Probability of endorsing different commuting modes based on latent class membership. 
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Figure 2.  Latent profile plot of psychopathological profiles across dimensions.  Adapted from 

“Psychosis Within Dimensional and Categorical Models of Mental Illness,” by S. Fleming, M. 

Shevlin, J. Murphy, and S. Joseph, 2014, Psychosis,  p .8.  Reprinted with permission. 

 

 

 

 


