
Citation:
Ramachandran, M and Jamnal, GS (2014) "Developing reusable.NET software components." In:
Proceedings of 2014 Science and Information Conference, SAI 2014. UNSPECIFIED, 991 - 996.
ISBN 9780989319317 DOI: https://doi.org/10.1109/SAI.2014.6918306

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/1513/

Document Version:
Book Section (Updated Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/1513/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Science and Information Conference 2014
August 27-29, 2014 | London, UK

1 | P a g e

www.conference.thesai.org

Developing Reusable .NET Software Components

Muthu Ramachandran
School of Computing, Creative

Technologies and Engineering

Leeds metropolitan University

Leeds, UK

Email: m.ramachandran@leedsmet.ac.uk

Gopal Singh Jamnal
School of Computing, Creative

Technologies and Engineering

Leeds metropolitan University

Leeds, UK

Email: gopal.jamnal@gmail.com

Abstract --- Software Development with reuse and for reuse is
the foundation of CBSE (Component based software
engineering) which allow faster development at lower cost and
better usability. A reusable software component works as a
plug and play device, which abstract the software complexity
and increase performance. Software reuse guidelines have
been addressing the issue of capturing best practices. Form a
long while, Software industry has collected the enormous
wealth of knowledge, experience, domain expertise, design
principals & heuristics, hypothesis, algorithms, and
experimental results but still there are no rock solid and
mature software component development guidelines defined
for the current technologies such as .NET.

 This paper presents a guidelines based framework
(known as .NET Guider) for guidelines based component
development for reuse in .NET family. We have demonstrated
our approach by designing a binary component as part of
development for reuse based on our own .NET component
framework. This paper also provides a number reuse analysis
and metrics and a prototype component guider tool which sits
on top of the .NET architecture with built-in software
development & reuse knowledge.

Keywords -- Software Reuse, Software Guidelines, Software
Design Knowledge, CBSE, GSE

 I. INTRODUCTION

In last two decade, Software Development has emerged
as a global market for business. It is equally contributing in
nation’s economy as other industries i.e. Production, Mining
etc. In current scenario, IT Companies have slowly shifted
from traditional software development environment to
component based environment. The reason for such change
is to maximize reusability and increase profit.
Correspondingly, CBSE (Component Based Software
Engineering) is the new global market trend for software
development industries.

According to (Council and George, 2001) software
component is an independent software element which can

be deployed and composed in further software development
cycle without any modification as a handy component.

Software components abstract the complexity from end
users and provide quick and easy implementation,
subsequently help to reduce the cost by its reusability. All
major software development companies adopted the
component based development technique to survive in
competitive market. According to Zirpins et al. [8]
suggested that, Today’s Modern ERP systems are made of
several software components and it shows the real example
of Software Component reuse on big scale.

In addition [5] stated that, Software components works
as an autonomous hardware components, which abstracts
the internal complexity of device and provide easy user
interface to operate and similarly can be used as a building
block in new product development. Among all IT giant,
Microsoft was the first one, who understood the industry
needs and succeed to cash this ready market. Microsoft
offered the Development Kit known as “Microsoft Visual
Studio” to develop reusable software component with many
development options. Now days all Software Industries
have understood that component can deliver great
reusability, extensibility and maintainability for creating a
large scale software system by breaking down into the small
binary components. Ravichandran and Rothenberger [6]
noticed that, now industry is emphasizing more on black
box reuse over white box reuse. Component based
programming emphasize on “Black Box Reuse” which
means implementing client of such component, not need to
worry about its internal functionality.

The significant contribution of this paper is to develop a
generic framework for .NET component model, and to
provide comprehensive guidelines for development team to
adopt them. The analysis of a .NET based binary tree
component compares with efficiency and reusability
analysis of the existing example [4] owned component. This
paper has also provided reusability analysis of our own
binary component against our standard framework and
guidelines.

Science and Information Conference 2014
August 27-29, 2014 | London, UK

2 | P a g e

www.conference.thesai.org

II. COMPONENT BASED SOFTWARE ENGINEERING

In plain English, software component is an independent
unit of binary code, which can be used as plug and play, like
a hardware device. It designed and developed in modular
architecture, which promote interoperability with other
component and framework for reuse with reuse.

Although, a software component is an independent
modular unit, which is loosely coupled and not bonded to
one client and most important, it possesses official usage
guidelines for further reuse. In general, a typical software
component model is divided into three parts as by [2] are:

a) Semantics: Denotes, what component are mean to
be?

b) Syntax: Defines, how it is constructed, developed
and represented?

c) Compositions: Finally, how it is going to be
composed and reassembled?

Semantics provide description of components and
describe the components usage and functionality. Where
syntax denotes the component’s algorithms and
development complexity, which give the physical structure
to component. Finally composition provides overall wrapper
mechanism to compose the various functionality of a
component and present it for reuse to customers.

In some areas, life cycle of component is much similarly
as window or web software development lifecycle but
modeling, packaging and implementation are totally
different from general software development process. An in
depth domain analysis and method of packaging and
deployment of compiled binary code in such a loose couple
way, makes component’s lifecycle special.

The demands and requirements for software component
keep fluctuating according to new system requirements in
market, so while developing a new software component for
reuse, developers need to follow some guidelines for
component design and development, however still software
industry don’t have rock solid guidelines for building
reusable components but seasoned author like Lowy [3]
and [5] proposed their own guidelines for component
architecture, table1 represent their component guidelines
classification.

We can see from the above comparison table, where [3] is
more specific about lower level of programming concepts,
while [5] is more focused on bigger picture about
component design and reuse potential for industries.

Furthermore, software component lies, in two categories as,
“for reuse” and “with reuse”. Similarly [1], claimed that
usage of software component can be divided into two
categories:

a) Consumer Reuse: which mean, development of
new software systems, using existing component,
called as “development with reuse”.

b) Producer Reuse: which means, developing,
building new portable components, for further
reuse, called “Development for Reuse”.

The figure 2, presents the differentiation between
producer reuse and consumer reuse.

Figure 2. Difference between Producer Reuse and Consumer

Reuse.

TABLE 1. SOFTWARE COMPONENT SPECIFICATION

Figure 1. Represent the phases of a software component
development in software Development team.

Science and Information Conference 2014
August 27-29, 2014 | London, UK

3 | P a g e

www.conference.thesai.org

III. .NET FRAMEWORK REUSABILITY

In 1993, COM was designed and developed to create
platform independent, distributed and object oriented
based, reusable binary component, along with MTS
(Microsoft Transaction server) for distributed transactions.
During 2000, at the time of second phase of release,
Microsoft combined COM and MTS and introduced it as
COM+. This time it is integrated with subscriber/publisher
event, Queued Service and late binding features (Microsoft,
2013).

Now a day, .NET framework is the latest invention from
Microsoft, which provides latest component technology as
WCF for web and assemblies for windows. The .NET
framework is made of CLR (Common language runtime)
and many class libraries. Also .NET framework provides
compatibility with COM object, with the help of RCW
(Runtime Callable wrapper). (Ibit)

IV. PROPOSED GUIDELINES FOR DEVELOPING
REUSABLE .NET COMPONENTS

The good program design guidelines and systematic
approach for computing, has been defined since early 70s
and 80s by seasoned authors as Parnas and Dijkstra.
However still a big gap exists in current software industry
to adopt that silver software engineering principal to handle
todays software development needs .The reasons behind
are, market changes, customer expectation changes in over
a period and it became very difficult to survive in
competitive software development world to fulfill growing
customers need in timely manner. So as a solution ,
terminology “Guidelines based Software
Engineering”(GSE) is grounded, on the basis of collecting
experiences and knowledge from past several years of
software development experiences and wealth of
knowledge & artifacts and use them as rationale for
developing a new customized guidelines to face todays
software development challenges [5].

The success of software component is utterly based on
Knowledge of domain. Identifying and classifying the
generic component form a specific software package or
domain area is a human intensive task, which only can be
done by experts after several years of experience. Figure 3
presents the relationship between domain and software
engineering.
.

Figure 3. Process and Similarity in Domain Engineering and Software
Engineering.

However, some self-assessment questions can be helpful
for architects to component design [5] :

 Identifying the common functions in domain to
avoid duplications of tasks.

 Dependency on other components and hardware
devices.

 Optimized designed for further technology up
gradation.

 Easy use and implementation with some minor
changes.

 How valid is component decomposition for reuse?

 From business point of view, a good Return on
Investment (ROI) of a software component
ensures the component’s longer life and usage in
application domains.

The design for reuse, provides a set of clear implementation
steps, which should be followed by architects and
developers. This set of guidelines can be classified into a
number of categories:

Science and Information Conference 2014
August 27-29, 2014 | London, UK

4 | P a g e

www.conference.thesai.org

 Supporting components reuse by providing

exception handlers.
 Interface based programming.
 Using Delegate to provide flexibility using strong

type function pointers.
 Use of Generic<T>, make classes and functions

more reusable with any data type.
 Inheritance (Is a relationship) ensure the

relationship between classes and their derived
objects; provide foundation of Object Oriented
Programming concepts.

 Design and develop components with Interface
based Programming, which abstracts the code
complexity for user.

 Using Abstract Classes, which provide flexibility
over interface, to alter the implementing class’s
functionality.

 Remoting, Object Marshaling
 Multithreading with Thread safety.
 Packaging and deployment.

A. Exception handlers

Exception kills the program execution if any error found. In
C#, exceptions are type safe and cover system level and
application level errors. System Exception provides the
base class for all exceptions(
System.DivideByZeroException,
System.ArthmeticException,System.NullReferenceExcepti
on) are examples of system level exceptions.

In Java, java.lang.Exception class, Provides the base for
exception handling and all exceptions are divided in two
categories as IO Exceptions or Runtime Exceptions.

TABLE 2 SHOW THE EXAMPLE OF EXCEPTION HANDLING IN C# AND JAVA.

As we mentioned the guidelines for new component
development, so process of a component development can
be understood by figure 9. This will start from .NET
Guider’s component skeleton creation and finish at
registering component in global repository.

Figure 5: Component development process with .NET Guider.

Figure 4 .NET Guider represents the Guidelines for New
Component Development.

Science and Information Conference 2014
August 27-29, 2014 | London, UK

5 | P a g e

www.conference.thesai.org

V. REUSE ANALYSIS OF SOFWARE
COMPONENT

The effectiveness of a component can be analysis by its
reusability and portability. A component based software
development saves, a lot of money and human efforts. But
if a component is too complex to implement in further
development, than it is not be called a Worthy Component.
Specifically component complexity means, its required
interfaces and provider interface’s implementations.
Further, Poulin [11] claimed that, during 1990 U.S
Department of defense defined, that an effectiveness of a
software component is determined by , number of lines of
code required to obtain its functionality in new software
development.

Hence, linked to above mention guidelines for reusable
component design, helps to assess the component
reusability factors and give an analysis about its
effectiveness in development for reuse and with resue.so
that component can be further redeveloped or modified
with more enhanced attributes and functionality for further
reuse.

In addition, for development of a .NET component [9]
claimed that, C# is a better programming language as
compare to JAVA, and mentioned the programming logic
difference between them as below table:

Besides this, we have conducted a pilot project to observe
the efficiency of .NET Guider and evaluate its success rate
in new component development. Although the size of
project is small to critically evaluate the efficiency of
defined guidelines in .NET Guider but we successfully able
to reveal some facts related to defensive programing for
component design and development. Figure 20 and table 2
represents the effective ness result of .NET Guider.

1. The workload for component design and
development is divided efficiently.

2. A in depth domain analysis achieved.
3. A clear set of programming concepts, helped to

avoid development complexity and ambiguity.

Figure 6. Represent the Component Design Guidelines in
Percentage.

TABLE 4 REPRESENT THE COMPONENT DESIGN GUIDELINES IN
PERCENTAGE.

VI. REUSE METRICS OF SOFTWARE COMPONENT

 Metrics provide the reuse and complexity analysis of
component sources code based on component’s variable
methods, classes and interfaces. Such metrics only work on
the basis of component source codes but in the case of
Black Box component, all internal source code properties
are abstracted from end users, so such metrics analysis is
not appropriate for black box component.

TABLE 3 REPRESENT THE KEY DIFFERENCE FEATURES BETWEEN
C# AND JAVA

Science and Information Conference 2014
August 27-29, 2014 | London, UK

6 | P a g e

www.conference.thesai.org

During our research we observed, component Reuse values
(RV) can be justified and measured , based on number of
fulfilled proposed guidelines in component development.
Such reuse values is highly appropriate for black box
components. So we identified and proposed a new reuse
metrics for software component as (Reuse value%):

 Number of Applied Guidelines

 RV% = * 100

 Number of Proposed Guidelines

The result of RV, will be able to express the reuse value in
percentage (%), so it will be more easier to analysis the
component reusability. For our reusable binary package
component, RV is nearly 75%.

VII. ARCHITECTURE OF PROPOSED .NET GUIDER

A .NET guider will provide a platform for handpicked set
of guidelines for component development. The selection of
guidelines will be correlated with component’s category,
this would work as a category manager. The .NET guider
will work with .NET framework libraries and provide a
robust and efficient development environment. Figure 7
shows the proposed architecture of out .NET guider tool.

Figure 7. Proposed architecture of .NET Guider as new technique for
creating reusable component.

Based on our proposed .NET Guider, we created a GUI
interface for .NET Guider, it is subjected to futuristic
development and creation of a GUI based Component
Builder tool , which will provide an user friendly platform
to developers where they can select the appropriate
guidelines for component . Our .NET Guider will create a
skeleton for developer based on their guidelines selections.

We believe .NET Guider will help to maintain development
uniformity and complexity of component and ensure the
cost and time saving as compare to traditional component
development. Figure 8 and 9 represent the blue print of
proposed .NET Guider.

Figure 9. Creation of component code skeleton based on
selected guidelines.

Figure 8. Provides the selection of suggested component
development guidelines with component description.

Science and Information Conference 2014
August 27-29, 2014 | London, UK

7 | P a g e

www.conference.thesai.org

VIII. CONCLUSION

Software component guidelines offer the best practice for
component development. software industry have enormous
experience from previous development project’s success
and failures, so guidelines for new component development
should be flexible to add in more artefacts and principals
to manipulate them according to current businesses
requirements, Which would help to save cost and labor and
provide flexible development environment. At large scale
of component development, various programming language
can be used, so some universally applicable guidelines
should be established.

Also from non-technical point of views, issues such as
management, commercialization should have also some
unified guidelines to survive in competitive market and
maintain its profitability ratio in software industry.

REFERENCES

 [1] Emn (2013) A guide to detect reusable components. [Online].
EMN.FR. Available from <http://www.emn.fr/z-
info/emoose/alumni/thesis/ltorres.pdf> [Accessed December 1 2013].

[2] Lau, K. K. and Wang, Z. (2007) Software Component Models. IEEE
Transaction Software Engineering, Vol. 33(10) p. 709-724.

[3] Lowy, J. (2003) Programming .NET Component. Cambridge,
O’Reilly.

[4] MSDN (2013)An Introduction to c# Generics. [online]. MSDN.
Available from <http://msdn.microsoft.com/en-
us/library/ms379564(v=vs.80).aspx> [Accessed November 24 2013].

[5] Ramachandran M. (2008) Software Component: Guidelines and
Applications. New York: Nova Science publisher.

[6] Ravichandran, T. and Rothenberger, A. (2003) Software reuse
strategies and component markets. Communication of ACM. Vol. 6(8) p.
109-110.

[7] Thai,T. and Lam Q.(2003) Net Framework Essential. 3ed ed.
Sebastopal, Calif, O’Reilly.

[8] Zirpins, C., Ortiz, G., Lamersdorf, W. and Emmerich, W. (2013)
Proceeding of the first international workshop on engineering service
compositions [Online]. IBM. Available form:
http://domino.research.ibm.com[Accessed October 11 2013].

[9] Balagurusamy, E. (2010) Programming in C#.3 reed. New Delhi,
Tata McGraw-Hill.

[10] Ramachandran, M. (2012) Guidelines based software engineering
for developing software components, Leeds Metropolitan University,
Vol.5, pp.-6

[11] Pouline, J. S (1994) Measuring Software Reusability, Proceedings of
the Third International Conference on Software Reuse, Rio de Janeiro,
Brazil, 1-4 November 1994

Science and Information Conference 2014
August 27-29, 2014 | London, UK

8 | P a g e

www.conference.thesai.org

