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Objective: Small, dense LDL particles are highly atherogenic and strongly associated with 

obesity-related dyslipidemia. The metabolic inter-relationships between weight loss induced 

changes in waist circumference, triglycerides, insulin sensitivity and small, dense LDL 

particles in clinically obese children and adolescents has not been studied.  

Methods: Seventy five clinically obese boys and girls (standardized body mass index 3.07 ± 

0.59, aged 8-18 years) were recruited and anthropometric, body composition and cardio-

metabolic risk factors were measured pre and post weight loss.  

Results: There were highly significant reductions in anthropometric, body composition and 

cardio-metabolic risk factors. Triglyceride change was positively correlated to LDL peak 

particle density and percentage LDL pattern B changes (relative abundance of small, dense 

LDL particles). Multiple regression analyses showed that changes in triglyceride concentration 

accounted for between 24% and 18% of the variance in LDL peak particle density and 

percentage LDL pattern B change, respectively. Changes in waist circumference, and insulin 

sensitivity did not predict these changes in LDL characteristics.  

Conclusion: Acute and highly significant weight loss significantly decreased LDL peak 

particle density and percentage LDL pattern B. The change in triglycerides were a strong 

predictor of LDL peak particle density and percentage LDL pattern B change.  
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Introduction:  

The increase in childhood and adolescent obesity is a worldwide problem showing limited 

signs of abatement or reversal (1). Obesity is associated with a constellation of cardio-

metabolic risk factors and increased risk of future of Type 2 Diabetes (T2D)(2). Amongst the 

obesity-related metabolic consequences, increases in triglycerides (TG) and decreases in 

high density lipoprotein cholesterol (HDL-c) are commonly observed (3). This clustering is 

termed the atherogenic lipoprotein phenotype (ALP), and has been described in obese 

children with T2D (4). Adolescent dyslipidemia combined with overweight or obesity 

substantially increases risk of early atherosclerosis in adulthood, measured by carotid-intimal 

medial thickness (5). In a seminal weight loss study, Epstein and colleagues showed that the 

magnitude of lipoprotein-lipid changes were significantly related to relative weight changes in 

obese children (6). There is very limited information regarding the modification of small, dense 

LDL in high-risk clinically obese children/adolescents with lifestyle modification (7-12). 

 

In a small pilot study, we previously examined the effects of weight loss on small, dense LDL 

in a sample of clinically obese children and adolescents. We showed significant decreases in 

LDL cholesterol, LDL peak particle density and a significant reduction in cholesterol contained 

within the small dense LDL subclass (13). Only two small studies have measured LDL peak 

particle density/size in children and adolescents within an interventional setting(14, 15).  

However,  the metabolic inter-relationships were not reported. Therefore, the aim of the 

present investigation was to evaluate the acute metabolic inter-relationships amongst 

anthropometric and body composition variables,clinically routine metabolic variables 

(lipoprotein-lipids, fasting glucose and insulin) with changes in LDL peak particle density and 

LDL subclasses in response to acute weight loss in clinically obese children and adolescents. 
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Materials and Methods: 

The obese children and adolescents were attendees of the Carnegie International Camp 

(CIC), a multi-factorial weight loss programme (16) sampled between the years of 2004 and 

2006. Children and adolescents (8-18 years) attended from all over  the United Kingdom and 

a few from Europe, through self/parental-referral, medical, social service referral or 

educational organizations. Acceptance onto the programme was reliant on having a body 

mass index (BMI) above the age related International Obesity Task Force (IOTF) cut-offs for 

overweight proposed by Cole et al (17). There were no other specific inclusion criteria which 

resulted in a group of heterogeneous children and adolescents with respect to age, sexual 

maturation and degree of obesity. The subjects were primarily Caucasians (n=72 Asian n=1 

and Black n=2). Determination of Tanner stages or a family history of obesity or T2D were not 

available.  

 

The programme incorporated energy restriction, physical activity and lifestyle education. Every 

individual undertook a daily schedule of physical activity which combined a range of structured 

fun-type, skill-based activities consisting of six 1-hour sessions each day. Energy intake 

(kcal*day-1) was provided as three meals and a snack and was based on an approximation of 

basal metabolic rate (18). The energy restriction provided sufficient daily energy to meet the 

individuals basal requirements based on their age and body mass.  Each child was assigned to 

one of four diet groups ranging from 1050-3050 kcal*day-1 based upon their age and body 

mass. The daily energy intake contained 15% protein, 30-35% fat, 50-55% carbohydrate. In 

addition, each individual engaged in four 1-hour educational sessions per week, covering 

issues such as changing food choices, balance of good health, portion control and stimulus 
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control. Sessions also included developing skills such as maintaining behavior substitution, 

cognitive reinforcement, goal setting, problem solving, acquiring social support and addressing 

issues regarding bullying.   

 

Ethical approval: 

Ethical approval was granted by Leeds West National Health Service Research Ethics 

Committee, Leeds, UK.  All children and parents provided informed written consent and 

verbal assent.  

 

Anthropometric and body composition measures:  

Body mass was measured to the nearest 0.01 kg using calibrated electronic scales (Tanita 

TBF-310 Tanita Corp, Tokyo, Japan). Height was measured to the nearest 0.1 cm using a 

floor-standing Seca stadiometer (model 220). BMI was calculated (weight [kg]/ height [m]-2). 

Waist circumference was assessed both at the mid-point (narrowest point between the lowest 

rib and the iliac crest) as recommended by the International Diabetes Federation (IDF). 

Bioelectrical impedance analysis (BIA) measures were made using a Tanita TBF-310 (Tanita 

Corp, Tokyo, Japan).  BIA estimated total body water and fat mass were obtained using the 

inbuilt standard manufacturer equations (19). Blood pressure was measured using a mercury 

sphygmomanometer (Mercurial BK1001) on the left arm. All individuals sat quietly for 5 

minutes prior to measurement. A single measurement was taken in the semi-supine position. 

In a sub-sample of participants (2006 cohort), a digital blood pressure monitoring device as 

opposed to manual method was used (Omron HEM-773AC,UK). Measurement protocols 

defined the appropriate cuff size to be used in all measurements.  
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Biochemical measurements:  

Fasting blood samples (12-13.5 hours) were drawn into appropriate BD Vacutainer™ tubes 

by venepuncture. Analyses for lipids, glucose and insulin were undertaken at the Department 

of Clinical Biochemistry, Leeds General Infirmary, UK, using routine clinical assays. Insulin 

was analyzed by an ADVIA chemiluminescent sandwich immunoassay using a  monoclonal 

mouse anti-insulin antibody. The intra-assay coefficient of variation for insulin was 3.5%. 

Fasting blood glucose and insulin values were used to calculate homeostatic model 

assessment for insulin resistance score (HOMA-IR), defined as fasting blood glucose  

(mmol·L-1) × insulin (mU·L-1)/22.5, and used as a surrogate measure of insulin resistance 

(20).  

 

Apolipoprotein B: 

Apolipoprotein B (Apo B) was analyzed at the Department of Clinical Sciences, Manchester 

Royal Infirmary, UK, by a sandwich ELISA technique, employing a goat anti-human apoB 

antibody (Abcam ab7616, Cambridge) and HRP-labelled goat anti-human apo B (Abcam 

ab20047). Following incubation with horse radish peroxidase substrate (Sigma-Aldrich P-

9187) colour development was measured at 490nm on a Dynatech MR 7000 Plate Reader. 

The within-batch coefficient of variation was 8.7% and the between-batch coefficient of 

variation was 9.9%.  
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LDL subclass measurement:  

LDL subclasses were measured in the Carnegie Research Institute, Leeds Metropolitan 

University, by iodixanol gradient ultracentrifugation and digital photography (21). Briefly,  1.52 

ml of plasma was added to 0.4 ml of 60% w/v iodixanol (Axis Shield, UK) and stained with 

coomassie blue (50mg/ml in phosphate buffered saline.  This was layered under 3.4 ml of 

iodixanol 9% (w/v) in Beckman Optiseal tubes. Tubes were housed in a Beckman NVT 65.2 

rotor and centrifuged at 65,000 rpm for 2.5 hrs. A Nikon digital camera D-100 was used to 

photograph the optiseal™ tubes and these images were downloaded into gel scan software 

(Total Lab, Non Linear Dynamics, UK). The method was calibrated on-site to determine a 

migration distance (Rf) cut-off for a density of 1.028 g/ml. Following ultracentrifugation, each 

tube was analysed using gel scan software to determine the percentage area under the 

curve. The proportional area under the curve (AUC) ≥1.028g/ml indicated the relative 

distribution and proportion of small, dense LDL particles, expressed as a percentage. This is 

referred to as percentage LDL pattern B. In contrast, AUC <1.028g/ml indicates the relative 

distribution and proportion of large, buoyant LDL particles. This is referred to as percentage 

LDL pattern A. The proportion of LDL band B allows the classification to LDL pattern 

phenotypes. A percentage abundance <40%, 40-50% and >50% indicated patterns A, I and B 

respectively (21). This method has been validated against both salt density gradient 

ultracentrifugation and gradient gel electrophoresis (21).  

 

Statistics:  

All data were assessed for normality of distribution using skewness and kurtosis values. TG,  

insulin and leptin were logarithmically transformed prior to analysis. Pre-intervention sex 

differences in anthropometric or cardio-metabolic risk factors were established by 
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independent T test. Paired T tests and the Wilcoxon T test were used to determine the 

significance of pre to post mean differences for parametric and non-parametric data, 

respectively. Analysis of covariance (ANCOVA) was used to examine mean differences in 

metabolic variables between boys and girls in the response to intervention after adjustment 

for pre-intervention differences in these variables (SBP, TG and LDL peak particle density 

and percentage LDL pattern B).  

One-way analysis of variance was used to establish the differences in metabolic responses 

according to age, waist circumference and HOMA-IR median values. Partial correlation co-

efficients (adjusted for age) were used to assess the relationships between continuous 

variables. Spearman correlation coefficients assessed the relationships between sex and 

continuous data.  

Stepwise multiple regression analyses were conducted to predict changes in LDL peak 

particle density and percentage LDL pattern B. The number of independent predictors relative 

to cases were  1:25 or 1:19 for LDL peak particle density and percentage LDL pattern B, 

respectively. Independent variables entered into the regression model for LDL peak particle 

density included sex, changes in waist circumference and Ln TG. Independent variables 

entered into the regression model for percentage LDL pattern B, included sex and changes in 

waist circumference, Ln TG and HOMA-IR which all significantly correlated (partial 

coefficients) with the dependent variable. Stepwise regression methods for predictors of both 

LDL peak particle density and percentage LDL pattern B were undertaken using change 

(delta) values. All analyses were performed on SPSS (version 14.0) and statistical 

significance was assumed at p<0.05.   
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Results: 

Anthropometric and cardio-metabolic risk factors in sex specific groups are shown in Table 1. 

There were significant (p<0.05) pre- intervention sex differences in SBP 125 ± 16 vs. 118 ± 10 

mmH;, TG 1.25 ± 0.61 vs. 1.02 ± 0.39 mmol·l-1; LDL peak particle density 1.026 ± 0.003 vs. 

1.024 ± 0.002 g·ml-1; and percentage LDL pattern B, 38.9 ± 15.3 vs. 30.3 ± 7.7% in boys and 

girls, respectively. There were no significant differences between boys and girls in the 

metabolic responses to lifestyle intervention (after adjustment for pre-intervention 

differences). There were highly significant reductions (p<0.001) in body mass, BMI, fat mass 

and waist circumference (Table 1). There were also highly significant (p<0.01) reductions in 

SBP, TC, LDL-c, TG, HDL-c, LDL peak particle density, percentage LDL pattern B, apo B, 

glucose, insulin and HOMA-IR following weight loss (Table 1).  

 

Changes in metabolic responses to acute weight loss were also evaluated in individuals 

dichotomised above or below the median HOMA-IR value of 3.2. Whilst more insulin resistant 

participants had significantly larger decreases in waist circumference (-6.4 ± 3.7 vs. -4.4 ± 6.4 

cm, p<0.05) and fasting insulin concentrations  (-9.3 ± 8.3 vs. -0.1 ± 4.3 mU·L-1, p<0.001), 

there were no significant differences evident in lipoprotein-lipids, specifically TG.  

Furthermore, there were no significant differences in metabolic responses in individuals 

dichotomised above or below the median of waist circumference or age (data not shown). 

After adjustment for age, there were significant correlations between changes in waist 

circumference, Ln TG and Ln insulin; waist circumference and LnTG (r=0.25, p=0.05), waist 

circumference and Ln insulin (r=0.27, p<0.05), and Ln insulin and Ln TG (r=0.41.; p<0.001). 

Notably, LDL peak particle density change correlated significantly with changes in Ln TG (r=-

0.47, p<0.001) and sex (r=0.28, p<0.05), but not with waist circumference (r=0.20, p<0.09), 
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Similar correlations existed for percentage LDL pattern B, except for an additional significant 

correlation with HOMA-IR (r=0.27, p<0.05). Stepwise multiple regression analysis 

demonstrated that Ln TG change and sex together accounted for 29.6% of the total variance 

in changes in LDL peak particle density (Table 2, figure 1). Ln TG change accounted for 

24.2%, (p<0.001) and sex accounted for 5.4% of the variability (p=0.013). Waist 

circumference was ommited from the regression model (p=0.451).  

 

Ln TG change and sex together accounted for 21.8% of the total variance in changes in 

percentage LDL pattern B (Table 3, figure 2). Ln TG accounted for 18.3% (p<0.001) of the 

variance in percentage LDL pattern B and sex accounted for an additional 3.5% (p=0.046) of 

the variance (Table 3, figure 2). Waist circumference and HOMA-IR were both ommited from 

the above regression model (p=0.310 and p=0.305, respectively). Further post-hoc stepwise 

multiple regression analysis showed that change in fasting insulin concentration was the only 

predictor of TG change and accounted for 15.6% of the variance, which provides useful 

mechanistic information.  
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Discussion 

The present study has shown that LDL peak particle density and the distribution of LDL 

particles (assessed by the relative proportion of LDL pattern B) moved towards a greater 

proportion of larger and buoyant LDL particles. Decreasing the number of small dense LDL 

particles has also shown to translate into atherosclerotic regression, measured by 

angiography (22). However, this is the first report to show the importance of TG on modifying 

the the relative abundance of small, dense LDL particles simulataneously with changes in 

peak density/size in clinically obese children and adolescents. This is particularly important as 

both LDL characteristics provide independent and cumulative (23). These data are of 

relevance when considering the prevalence of hypertriglyceridemia in comparison to 

hypercholesterolemia. In >4000 6th and 8th graders elevated TG are highly prevalent at ~21%. 

This contrasts LDL-c (>the AAP cut-point of 3.4mmol/L) which was prevalent in only 3.4% of 

individuals (24).  The regression analyses (tables 2-3 & figure, 1-2) illustrate the important 

relationship between changes in TG and changes in LDL peak particle density and the 

percentage of LDL pattern B. Notably, TG change accounted for 24.2% of the variance in LDL 

peak particle density and accounted for 18.3% of the variance in percentage LDL pattern B. 

Kang et al (25). showed a negative correlation (r=-0.54) between TG and LDL peak particle 

size in n=80 obese children. Multiple regressions showed that only TG and HDL-c were 

independent predictors of LDL size, accounting for 31% of the variance. Miyashita et al (26) 

showed that TG was negatively correlated (r=-0.616) to LDL peak particle size and accounted 

for 39.6% of the variance. Notably, only a small number of studies have shown that diet and 

exercise can  modify LDL size. For example, Ferguson et al (14) measured LDL size in 

response to exercise training (four months duration) and showed that percentage body fat (-

1.6%), TG (-0.25 mmol·L-1) and insulin (-25 pmol·L-1) significantly decreased in obese boys 
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Table 2: Summary table of multiple regression models for the prediction of LDL peak particle 

density change. 

 

 

 

 
Predictors included in the model; sex, waist, Ln TG 
 
 
Table 3: Summary of multiple regression models for the prediction of percentage LDL pattern 

B change. 

 Adjusted r2 Beta p 
Model 1    
Log TG 
 
Sex 
 

 
0.218 

0.408 
 

p<0.001 

0.217 p=0.046 

 

and girls of varying ethnicities. Despite these cardio-metabolic changes, LDL size showed no 

mean change (p=0.83), despite the change in untransformed TG being inversely correlated to 

changes in LDL size r= -0.38, p=0.02 (14). Kang et al. (15) randomly assigned obese children 

to either lifestyle education or exercise and lifestyle education. IAAT, TG and insulin 

decreased simultaneously (-42cm-3 -0.22 mmol·L-1 and -18 pmol·L-1) respectively) in the 

combined group and LDL size increased by 4.18Å. The metabolic inter-relationships of 

anthropometrical or body composition variables, TG, insulin and LDL size were not clarified in 

these studies using multiple regression analyses. In contrast to our findings, both these 

studies, did not evaluate the distribution or relative abundance of small dense LDL particles.    

 

 Adjusted r2 Beta p 
Model 1    
Ln TG 
 
Sex 

 
0.296 

0.458 p<0.001 
 

0.255 p=0.013 
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Figure 1: A scatter plot representing the relationship between between changes in Ln TG and 

LDL peak particle density. 
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Figure2: A scatter plot representing the relationship between between changes in Ln TG and 
percentage LDL pattern B. 
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Despite the highly significant role of TG in modifying LDL peak particle density and LDL 

pattern B in our study,, changes in  waist circumference and HOMA-IR did not provide an 

independent contribution to changes in LDL peak particle density or percentage LDL pattern 

B. The relationship between insulin sensitivity, LDL peak particle density and percentage LDL 

pattern B is exerted via improved TG metabolism, and therefore HOMA-IR was not significant 

in regression analyses. In an elegant study of VLDL-LDL kinetics, Bioletto et al (27) 

conducted multiple regression analyses and showed that insulin sensitivity accounted for 37% 

of the variance in TG rich VLDL1 secretion, but only TG (not insulin sensitivity) was a 

predictor of small dense LDL, suggesting that the mass and activity of TG metabolising 

enzymes (lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein) are critical in  

the generation of small, dense LDL. However, our data indicate that the decrease  in TG was  

partially mediated by a significant increase in insulin sensitivity. 

    

There are some inherent limitations in our study. The study group was  heterogeneous in age, 

obesity status and sexual maturation. We assessed the changes in metabolic risk according 

to median age (14.5 years) and found no significant differences in the metabolic response to 

intervention. Furthermore, there was no significant differences in metabolic responses to 

weight loss according to those above or below the median waist circumference. Furthermore, 

we were not able to consider the effect of differences in sexual maturity within this cohort. 

However, published data are somewhat inconsistent on the effect of sexual maturation on 

blood lipids in obese adolescents. In one study, TG levels did not change during puberty in 

both sexes (28), whereas dyslipidemia worsened at the onset of puberty and then remained 

stable during all other pubertal stages(29). 
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In the present study, our measure of insulin sensitivity was limited to fasting insulin or HOMA-

IR. However, both variables have been shown to be highly correlated with more invasive and 

precise measures of  insulin sensitivity and appear valid in obese children and 

adolescents(30). It is also important  that IAAT was not directly quantified in the present 

study. The number of participants is relatively small for examining independent associations 

using multivariate analyses. However, we limited the number of independent variables 

entered within multivariate models to three or four, which is appropriate. The present study 

was not randomised and did not recruit a comparison or control group of participants, 

although the efficacy of this programme has been reported. However, in contrast to previous 

studies (8-12) we have used a standardized acute or “immersion” lifestyle intervention 

incorporating both substantive calorie restriction and physical activity. This approach may be 

most appropriate to assess the acute metabolic inter-relationships associated with weight 

loss. A recent study has shown the efficacy of weight maintenance on cardio-metabolic risk 

factors (31). Further studies need to assess the durability of changes in LDL characteristics 

with weight stabilisation and further weight loss  

 

Conclusion:  

This is the first study providing insight into the potential mechanisms by which acute lifestyle 

modifications improves the atherogenic lipoprotein phenotype in clinically obese children and 

adolescents. 
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