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ABSTRACT 

Background: Exercise-induced bronchoconstriction (EIB) describes the phenomenon of 

transient airway narrowing in association with physical activity. Although it may seem likely 

that EIB would have a detrimental impact on athletic performance this has yet to be established. 

Objectives: Therefore, the aim of this review is to provide a systematic appraisal of the current 

status of knowledge regarding EIB and exercise performance and to highlight potential 

mechanisms by which performance may be compromised by EIB. Data sources and study 

selection: PubMed/Medline and EBSCO databases were searched up to May 2014 using the 

search parameter: [(‘exercise’ OR ‘athlete’) AND (‘asthma’ OR ‘bronchoconstriction’ OR 

‘hypersensitivity’) AND ‘performance’]. This search string returned 243 citations. After 

systematically reviewing all of the abstracts, 101 duplicate papers were removed, with 132 

papers excluded for not including an exercise performance outcome measure. Results: The 

remaining ten studies that met the initial criteria were included in this review; six evaluated the 

performance of physically active individuals with asthma and/or EIB while four assessed the 

effects of medication on performance in a comparable population. Conclusion: The evidence 

concludes that whilst it is reasonable to suspect that EIB does impact athletic performance, 

there is currently insufficient evidence to provide a definitive answer.  

Key points: 

 Further work is required to establish the impact of exercise-induced 

bronchoconstriction on athletic performance. 

 Future studies should address the impact of sport-specific protocols that are conducted 

in provocative environments. 

 Disease severity and athletic standard need to be accounted for in the interpretation of 

future results. 
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1. BACKGROUND 

At the London 2012 Summer Olympic Games, first and third place across all athletic track 

events were separated by 1% of the winner’s time [1]. Tiny margins decide success in elite 

sport and any small impingement on the ability of an athlete to perform maximally can affect 

competition outcome.  

The capacity of the cardiovascular system is generally considered to be the limiting factor 

underpinning peak aerobic exercise performance [2], whilst in contrast the respiratory system 

is usually regarded as over-engineered for the demands during intense exercise [3].   

Despite this, it is now established that a significant proportion of elite athletes exhibit an 

‘abnormal’ airway response to intense exercise exposure. More specifically, up to half of 

certain cohorts of elite athletes such as swimmers and cross country skiers, appear to develop 

a post exercise transient narrowing of the airways [4]. This phenomenon, termed exercise-

induced bronchoconstriction (EIB), can occur either in the presence or absence of other 

characteristic features of asthma [5]. Indeed, EIB in elite athletes has a distinct pathogenesis 

and athletes frequently exceed normal resting lung function [6]. Moreover it is common to 

encounter athletes with a significant reduction in lung function post exercise who perceive few 

respiratory symptoms.  

It is now recognised that endurance athletes are susceptible to the development of airway 

dysfunction yet still win a disproportionately high percentage of Olympic medals [7, 8]. 

However, there is currently a dearth of scientific literature specifically addressing the impact 

of EIB on exercise performance. Although several studies have aimed to address this, many 

fail to account for key confounding factors. For instance, studies permitting a warm-up prior 

to exercise potentially initiates a refractory period resulting in significantly less severe or an 

absence of airway narrowing [9, 10]. 
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Therefore, the aim of this review is to provide an overview of the current status of research in 

this field, characterize potential mechanisms by which EIB may impact exercise performance 

and provide recommendations for future research.  

2. METHODS 

A systematic evaluation of peer-reviewed literature from the PubMed/Medline and EBSCO 

databases was performed from January 1980 until May 2014 using the search parameter: 

[(‘exercise’ OR ‘athlete’) AND (‘asthma’ OR ‘bronchoconstriction’ OR ‘hypersensitivity’) 

AND ‘performance’] (English and humans (Filter), loattrfull text (Filter), not review (Filter) 

AND has abstract (Filter). This initial search returned 243 papers. Two authors independently 

reviewed the titles and abstracts of potential studies and subsequently screened full-text study 

reports for inclusion. After systematically reviewing the literature, 101 duplicate papers were 

removed, with 132 papers excluded for not including an exercise performance outcome 

measure (Figure 1).  

As research addressing the impact of EIB on exercise performance in elite athletes is relatively 

limited, individuals regularly participating in sport and/or physical activity were considered 

further. Included studies required subjects to have a previous physician diagnosis of asthma 

and/or objective evidence of EIB (i.e. ≥10% fall in FEV1) following bronchoprovocation 

testing. Consequently, ten papers met the initial criteria; six purported to evaluate exercise 

performance in physically active individuals with asthma and/or EIB [11-16] while four 

assessed the effects of medication on performance in a comparable population [17-20]. These 

will be considered in more detail in the subsequent sections and form the basis of this review 

(Table 1). Furthermore, an appraisal of evidence using the Grading of Recommendations, 

Assessment, Development, and Evaluation (GRADE) [21] approach has been provided (Table 

2). 
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3. RESULTS 

3.1 DOES EIB IMPACT ON ATHLETIC PERFORMANCE? 

The limitations to performance during sport are dependent on the nature of the exercise being 

undertaken. It is unlikely that EIB would affect athletic performance during an event lasting 

<1 min. However, during exercise of longer duration and with specific aerobic demands, an 

abnormal airway response could impede performance.  

3.2 Maximal oxygen consumption 

When evaluating an individual’s potential to perform successfully in endurance sport, maximal 

oxygen consumption (VO2max) is often used as a surrogate measure for aerobic or 

cardiovascular capacity. As VO2max is a good differentiator of aerobic performance in a 

heterogeneous group of individuals it is often used to characterize general athletic ability, i.e. 

VO2max for a male individual of average athletic ability is ~45 mL.kg-1.min-1 and it is unusual 

to encounter elite level endurance athletes with a VO2max <65 mL.kg-1.min-1. 

It has been argued that, in asthmatic athletes, VO2max may be limited by factors other than 

cardiovascular capacity; i.e. by processes that slow the delivery of oxygen such as persistent 

airway narrowing, alveolar wall thickening and loss of elastic recoil. Certainly adult patients 

with severe asthma have reduced aerobic capacity [22] and asthmatic children appear to have 

a lower VO2max and running performance than their non-asthmatic peers [23]. 

Despite this, Freeman et al. [14] reported that asthmatic athletes with moderate severity disease 

(i.e. FEV1<50% ) can still achieve a high VO2max (i.e. >60 mL.kg-1.min-1). Moreover, cross-

sectional studies show no significant differences in VO2max between asthmatic and non-

asthmatic runners [11, 13]. Indeed, some studies report higher VO2max in elite-trained asthmatic 

cyclists, when compared with non-asthmatic cyclists [24].  

However, the environment in which exercise is performed is important in the context of EIB. 

Stensrud et al. [15, 16] found that VO2max and peak running speed (Vpeak) was approximately 
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5% greater in adults with EIB (mean VO2max: 49 mL.kg-1.min-1) exercising in a humid 

environment (19.9°C and 95% relative humidity) when compared to results obtained when 

exercising in standard ambient conditions (20.2°C and 40% relative humidity) [16]. Moreover, 

VO2max and running performance was reduced by 6.5% in subjects with EIB exercising in a 

cold environment (-18°C and 39.2% relative humidity) [15]. Whilst these studies provide some 

evidence to suggest EIB has a deleterious impact on exercise performance, it is important to 

note that the study population was replicated, thus limiting the strength of evidence. 

Furthermore, a decrease in the endurance time of healthy physically active subjects has been 

observed during exercise in similar environmental conditions [25]. Moreover, the protocol 

employed was neither a traditional incremental exercise test nor a performance trial; running 

speed was set “by a combination of 95% of estimated maximum heart rate and the test leader’s 

evaluation of exhaustion after eight min” [15, 16]. Finally, athletes recruited for this study were 

well below the level expected for elite or competitive athletes (mean VO2max: 48 mL.kg-1.min-

1). Indeed, only one study has examined VO2max in a cohort of subjects with EIB who could 

truly be considered of competitive athletic ability. Teixeira et al. [11] reported no difference in 

peak oxygen consumption determined by treadmill ramp protocol between untreated EIB 

positive (mean VO2max: 63 mL.kg-1.min-1) and EIB negative (mean VO2max: 64 mL.kg-1.min-1) 

marathon runners.  

This similarity in peak VO2max between subjects with and without EIB is consistent with an 

earlier retrospective cohort study conducted in (n = 137) army recruits [12] where no difference 

in baseline VO2max was observed between EIB positive and EIB negative groups. Moreover, 

performance in a two-mile time trial was not different between groups with both displaying 

similar features of athletic adaptation to the eight-week training programme. 

In contrast to aerobic exercise, there have been no studies to date that address anaerobic 

capacity in athletes with EIB. Whilst Kippelen et al [26] reported no difference in VO2 kinetics 
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between recreationally active EIB positive and trained negative controls during high-intensity 

exercise, no evidence is currently available in elite athletes.  

3.3 Performance trials 

Although VO2max is a good predictor of aerobic exercise performance in the general population, 

the value of VO2max in differentiating performance in a homogenous group of elite athletes is 

relatively limited [27]. This is likely due to contributing factors such as exercise, efficiency 

and motivation.  

Several limitations arise from using an incremental or maximal exercise test as a performance 

outcome measure in trained athletes; specifically, the fact that the nature of the test does not 

reflect the demands of the sporting event.  

Similar to Dickinson et al. [28], we have previously observed a significant improvement in 

lung function following the administration of inhaled salbutamol (400 µg) versus placebo in 

elite soccer players (n = 11) with asymptomatic EIB, however no difference was detected in 

multiple sprint times between trials [29]. In agreement, Kalsen et al. [30] observed similar 

findings in elite swimmers.  

Furthermore, a recent study by Koch et al. [20] addressed the effects of administering 400 µg 

salbutamol on lung function, respiratory parameters and a 10 km time-trial performance in 49 

trained cyclists (VO2max range: 53-85 mL.kg-1.min-1) with (n = 14) and without (n = 25) EIB. 

They observed that although salbutamol improved resting lung function in both groups, no 

difference in performance or perception of effort was detected.  

Whilst it is acknowledged that the evidence to date is extremely limited, there is no published 

data to suggest that EIB limits sport-specific exercise performance.  
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4. MECHANISMS BY WHICH EIB MIGHT IMPACT PERFORMANCE 

There are a number of mechanisms by which bronchoconstriction may hypothetically impede 

athletic performance, however, if there is an impact then this likely arises due to the interplay 

between several factors (Figure 2).  

4.1 Exercise airflow limitation  

In both healthy and asthmatic individuals, a bronchodilatory response has been shown to  occur 

with the onset of exercise [31]. However, it is unlikely that mild bronchodilation is of great 

significance in subjects susceptible to substantial bronchoconstriction (i.e. ≥25% fall in FEV1).  

In the context of EIB, airflow obstruction and symptoms classically develop in the period (e.g. 

5-10 minutes) following exercise. Therefore, it has often been argued that EIB does not impact 

on in-exercise airflow and therefore is not relevant to exercise performance.  

During exercise in healthy subjects, peak expiratory flow occurs close to the middle of the 

expiratory phase of respiration and there is a mild reduction in end-expiratory lung volume 

(EELV). However, in elite athletes who achieve high levels of ventilation there is evidence of 

encroachment of the tidal flow loop on the superimposed forced expiratory flow-limb. 

Moreover EELV may approach or surpass resting functional residual capacity (Figure 3). In 

recreationally active asthmatic individuals, Haverkamp et al. [32] reported an increase in 

average pulmonary resistance for the entire exercise duration and for the majority of subjects, 

expiratory flow limitation was evident. Furthermore, others have shown that EELV increases 

in exercising asthmatics [33].  

Whilst it is accepted that limitations exist in the current methodology and techniques available 

to evaluate the impact of in-exercise airflow limitation [34], it seems possible that changes in 

maximum expiratory flow volume during exercise may influence airflow and the perception of 

dyspnoea experienced by athletes with EIB, as they adopt ventilatory strategies to overcome 

this constraint.  
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4.2 Increased work and oxygen cost of respiratory muscles 

During exercise in healthy subjects, the oxygen consumption of respiratory muscles accounts 

for 5-10% of whole body oxygen consumption [35]. However, alterations in EELV, 

ventilation-perfusion ratio and airway calibre alter the work, and therefore oxygen 

consumption of the respiratory muscles [36].   

In support of this concept, Aaron et al. [35] observed that the oxygen cost of breathing increases 

to 15% of total oxygen consumption in the presence of severe expiratory airflow limitation. 

This increased effort of breathing and associated oxygen cost has two potential consequences 

for exercise performance. Firstly, to drive a higher overall oxygen cost for a given external 

work load and secondly to potentially drive an earlier onset of respiratory muscle fatigue [37].  

Increased respiratory muscle loading may also have a deleterious impact on exercise 

performance via the ‘respiratory muscle metaboreflex’ [38]. Strenuous exercise (>80% 

VO2max) in healthy individuals is associated with a reduction of diaphragmatic force following 

supra-maximal motor nerve stimulation–indicative of diaphragmatic muscle fatigue. This in 

turn may increase sympathetic vasoconstrictor outflow, reducing skeletal muscle blood flow 

[38]. It has been suggested that the restricted blood flow augments locomotor muscle fatigue 

and limits exercise capacity [37].  

Furthermore, the recruitment of accessory respiratory muscles with diaphragmatic muscle 

fatigue has been shown to distort the chest wall and reduce the mechanical efficiency of 

breathing [37]. Therefore transient bronchoconstriction may increase respiratory muscle work 

during exercise resulting in respiratory muscle fatigue, compromised breathing efficiency and 

reduced oxygen availability to the working limb musculature.  

4.3 Dyspnoea and perception of effort 

Dyspnoea describes “a subjective experience of breathing discomfort that consists of 

qualitatively distinct sensations that vary in intensity”, however the precise genesis is complex 
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and remains incompletely understood [39]. It is now established that perceived exertion 

modulates exercise performance in healthy individuals and that the cues for sensation of 

perceived exertion are distinct from those of sense of effort [40]. Ventilation appears to be an 

important contributor to perceived exertion during exercise particularly at higher intensities 

[41].   

It is postulated that dyspnoea begins with a physiological impairment (i.e. airway dysfunction), 

that leads to stimulation of pulmonary and extra-pulmonary afferent receptors; leading to 

afferent feedback where an uncomfortable or unpleasant sensation is perceived (i.e. chest 

tightness) [42]. More specifically, the sensation of dyspnoea may represent a conscious 

awareness of outgoing respiratory motor command. As the brainstem or motor cortex provides 

efferent commands to the ventilatory muscles a copy of this command is sent to the sensory 

cortex. The exchange between the motor and sensory cortex is termed ‘corollary discharge’ 

and is thought to be the mechanism by which conscious perception of effort arises [43]. This 

exchange has been proposed to determine the severity of dyspnoea and perception of effort 

during exercise. It is now possible to obtain surrogate indices of ventilatory drive and load 

imbalance [44] that can be used to characterize dyspnoea. Therefore it seems reasonable to 

posit that any condition that disproportionally increases the effort of breathing to the ventilatory 

load during exercise will amplify the perception of exertion causing premature termination of 

the exercise bout or a moderation of the intensity at which the exercise is performed.  

To date, only one study has addressed the impact of inhaled short acting beta2-agonists versus 

placebo on central nervous system parameters [45]. Whilst no differences were observed on 

psychometric visual analogue scales and psychomotor performance tests between treatments, 

the cohort consisted of non-asthmatic trained triathletes (n = 23) (mean VO2max: 58 mL.kg-

1.min-1) rather than asthmatic subjects.  
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4.4 Ventilation/perfusion mismatch  

It is well recognised that a significant proportion (up to a third in some series) of healthy trained 

endurance athletes exhibit exercise-induced arterial hypoxemia (EIAH); i.e. a drop in oxygen 

saturation defined as mild 93–95% (or 3–4% <rest), moderate 88–93%, or severe <88% [46]. 

Haverkamp et al. [32] demonstrated EIAH during high-intensity exercise in physically active 

asthmatics (mean VO2max: 48 mL.kg-1.min-1 ). The decreased effectiveness of gas exchange in 

this population may be a result of airway inflammation in both the airways and alveolar areas 

leading to a poorer alveolar ventilation-perfusion ratio, smooth muscle constriction, mucosal 

and interstitial oedema with infiltration and closing of the small airways [32].  

Munoz et al. have previously demonstrated that in mild asthmatics, EIB provokes a greater 

ventilation-perfusion imbalance. They proposed that this is primarily due to post exercise 

increases in minute ventilation and cardiac output, benefiting partial pressure of oxygen in 

arterial blood. In addition, ventilation-perfusion imbalance likely reflects uneven airway 

narrowing and blood flow redistribution generating unique ventilation-perfusion patterns 

including the development of areas with low and high ventilation-perfusion ratios [47]. 

Consequently, depending on severity, EIB may cause ventilation-perfusion imbalance and may 

impair the respective uptake and elimination of O2 and CO2 into and from the blood.  

5. EIB TREATMENT AND IMPACT ON PERFORMANCE 

A significant amount of research has been conducted over the past two decades investigating 

how asthma treatment may impact on athletic performance. This is extremely pertinent given 

the fact approximately one fifth of swimmers and cyclists used beta2-agonists at the Summer 

Olympic Games in 2004 and 2008 [7].  

It is now well established that pharmacological (e.g. inhaled corticosteroids in combination 

with a pre-exercise inhaled beta-2-agonists and if required leukotriene receptor antagonist / 

mast cell stabiliser) and possibly non-pharmacological interventions (e.g. fish oil 
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supplementation) are effective in protecting against airway constriction [48]. However, the 

mainstay of treatment for protection against EIB is the administration of an inhaled short acting 

beta2-agonist (e.g. salbutamol) 15 minutes prior to exercise [49].  

5.1 Impact of medication in non-asthmatic athletes 

Bedi et al. suggested that inhaled albuterol may provide a competitive advantage for non-

asthmatic athletes resulting in speculation that beta-2 agonists are performance enhancing [50]. 

However, research to date provides little evidence that inhaled beta2-agonists in prescribed 

doses provide performance benefits in non-asthmatic subjects [51]. A recent systematic review 

and meta-analysis confirmed that no significant effects were detected for inhaled beta2-

agonists on endurance, strength or sprint performance in healthy athletes. However, it was 

highlighted that systemic beta2-agonists may elicit positive effects on physical performance, 

although the quality of evidence is not currently sufficient to provide a definitive answer [52]. 

In contrast, clenbuterol is now prohibited by the World Anti-Doping Agency (WADA) given 

the anabolic effects associated with treatment [53]. 

In a sport-specific context, Sporer et al. [54] observed no effects of 800 µg salbutamol on 20-

km time-trial performance in healthy elite cyclists (mean VO2max: 67 mL.kg-1.min-1).  

In contrast, some researchers have observed performance benefit; Van Baak et al [55] reported 

that 800 µg salbutamol significantly improved time-trial performance in well-trained amateur 

non-asthmatic male cyclists and triathletes (n = 16) by 1.9 ± 1.8% (P<0.05). However, lung 

function increased significantly following administration of salbutamol versus placebo 

suggesting some of the subjects may have had undiagnosed airway obstruction. More recently, 

Decorte et al. [56] observed an increase in muscular endurance following the inhalation of 800 

µg salbutamol. Similarly, Kalsen et al. [30] showed an improvement in arm ergometer sprint 

performance and muscle strength following the inhalation of high doses of beta2-agonists in 

elite swimmers with and without airway hyperresponsiveness. 
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5.2 Impact of medication in asthmatic athletes 

In asthmatic men (mean VO2max: 43 mL.kg-1.min-1) Freeman et al. [19] observed no 

improvements in performance during progressive exercise following nebulization of 5mg of 

salbutamol despite a significant increase in resting and post-exercise FEV1 [19]. Similarly, 

Ingemann-Hansen [57] showed no benefits of salbutamol on VO2max or endurance time to 

exhaustion within a comparable population.  

In contrast, the administration of montelukast, a leukotriene antagonist, has been shown to 

improve physical performance and oxygen pulse while reducing the perception of strain at 

maximal workloads [17, 18]. However, the subjects recruited in these studies were only 

moderately trained individuals (mean VO2max: 44 mL.kg-1.min-1) and even at fatigue did not 

attain a maximal perception of effort score. Thus it is difficult to extrapolate these findings to 

elite athletic performance. 

5.3 Impact of supra-therapeutic medication doses 

In non-asthmatic athletes, Dickinson et al. recently observed no effect on endurance, strength 

or power performance following 6-weeks 1600 µg inhaled salbutamol (WADA daily upper 

limit) [58]. Furthermore, no significant improvement in 5km time-trial performance was 

observed following one dose 1600 µg salbutamol in a comparable population [59]. Irrespective 

of the aforementioned findings, information is currently relatively limited regarding the effect 

of asthma medication administered at supra-therapeutic doses. Indeed long-term use of high 

doses of beta2-agonists have been shown to be highly anabolic in several animal studies and 

increase muscle strength in human studies [60] however this effect has yet to be investigated 

following chronic use of inhaled beta2-agonists. Potentially, very high doses of inhaled beta2-

agonists provide the same performance-enhancing effects observed after oral ingestion [61].  
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6. DISCUSSION 

6.1 Does EIB impact athletic performance?  

This review reveals that it is not currently possible to draw a definitive conclusion as to whether 

EIB impacts athletic performance. Several methodological limitations contribute to this 

conclusion.  

Firstly, the experimental designs of studies conducted to date have failed to adequately address 

the difficulties of studying athletic performance. VO2max is consistently reported as the primary 

outcome measure however the fact that VO2max is a poor predictor of athletic performance is 

often overlooked and sport-specific protocols are more appropriate. For instance, a high 

proportion of elite cyclists administer beta-2 agonists [7] as an ergogenic aid, yet any 

performance impact of this treatment will not be adequately detected by an indoor ramp 

exercise test. 

In the very few studies that have employed a sport-specific challenge, EIB does not appear to 

impact performance [20]. However, it certainly appears that noxious environmental conditions 

(i.e. cold dry air) inhibit maximal aerobic capacity [15, 16]. However, this has yet to be 

determined in a sport-specific challenge. 	

Secondly, the athletic level of subjects varies significantly between studies. This point is 

highlighted throughout this review whereby athletic ability, as determined by VO2max ranges 

from 40-80 mL.kg-1.min-1; i.e. from recreationally active to elite level. The sustained ventilatory 

demand between elite and amateur events differs significantly. When considering exercise 

hyperpnoea is a key determinant of bronchoconstriction in susceptible individuals, 

extrapolating data derived from amateur or recreational athletes to the elite level is clearly not 

appropriate.  

Thirdly, it is unclear whether the research to date has examined the best outcome measure. In 

this review we highlight the fact that central regulation (i.e. the central governor [40]) is a key 
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component dictating peak athletic performance. It is therefore important to note that studies to 

date have focused on physiological surrogates of performance rather than central outputs / 

measures of performance impediment such as rating of perceived exertion during exercise 

tasks.  

6.2 Why do asthmatic athletes appear to outperform non-asthmatic elite athletes? 

Elite level athletes with airway dysfunction have consistently been shown to outperform their 

healthy peers. However as this review highlights, there is no evidence that inhaled beta-2-

agonists enhance athletic performance.  

Explanations for this disparity proposed include the fact that physiological changes / demands 

associated with EIB may represent an ‘extra’ training stimulus that non-asthmatic athletes do 

not experience [7]. Others have suggested that airway dysfunction develops in elite athletes 

throughout the course of their careers by virtue of greater training volume in conjunction with 

chronic exposure to noxious environmental conditions [4] (i.e. those with EIB may have trained 

harder and longer to gain a competitive advantage). Finally, the development of EIB may allow 

mechanical advantages in certain sports such as hyperinflation resulting in improved buoyancy 

and reduced drag co-efficient in swimmers.  

6.3 Recommendations for future research 

Further work is needed to explore the impact of EIB on athletic performance, with due 

consideration of the methodological issues mentioned. More specifically, it is vital that the 

design of future studies addresses the impact of sport-specific protocols that are conducted in 

provocative environments and in a homogenous population of athletes. Outcome measures 

should incorporate metrics of central respiratory drive and the perception of dyspnoea, which 

is likely to be relevant and pertinent to performance at the elite level. Moreover, further work 

is needed to explore the physiological consequences of EIB and asthma medication on in-
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exercise pulmonary performance in sport-specific environments (i.e. using novel techniques of 

airflow limitation).  

Finally, athletes included in future studies, should have a similar severity of disease. The degree 

of impairment to exercise performance is likely to be less in athletes with mild EIB (10 - 25% 

fall in FEV1) when compared to athletes with more severe airflow limitation. This is relevant 

in the context of athletic groups ‘screened’ for EIB, many of whom have a mildly positive 

result to a bronchoprovocation test (e.g. eucapnic voluntary hyperpnoea) and in whom 

treatment recommendations may be made on the underlying premise that this will ‘improve’ 

their performance [62].    

7. CONCLUSION 

In conclusion, the development of EIB may have a deleterious impact on respiratory function 

during peak exercise however the underlying mechanisms and nature of this impediment 

remain to be determined. Whilst it is intuitive that EIB, when untreated, has a detrimental 

impact on elite athletic performance, this has not been established in the literature. Therefore, 

future work needs to establish the impact of bronchoconstriction on athletic performance and 

the development of treatment strategies to overcome this potential limitation.  
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TABLE HEADINGS 

Table 1. Studies evaluating the consequences of exercise-induced bronchoconstriction on 

exercise performance parameters. 

 

Table 2. Studies appraised using the Grading of Recommendations, Assessment, 

Development, and Evaluation (GRADE) criteria [21]. 
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Table 1. 

First Author / Year Population 
 

Diagnosis Methodology 
 

Summary of findings 
 

Performance 
 

    

Freeman et al. 1990 [13] Asthmatic endurance trained 
runners (n = 4); mean ± SD 
VO2max: 56 ± 5  mL.kg-1.min-1 
 
 
Non-asthmatic endurance 
trained runners (n = 4);  mean ± 
SD VO2max: 66 ± 11  mL.kg-

1.min-1 
 

Physician diagnosed asthma Maximal treadmill exercise challenge 
 
Incremental exercise challenge 
 
2-hr constant run at 70% VO2max 

No differences observed in VO2max or running speed 
between asthmatic and non-asthmatic runners 
(P>0.05) 
 

Freeman et al.1990 [14] Asthmatic endurance trained 
runners (n = 16);  mean ± SD 
VO2max: 63 ± 6  mL.kg-1.min-1 

Physician diagnosed asthma Maximal treadmill exercise challenge 
 
Sub-maximal treadmill exercise 
challenge 

Mild to moderate asthmatics can achieve high 
VO2max values comparable to healthy individuals 
 
Severe asthma may inhibit VO2max 
 

Sonna et al. 2001 [12] US Army recruits (n = 137);   
mean ± SD VO2max: 46  ± 1  
mL.kg-1.min-1 

Maximal treadmill exercise challenge  
 
EIB definition: ≥15% fall in FEV1 post 
challenge  

8-week basic Army training course 
 
 

7% of the US Army recuits were diagnosed with 
EIB 
 
EIB did not hinder physical performance gains 
during basic training 
 

Stensrud et al. 2006 [16] Patients with objective evidence 
of EIB (n = 20);   mean VO2max: 
47 mL.kg-1.min-1  

Maximal treadmill exercise challenge 
 
EIB definition: ≥10% fall in FEV1 post 
challenge 

Maximal treadmill exercise challenge 
 
Warm environment (19.9°C and 95% 
relative humidity) 
 
 

Exercising in a humid environment improved 
VO2max and Vpeak in subjects with EIB (P<0.05) 

Stensrud et al. 2007 [15] 
 

Patients with objective evidence 
of EIB (n = 20);  mean VO2max: 
48 mL.kg-1.min-1 

Maximal treadmill exercise challenge 
 
EIB criteria: >10% fall in FEV1 post 
challenge 

Maximal treadmill exercise challenge 
 
Environment:  Ambient conditions 
(20.2°C and 40% relative humidity); 
Cold environment (-18°C and 39.2% 
relative humidity). 

Exercising in a cold environment decreased  VO2max 

and running speed in subjects with EIB (P<0.05) 
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EIB, Exercise-induced bronchoconstriction; VO2max, maximal oxygen consumption; Vpeak, peak running speed; FEV1, forced expiratory volume in one second.  

 
Teixeira et al. 2012 [11] 

 
Elite long-distance runners (n = 
20); mean ± SD VO2max: 64 ± 6 
mL.kg-1.min-1 
 

 
Eucapnic voluntary hyperpnea 
challenge 
 
EIB definition: ≥10% fall in FEV1 post 
challenge 

 
Maximal treadmill exercise challenge 
 

 
25% athletes diagnosed with EIB 
 
No difference was observed  in VO2max between 
athletes with and without EIB 

Medication  
 

    

Freeman et al. 1989 [19] Asthmatic patients (n = 8);  
mean ± SD VO2max: 43 ± 9 
mL.kg-1.min-1 
 
Non-asthmatic controls (n = 8);  
mean ± SD VO2max: 41  ± 6  
mL.kg-1.min-1 

Physician diagnosed asthma 5mg nebulised salbutamol or saline 
placebo administered before a 
maximal exercise challenge 
performed on a bicycle ergometer. 

No difference in maximal workload or VO2max 

during exercise after salbutamol compared with 
placebo in asthmatic subjects (P>0.05) 

 
Steinshamn et al. 2002 
[17] 
 

 
Asthmatic patients with EIB (n 
= 16);  mean ± SD VO2max: 45 ± 
8 mL.kg-1.min-1 

 
Treadmill exercise challenge 
 
EIB  definition : ≥12% fall in FEV1 

post challenge 

 
Maximal incremental exercise 
challenge was performed in ambient, 
sub-zero temperatures  
(-15ºC). 
 
10 mg/day montelukast or placebo 
was adminstered over a 5-day period 
prior to the test. 
 

 
Montelukast reduced maximum post- exercise fall in 
FEV1  (P<0.01) 
 
Montelukast has a beneficial effect on physical 
performance in most adults with EIB 
 

Steinshamn et al. 2004 
[18] 
 

Asthmatic patients with EIB (n 
= 18);  mean ± SD VO2max: 48 ± 
11 mL.kg-1.min-1 

Treadmill exercise challenge 
 
EIB  definition : ≥12% fall in FEV1 

post challenge 

Protocol replicated previous methods 
[17]. 
 
Montelukast: 10 mg/day or 
salmeterol: 50 µg  over a 5 day 
period. 

Montelukast reduced maximum post- exercise fall in 
FEV1 to a greater extent than salmeterol (P<0.001) 
 
Montelukast may have a beneficial effect on oxygen 
pulse, suggesting an improved gas exchange during 
exercise 
 

Koch et al. 2013 [20] Cyclists with EIB (n = 14);  
mean ± SD VO2max: 65 ± 5 
mL.kg-1.min-1 
 
Cyclists without EIB (n = 35);  
mean ± SD VO2max: 66 ± 7 
mL.kg-1.min-1 

Eucapnic voluntary hyperpnea 
challenge 
 
EIB definition: ≥10% fall in FEV1 post 
challenge 

10 km time-trials 60 min after the 
administration of either 400 µg 
salbutamol or 400µg placebo. 

A significant increase in lung function was observed 
after the inhalation of salbutamol in comparison to 
placebo (P<0.001) 
 
Salbutamol did not effect perception of dyspnoea, 
leg exertion or mean power output (P>0.05) 

 
The increase in lung function following the 
inhalation of salbutamol did not translate into an 
increase in 10 km time-trial performance 
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Table 2.  
 
 

 
First Author / Year 

 
Design 

 
Limitations 

 

 
Inconsistency 

 
Indirectness 

 
Imprecision 

 
Other considerations 

 
Overall 
quality 

Performance 
 

       

Freeman et al. 1990 [63] 
 

Observational VO2max is a poor predictor 
of athletic performance  
 
Severity of airway 
obstruction not defined 

No important 
inconsistencies 

Asthmatic  subjects 
recruited rather 
than individuals 
with objective 
evidence of EIB 
 
Standard of 
asthmatic subjects 
below standard 
expected for elite or 
competitive athletes 
(mean ± SD 
VO2max: 56 ± 5  
mL.kg-1.min-1 ) 
 

Low subject 
numbers 

No further considerations Very low 

Freeman et al. 1990 [14]  
 

Observational No control group employed 
 
VO2max is a poor predictor 
of athletic performance 
 
Severity of airway 
obstruction not defined 

No important 
inconsistencies 

Asthmatic  subjects 
recruited rather 
than individuals 
with objective 
evidence of EIB 
 
Standard of 
asthmatic ranged 
from recreational to 
elite level athlete 
 

Low subject 
numbers 

No further considerations Very low 

Sonna et al. 2001 [12] Observational VO2max is a poor predictor 
of athletic performance 
 
Severity of EIB not defined 

No important 
inconsistencies 

Physically active 
army recruits rather 
than athletes  
 
Standard of 
asthmatic subjects 
below standard 
expected for elite or 
competitive athletes 

No serious 
imprecision 

No further considerations Very low 
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(mean ± SD VO2max 

46  ± 1  mL.kg-

1.min-1) 
 
 
 

 
Stensrud et al. 2006 [16] 

 
Randomised 
control trial 

 
Unable to blind study  due 
to environmental 
conditions 
 
No control group employed 
 
VO2max is a poor predictor 
of athletic performance 
 
Severity of EIB not defined 

 
No important 
inconsistencies 

 
Standard of 
asthmatic subjects 
below  standard 
expected for elite or 
competitive athletes 
(mean ± SD 
VO2max: 47 mL.kg-

1.min-1) 
 

 
No serious 
imprecision 

 
No further considerations 

 
Low 

 
Stensrud et al. 2007 [15] 
. 
 
  

 
Randomised 
control trial 
 
 

 
Unable to blind study  due 
to environmental 
conditions 
 
No control group employed 
 
VO2max is a poor predictor 
of athletic performance 
 
Study population replicated 
from previous findings 
(Stensrud, Berntsen & 
Carlsen, 2006) 
 
Severity of EIB not defined 

 
No important 
inconsistencies 

 
Standard of 
asthmatic subjects 
below  standard 
expected for elite or 
competitive athletes 
(mean ± SD 
VO2max: 47 mL.kg-

1.min-1) 
 

 
No serious 
imprecision 

 
No further considerations 

 
Low 

 
Teixeira et al. 2012 [11] 

 
Observational 

 
VO2max is a poor predictor 
of athletic performance 
 
Severity of EIB not defined 
 

 
No important 
inconsistencies 

 
Direct 

 
Low subject 
numbers 

 
No further considerations 

 
Very low 

Medication  
 

       

Freeman et al. 1989 [19] Randomised 
control trial 

VO2max is a poor predictor 
of athletic performance 

No important 
inconsistencies 

Asthmatic  subjects 
recruited rather 

No serious 
imprecision 

No further considerations Low 
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Severity of airway 
obstruction not defined 

than individuals 
with objective 
evidence of EIB 
 
Standard of 
asthmatic subjects 
below standard 
expected for elite or 
competitive athletes 
(mean ± SD 43 ± 9 
mL.kg-1.min-1) 
 

Steinshamn et al. 2002 [17] Randomised 
control trial 
 

No control group employed 
 
VO2max is a poor predictor 
of athletic performance 
 
Severity of EIB not defined 

No important 
inconsistencies  

Standard of 
asthmatic subjects 
below standard 
expected for elite or 
competitive athletes 
(mean ± SD 
VO2max: 45 ± 8 
mL.kg-1.min-1) 
 
 

No serious 
imprecision 

No further considerations Very low 

 
Steinshamn et al. 2004 [18] 
 
 

 
Randomised 
control trial 
 

 
No control group employed 
 
VO2max is a poor predictor 
of athletic performance 
 
Severity of EIB not defined 

 
No important 
inconsistencies  

 
Standard of 
asthmatic subjects 
below standard 
expected for elite or 
competitive athletes 
(mean ± SD 
VO2max: 48 ± 11 
mL.kg-1.min-1) 
 
 

 
No serious 
imprecision 

 
No further considerations 

 
Very low 

 
Koch et al. 2013 [20] 

 
Randomised 
control trial 
 

 
Severity of EIB not defined 

 
No important 
inconsistencies 

 
Direct 
 

 
No serious 
imprecision 

 
No further considerations 

 
Moderate 

EIB, Exercise-induced bronchoconstriction; VO2max, maximal oxygen consumption. 
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FIGURE HEADINGS 

Figure 1. PRISMA flow chart representing search results.  

 

Figure 2. Proposed schematic depicting how exercise-induced bronchoconstriction may 

impact exercise performance. 

 

Figure 3. Maximal flow-volume loops during incremental maximal exercise: (a) endurance 

athlete without expiratory flow limitation; (b) endurance athlete with objective evidence of 

bronchoconstriction.   
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Figure 1.  
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Figure 2.  
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Figure 3.
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