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A Low-Glycemic Index Meal

and Bedtime Snack Prevents
Postprandial Hyperglycemia

and Associated Rises in Inflammatory
Markers, Providing Protection
From Early but not Late Nocturnal
Hypoglycemia Following Evening
Exercise in Type 1 Diabetes

Diabetes Care 2014,;37:1-9 | DOI: 10.2337/dc14-0186

OBJECTIVE

To examine the influence of the glycemic index (Gl) of foods consumed after
evening exercise on postprandial glycemia, metabolic and inflammatory markers,
and nocturnal glycemic control in type 1 diabetes.

RESEARCH DESIGN AND METHODS

On two evenings (~1700 h), 10 male patients (27 = 5 years of age, HbA;. 6.7 =
0.7% [49.9 = 8.1 mmol/mol]) were administered a 25% rapid-acting insulin dose
with a carbohydrate bolus 60 min before 45 min of treadmill running. At 60 min
postexercise, patients were administered a 50% rapid-acting insulin dose with one
of two isoenergetic meals (1.0 g carbohdyrate/kg body mass [BM]) matched for
macronutrient content but of either low Gl (LGl) or high Gl (HGI). At 180 min
postmeal, the LGI group ingested an LGI snack and the HGI group an HGI snack
(0.4 g carbohdyrate/kg BM) before returning home (~2300 h). Interval samples
were analyzed for blood glucose and lactate; plasma glucagon, epinephrine,
interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a); and serum insulin,
cortisol, nonesterified fatty acid, and 3-hydroxybutyrate concentrations. Intersti-
tial glucose was recorded for 20 h postlaboratory attendance through continuous
glucose monitoring.

RESULTS

Following the postexercise meal, an HGI snack induced hyperglycemia in
all patients (mean = SD glucose 13.5 * 3.3 mmol/L) and marked increases in
TNF-a and IL-6, whereas relative euglycemia was maintained with an LGI snack
(7.7 £ 2.5 mmol/L, P <0.001) without inflammatory cytokine elevation. Both meal
types protected all patients from early hypoglycemia. Overnight glycemia was
comparable, with a similar incidence of nocturnal hypoglycemia (n = 5 for both
HGI and LGI).

CONCLUSIONS

Consuming LGI food with a reduced rapid-acting insulin dose following evening
exercise prevents postprandial hyperglycemia and inflammation and provides
hypoglycemia protection for ~8 h postexercise; however, the risk of late noctur-
nal hypoglycemia remains.
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2 Glycemic Index of Postexercise Food

There is a growing evidence base sur-
rounding the wide range of health ben-
efits from regular exercise for type 1
diabetic patients (1). However, exercise
remains the most frequently identified
specific cause of severe hypoglycemia
(2), the fear of which remains the pri-
mary obstacle to patients wishing to en-
gage in regular exercise (3).

Strategies to combat exercise-induced
hypoglycemia, such as manipulating
exercise intensity (4), insulin dose, diet
(5-7), or the order in which various ex-
ercise types are undertaken (8), have
predominantly been tested for morning
exercise (5-7). However, many individu-
als prefer to exercise in the evening be-
cause of study and work commitments
or for social reasons. Unfortunately, ex-
ercise in the evening is associated with
a greater risk of postexercise hypoglyce-
mia (4,9), with low blood glucose levels
likely to occur, particularly nocturnally
(2). Incorporation of evening exercise
safely into the lives of people with type
1 diabetes is thus significantly hampered
by the lack of appropriate evidence nec-
essary for informed self-management
strategies.

We recently demonstrated that meal-
time insulin adjustment, specifically, re-
ducing the dose of rapid-acting insulin
before and after exercise, is vital to min-
imizing the risk of postexercise hypogly-
cemia (5). However, little advice
currently exists on optimal carbohy-
drate types for patients with type 1 di-
abetes who exercise (1). American
Diabetes Association guidance focuses
on the quantity rather than on the com-
position of the carbohydrate to be con-
sumed after exercise (10). Consumption
of ~5 g carbohydrate per kilogram body
mass (BM) is typically recommended for
moderate-intensity exercise (11,12);
however, the food composition is also
an important consideration because
the type of carbohydrate can exert a ma-
jorinfluence on postprandial glycemiain
diabetic patients (13). Meals containing
identical macronutrient compositions
are digested and absorbed at varying
rates, producing a range of glycemic re-
sponses (14). Carbohydrate-rich food
with a low glycemic index (LGI) elicits a
more gradual rise and fall in blood glu-
cose levels compared with their high
glycemic index (HGI) equivalents. As a
result, more favorable postprandial gly-
cemic profiles have been shown after

ingestion of LGI foods in patients with
type 1 diabetes (15-17).

Thus, optimizing postexercise glyce-
mia may be possible by manipulating
the composition of foods and drinks
consumed during this time. The pro-
tracted absorption rates of LGl foods
and drinks may be beneficial for reduc-
ing postprandial hyperglycemia. How-
ever, slower delivery of carbohydrates
to postexercise musculature, and po-
tentially slower rates of muscle glyco-
gen replenishment following exercise
(18,19), may increase the risk of postex-
ercise hypoglycemia (11,20). Inversely,
consuming HGI foods may promote
accelerated muscle glycogen restora-
tion (18,19), reducing the incidence of
postexercise hypoglycemia (11,20).
However, the need to reduce the insulin-
to-carbohydrate ratio may be associ-
ated with postprandial hyperglycemia
following ingestion of HGI food (15,16),
potentially leading to metabolic, hor-
monal, and inflammatory disturbances
(21-23). The aim of the current study
was to examine the influence of the
glycemic index (GI) of a meal and sub-
sequent bedtime snack consumed
after evening exercise on postprandial
glycemia, metabolism, and circulating
inflammatory markers in addition to
nocturnal glycemic control in type 1
diabetes.

RESEARCH DESIGN AND METHODS

Patients

Eligibility criteria were age 18-35
years; a duration of diabetes >2 years;
an HbA,;. <8.0% (64 mmol/mol); an ab-
sence of diabetes-related complica-
tions, including impaired awareness of
hypoglycemia; and insulin therapy alone
without any other medication. Ten male
patients with type 1 diabetes were re-
cruited (mean = SD age 27 =* 5 years,
BMI 25.5 * 0.9 kg/m?, duration of di-
abetes 15 = 6 years, HbA;. 6.7 = 0.7%
[49.9 = 8.1 mmol/mol], Voypeax 52 *
4 mL/kg/min). C-peptide was not mea-
sured. All patients had been treatedon a
stable basal-bolus regimen comprising
insulin aspart and once-daily insulin
glargine for a minimum of 6 months.
Fifty percent of patients were injecting
insulin glargine in the morning and 50%
in the late evening or before bed. All
patients undertook regular and consis-
tent exercise (participating in aerobic-
based exercise for at least 30 min at a
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time at least three times a week). All
patients were familiar with carbohy-
drate counting, administering 1.0 =+
0.7 units of insulin aspart per 10 g of
carbohydrate. All patients successfully
completed the study.

Following approval from the local Na-
tional Health Service Research Ethics
Committee, fully informed written con-
sent was obtained from all patients. Pa-
tients first attended the Newcastle
National Institute for Health Research
Clinical Research Facility exercise labo-
ratory for a preliminary screening visit,
as described by Campbell et al. (5), be-
fore returning on three more occasions.
On visit 1, peak cardiorespiratory pa-
rameters were collected during the
completion of an incremental-maximal
treadmill run protocol, as previously de-
scribed (5,6). Computer randomization
was then used to determine the se-
quence of the two subsequent experi-
mental visits.

Prelaboratory Phase

Continuous Glucose Monitor

Patients were fitted with a continuous
glucose monitor (CGM) (Paradigm Veo;
Medtronic Diabetes, Northridge, CA)
using an Enlite Sensor (Medtronic
MiniMed; Northridge, CA) for a mini-
mum of 48 h before attending the labo-
ratory on each occasion. The Paradigm
Veo provides real-time glucose profiles
as part of an insulin pump. Patients did
not use the continuous subcutaneous
insulin infusion facility, however, but
continued their usual basal-bolus regi-
men. Glucose alerts were set at =3.5
and =16 mmol/L during the pretrial pe-
riod. The high glucose alert was discon-
tinued once patients left the laboratory
after the experimental trials. Sensors
were placed in the posterolateral ab-
dominal region to minimize the physio-
logical time lag between blood and
interstitial glucose (24). Insertion site
was replicated across visits. During sen-
sor wear, patients performed a mini-
mum of four daily capillary blood
glucose tests (GlucoMen LX; Menarini
Diagnostics, Berkshire, U.K.), entering
all values into the CGM device for cali-
bration. Capillary glucose values and not
CGM data were used to inform self-
administered insulin aspart doses.
Downloaded data were retrospectively
processed and analyzed using Carelink
Pro software (Medtronic Diabetes).
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CGM data obtained from each patient
were complete; there were no missing
data streams in CGM recordings. The
mean absolute difference between in-
terstitial glucose and capillary blood glu-
cose meter readings over both trials was
1.4 = 1.1 mmol/L.

Diet and Activity Replication

Over the 24 h preceding main trial visits,
patients replicated their diet (assessed
using weighed dietary recording sheets)
and were instructed to maintain their
normal insulin regimen, with basal
dose standardized (dose, injection site,
and time of injection) across trials. Dur-
ing this time, patients used a pedometer
(Omron Healthcare Europe B.V., Hoofd-
dorp, The Netherlands) to record total
step count. Avoidance of strenuous ex-
ercise was required in the previous 48 h,
with maintenance of similar activity
patterns between trials, which were
separated by at least 7 days. On the
day of the trial, patients were provided
with two standardized meals, a cereal-
based breakfast (sugar-coated corn
flakes, semiskimmed milk, and peaches)
equating to 1.3 g carbohdyrate/kg BM
(549 = 46 kcal) and a pasta-based lunch
(pasta, tomato-based sauce, cheddar
cheese, olive oil) equating to 1.3 g
carbohdyrate/kg BM (968 * 62 kcal).
Meal composition was based on the ha-
bitual dietary patterns of patients with
type 1 diabetes and current recommen-
dations for exercise in diabetic patients
(11,12). When combined with meals pro-
vided in the laboratory during experimen-
tal trials, total dietary intake across the
day was calculated to constitute ~5.0 g
carbohdyrate/kg BM, with a macronutri-
ent content consisting of 77% carbohy-
drate, 12% fat, and 11% protein (11,12).

Testing Procedure

Patients arrived at the laboratory in the
late afternoon (~1700 h), replicating
their start time across conditions. A
12-mL resting venous blood sample
was taken of which 20 pL were used
for the immediate quantification of
blood glucose and lactate (Biosen C-
Line; EKF Diagnostic GmbH, London,
U.K.) and 10 plL were analyzed for he-
moglobin and hematocrit (Hemo Con-
trol; EKF Diagnostic GmbH) used to
correct for changes in plasma volume
(25). The remaining sample was mea-
sured by equal aliquots into lithium-
heparin and serum (Vacuette; Greiner

Bio-One GmbH, Kremsmiinster, Austria)
separation tubes; centrifuged for 15 min
at 3,000 rpm at 4°C; and stored at —80°C
for retrospective analysis of serum
rapid-acting insulin analog (Invitron In-
sulin Assay; Invitron, Monmouth, U.K.)
(see West et al. (6) for details of assay
cross-reactivity), cortisol (Cortisol Pa-
rameter Assay Kit; R&D Systems, Roche
Diagnostics, West Sussex, U.K.), nones-
terified fatty acids by colorimetric assay
(RANBUT; Randox Laboratories, London,
U.K.), and B-hydroxybutyrate by D-3-
hydroxybutyrate kinetic enzymatic
assay (RANBUT, with a lower limit of de-
tection of 0.004 mmol/L) and of plasma
glucagon (Glucagon EIA; Sigma-Aldrich,
St. Louis, MO), adrenaline (CAT ELISA;
Eagle Biosciences, London, U.K.), inter-
leukin-6 (IL-6) (Human IL-6 Quantikine
ELISA; R&D Systems, Roche Diagnostics),
and tumor necrosis factor-a (TNF-a)
(Human TNF-a Quantikine ELISA; R&D
Systems, Roche Diagnostics). The coef-
ficient of variation was <10% for all
biochemical analyses.

Immediately after the resting sample,
patients were administered a 25% (2.0 =
0.4 units) dose (i.e., a 75% reduction) of
insulin aspart into the abdomen, with
theinjection site standardized across tri-
als as equidistant between the iliac crest
and naval based on current recom-
mendations (5,6,26). Patients then
consumed a pre-exercise carbohydrate
bolus (sugar-coated corn flakes, semi-
skimmed milk, and peaches) equating
to 1.0 g carbohdyrate/kg BM (423 *
37 kcal) within a 5-min period (5).

Patients remained at rest for 60 min
following consumption of the pre-
exercise carbohydrate bolus. On 60 min,
a blood sample was drawn immediately
before commencing 45 min of treadmill
(Woodway, Weil am Rhein, Germany)
running at a speed calculated to elicit
70% of their Voy,eak, an intensity falling
within recommendations of the Ameri-
can College of Sports Medicine (27)
for diabetic patients who exercise.
Breath-by-breath respiratory parame-
ters (Metalyzer 3B; CORTEX, Leipzig,
Germany) and heart rate (S810; Polar,
Kempele, Finland) were continuously
recorded during exercise. Immediately
following cessation of exercise, a blood
sample was taken, with subsequent
samples taken at 15, 30, and 60 min
postexercise. At 60 min postexercise,
patients were administered a 50%
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(4.0 £ 0.8 units) dose of insulin aspart
into the contralateral abdominal site to
the pre-exercise insulin aspart injection
site (5). With this, in a random and coun-
terbalanced fashion, patients were as-
signed to consume one of two evening
meals calculated to be of either LGl or
HGI. Following this meal, patients con-
tinued to rest with further blood sam-
ples taken every 30 min for 180 min. All
patients then consumed a trial-specific
bedtime snack of either LGI or HGI. Pa-
tients could drink water ad libitum
throughout. All patients received trans-
portation home and were instructed to
continue their usual basal insulin dose
and replicate sleeping patterns as best
as possible across trials. Hypoglycemia
was defined as a blood or interstitial glu-
cose concentration of =3.9 mmol/L, and
hyperglycemia was defined at =8.0
mmol/L (5).

Meal Composition and Bedtime Snack
All meals were preprepared by the re-
search team and comprised food to
elicit either an HGI or LGI response.
The beverage component of the meal
and bedtime snack contained either
HGI maltodextrin or LGl isomaltulose
(Palatinose; BENEO, Mannheim, Ger-
many) and was calculated to be a 10%
solution. We calculated the Gl of each
meal using methods described by
Brouns et al. (28) in 10 nondiabetic con-
trol participants. Patients consuming
the LGI evening meal subsequently
consumed the LGI bedtime snack, and
those consuming the HGI evening meal
consumed the HGI snack. Both even-
ing meals and bedtime snacks were
matched for macronutrient content
and palatability and had negligible fi-
ber content (Supplementary Table 1).
Bedtime snacks equated to 0.4 g
carbohdyrate/kg BM (29).

Calculation of Substrate Oxidation
During exercise, at 15 min before the
postexercise meal, and at 45, 105, and
165 min following the postexercise
meal, expired gases were analyzed
(Metalyzer 3B). Substrate oxidation
rates and energy expenditure were
determined from Vo, and CO, pro-
duction values using stoichiometric
equations (30).

Postlaboratory Period
While wearing a CGM, patients contin-
ued to self-record and replicate their
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diet throughout both trials using a
weighed food diary. Patients were re-
quired to report additional carbohy-
drate ingestion and administration of
corrective doses of insulin aspart, and
instructed to keep meal times as well
as insulin aspart and insulin and glargine
doses consistent across trials.

Data Analysis

Statistical analysis was performed us-
ing PASW Statistics 18 software (IBM,
Armonk, NY). A repeated-measures
ANOVA on two levels (condition and
time) was conducted, with Bonferroni-
corrected pairwise comparisons and
paired sample t tests used to examine
time and condition effects, respectively.
Statistical significance was accepted at
P < 0.05. Area under the curve was cal-
culated using the methods described by
Wolever and Jenkins (31).

RESULTS

Prelaboratory Phase

Glycemic control was comparable over
the 24 h before the patients’ arrival at
the laboratory for both experimental tri-
als (CGM mean glucose: HGI 7.9 = 2.2
mmol/L, LGl 7.9 = 2.2 mmol/L, P =
0.465; total interstitial glucose area un-
der the curve: HGI 11,277 + 3,208
mmol/L/min, LGl 10,971 * 3,186
mmol/L/min, P = 0.215). Dietary intake

22.01
20.04
18.0+
16.0
14.01

12.04

10.04

Blood glucose (mmol/L)

8.0

4.04

was also similar during the 24 h before
both trials. There were no differences in
total energy consumed (HGI 2,143 =+
673 kcal, LGl 2,358 *= 668 kcal, P =
0.508), with similar contributions from
carbohydrates (HGI 51 = 11%, LGl 46 =
10%, P = 0.896), fat (HGI 30 = 9%, LGl
32 £ 11%, P = 0.301), and protein (HGI
20 = 5%, LGl 22 *+ 10%, P = 0.556). The
total amount of insulin administered
(HGI 26 = 13 units, LGl 26 £ 14 units,
P = 0.609) and levels of activity (HGI
6,949 * 105 steps, LGl 7,041 + 118
steps, P = 0.372) were comparable
over the 24 h before each trial.

Laboratory Phase
There was a significant time effect (P <
0.001), condition effect (P = 0.05), and
condition X time interaction for absolute
blood glucose concentrations (P < 0.001)
(Fig. 1). Blood glucose values were com-
parable before the standardized pre-
exercise carbohydrate bolus and insulin
injection and after the 1-h pre-exercise
rest period during both experimental tri-
als (Fig. 1). Serum insulin and all other
hormone and metabolite levels were sim-
ilar at rest and immediately before exer-
cise (P > 0.05) (Fig. 2A and B, Table 1).
Patients exercised at a similar inten-
sity (%V0speak: HGI 77 *+ 0.09, LGl 74 =
0.09, P=0.352; peak heart rate: HGI 80 =
6 beats/min; LGl 79 = 7 beats/min,
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P = 0.631). Patients ran at a velocity of
10.1 = 1.0 km/h, completing 7.6 * 0.7
km and expending 718 * 143 kcal. Sim-
ilar peak lactate levels were elicited im-
mediately postexercise (HGI 4.1 + 2.4
mmol/L, LGl 4.2 = 2.7 mmol/L, P =
0.137) (Table 1). Exercise induced a sim-
ilar decrease in blood glucose from pre-
exercise concentrations (HGI —5.4 =
1.6 mmol/L, LGI —6.8 = 1.3 mmol/L,
P = 0.733) (Fig. 1), such that immedi-
ately following the cessation of ex-
ercise, blood glucose values were
comparable to baseline under both con-
ditions (P = 0.304) (Fig. 1). There were
no incidences of hypoglycemia during
exercise, with all patients completing
the exercise protocol on both occa-
sions. Immediately before the postexer-
cise meal, serum insulin concentrations
were similar to resting concentrations
(P > 0.05) (Table 1), as were all other
hormone, metabolite, and cytokine lev-
els (P > 0.05) (Fig. 2A—C, Table 1).

Postexercise Intervention

Serum insulin peaked similarly at 60 min
following the postexercise meal before
declining under both conditions, with
concentrations returning to resting val-
ues at 180 min (P > 0.05) (Table 1).
Blood glucose levels increased over the
180 min after both postexercise meals,
but this was significantly attenuated

Rest 60

T T

0 15 30

T T

Sample Point (min)

Meal 30 60 920

120 150 180

Figure 1—Time-course changes in blood glucose from rest, during exercise, and over 3 h postexercise. Data are presented as mean = SD (error bars).
H, LGI; @, HGI; [0 and ), significant difference from premeal concentrations (P =< 0.05). *Significant difference between conditions (P < 0.05).
Shaded area indicates exercise; dashed line indicates postexercise meal intervention. Note that the test meal and insulin were administered
immediately following rest and 60 min postexercise.
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5

=)
in
1

Rest 60 0 15 30 Meal 30 60 90 120 150 180

Sample Point (min)

B 16.01 T

IL-6 (pg/mL)

6,04

4.04

2.0

0.0-

Rest 6 0 15 30 Meal 30 60 90 120 150 180

Sample Point (min)
C 1oy
9.0
8.04
7.0

6.0

TNF-o (pg/mL)

Rest 60 0 15 30 Meal 30 60 90 120 150 180
Sample Point (min)

Figure 2—Time-course changes in serum B-hydroxybutyrate concentration (A), plasma IL-6
concentration (B), and plasma TNF-« concentration (C). Data are presented as mean % SD (error
bars). B, LGI; 4, HGI; [J and , significant difference from premeal concentrations (P < 0.05).
*Significant difference between conditions (P = 0.05). Shaded area indicates exercise; dashed
line indicates postexercise meal intervention. Note that the test meal and insulin were admin-
istered immediately following rest and 60 min postexercise.

under LGl compared with HGI (P < 0.05)
(Fig. 1). Over this time, all patients were
protected from hypoglycemia under
both conditions. However, all patients
were exposed to hyperglycemia after
the HGI meal, whereas this was limited
to four patients after LGI. Moreover, hy-
perglycemia was less pronounced
(mean peak blood glucose: LGl 8.8 *
3.1 mmol/L, HGI 15.9 *= 3.8 mmol/L)
and tended to be only transient (time
spent while hyperglycemic: LGl 81 =
43 min, HGI 165 *= 32 min) following
the LGl meal. On leaving the laboratory,
blood glucose remained significantly
greater after the HGI meal (HGI 12.7 =
4.8 mmol/L, LGl 7.5 = 2.5 mmol/L, P =
0.004) (Fig. 1), with more patients leav-
ing the laboratory hyperglycemic (n =9
HGI; n = 4 LGI).

Counterregulatory hormonal and
metabolic responses are presented in
Table 1, with inflammatory cytokine
and 3-hydroxybutyrate responses shown
in Fig. 2A—C. There were no differences
in serum B-hydroxybutyrate concen-
trations between the two experimen-
tal trials (P > 0.05) (Fig. 2A). Following
the postexercise meal, IL-6 and TNF-a
concentrations significantly increased
from rest and premeal concentrations
in the HGI trial and were significantly
greater than LGI during the postpran-
dial period (P < 0.05) (Fig. 2B and ().
During this period, concentrations in
the LGI trial were significantly lower
than baseline measures (P < 0.05)
(Fig. 2B and C). There were no differen-
ces in substrate oxidation responses
during the postexercise meal period of
both trials, with carbohydrate (HGI
145 + 4.1 g/h, LGl 14.7 = 4.0 g/h, P =
0.927) and lipid (HGI 3.0 = 01.2 g/h, LGI
3.1 = 1.2 g/h, P=0.809) oxidation rates
similar.

Postlaboratory Phase

Late Evening

After leaving the laboratory, interstitial
glucose concentrations in the HGI trial
were significantly greater than LGl in the
time before sleep (Fig. 3), with individ-
ualized mean peak interstitial glucose
levels higher (HGI 18.3 = 4.1 mmol/L,
LGl 13.9 *= 2.5 mmol/L, P = 0.009).

Nocturnal Glycemic Control

During sleep, falling glucose levels were
evident under both conditions such that
concentrations became comparable 8 h
after exercise (P > 0.05) (Fig. 3). Five
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Table 1—Serum insulin counterregulatory hormonal and blood metabolite responses to postexercise meals of varying GIs

ANOVA P value

T*C

30 Pre-meal 30 60 90 120 150 180

15

Exer.

60

Rest

Serum insulin

(pmol/L)

HGI
LGI

<0.001 0.992

94 * 56
98 * 47

*+ 53

95

127 * 69%
126 + 54%

179 + 101% 180 * 97% 143 *+ 68%
144 + 57%

172 + 99%

105 * 49
102 * 42

138 * 62 128 + 59

201 * 1121

137 £ 58

126 + 47
124 + 52

*

105 * 49

174 + 97%

137 = 64 125 = 57

203 * 1081

150 * 64

Plasma glucagon

(pg/mL)

HGI
LGI

<0.001 0.306

669 * 286%

690 * 284%
806 = 340

798 * 399
862 * 398

872 * 410t

922 * 437t

953 * 437t
947 * 4811+ 937 * 451t%

833 * 332
816 * 355

760 = 360 768 * 383
818 = 403

792 = 369

682 * 316
658 * 309

591 * 2861

730 = 280
733 = 290

840 * 394

907 * 421t

611 * 2961

Plasma adrenaline

(nmol/L)

HGI
LGI

0.497

0.013

0.08 + 0.08
0.07 * 0.05

0.15+0.12 0.17 £0.07 0.16 = 0.11 0.11 £ 0.12 0.09 = 0.06 0.11 £ 0.09
0.15 £ 0.05 0.13 = 0.10 0.11 *+ 0.07 0.11 * 0.06 0.10 = 0.08

0.15 = 0.10
0.14 = 0.11

0.55 = 0.35t 0.35 * 0.37t

0.54 = 0.40t 0.28 *= 0.32t

0.09 £ 0.05 0.15 £0.10

0.14 = 0.12

0.08 £ 0.06 0.15 = 0.08

Serum cortisol

(nmol/L)

HGI

LGI
Serum NEFA

0.11 = 0.05t+ 0.08 = 0.03tf 0.08 = 0.05t+ <0.001 0.099

0.13 * 0.06%

0.14 *= 0.08
0.18 = 0.10 0.13 = 0.06% 0.12 = 0.05f 0.10 = 0.041#

0.14 * 0.07

0.19 * 0.08

0.28 = 0.061 0.33 = 0.13t 0.24 = 0.09%

0.17 £ 0.09 0.18 = 0.07
0.17 £0.09 0.15 *= 0.05

0.10 £ 0.03+ 0.09 = 0.04%

0.10 * 0.05%

0.24 + 0.11t 0.32 £ 0.161 0.23 = 0.121

(mmol/L)

HGI
LGI

0.514

0.011

0.35 £ 0.43
0.30 £ 0.16

0.27 £ 0.29%

0.27 * 0.36%
0.24 £ 0.16

0.24 £ 0.20+ 0.24 = 0.25%
0.27 £0.22

0.37 £ 0.25

0.35 £ 0.20t 0.43 = 0.37t 0.53 = 0.49%
0.34 £ 0.23t

0.25 £ 0.19
0.27 £ 0.23

0.18 £ 0.15 0.12 = 0.10
0.27 £0.24 0.18 = 0.10

0.27 £ 0.18

0.24 £ 0.16

0.33 £ 0.24 0.39 = 0.32t 0.39 £ 0.33t

Blood lactate

(mmol/L)

HGI
LGI

0.4 = 041 0.001 0.129
0.5

0.4
0.2

0.5 =

*+0.5

0.7

0.8 £ 0.4
11+

*+0.6 0.9 * 0.6
1.0

0.7

1.0 £ 0.9

11
1.0

13 *=

2.1 + 1.5%

1.7

4.1 £ 2.4%

1.1

1.0 0.7
0.9 = 0.2

0.2

1.2 £0.2¢ 0.6

*03 0.3

0.8 = 0.21

1.2 £03 +0.2

0.4

*

4.2 £ 2.7t

1.0 £ 0.6

Data are mean = SD. Test meal and insulin were administered immediately following rest and premeal sample points. Exercise commenced 60 min after rest. C, condition; Exer., exercise; NEFA, nonesterified fatty

acid; T, time. *Significantly different between conditions (P = 0.05). TSignificantly different from rest. $Significantly different from premeal.

patients during the LGI trial and five
during the HGI trial experienced noctur-
nal hypoglycemia. Some patients expe-
rienced multiple bouts of hypoglycemia
(n =10 HGI; n = 8 LGI). Mean interstitial
glucose nadir was similar between con-
ditions (HG1 3.6 = 1.9 mmol/L, LGl 3.4 =
1.7 mmol/L, P = 0.650), as was time
spent in hypoglycemic (P = 0.569), eu-
glycemic (P = 0.705), and hyperglycemic
(P =0.765) ranges (Fig. 3).

Next-Day Glycemic Responses

On waking, interstitial glucose levels
were comparable (HGI 8.5 = 2.8
mmol/L, LGl 8.3 * 2.8 mmol/L, P =
0.614) (Fig. 3), and glycemia remained
similar between conditions for the re-
mainder of the 24-h postexercise
window (P > 0.05). During the postla-
boratory period, total energy consumed
(HGI 719 = 256 kcal, LGI 686 = 289 kcal,
P =0.774) was similar, with contribution
from carbohydrate (HGI 72 + 17%, LGI
64 *+ 26%, P = 0.767), fat (HGI 20 +
15%, LGl 22 + 22%, P = 0.834), and pro-
tein (HGI 8 = 10%, LGl 14 * 19%, P =
0.548) also similar between conditions.
Activity patterns for 24 h after exercise
were comparable (HGI 6,086 * 94 steps,
LGl 6,478 = 112 steps, P = 0.369).

CONCLUSIONS

The aim of this study was to determine
whether manipulating the Gl of foods
and drinks consumed following evening
exercise could modulate postprandial
glycemia and metabolism to provide
protection from postexercise hypergly-
cemia and hypoglycemia in patients
with type 1 diabetes. To our knowledge,
this study is the first to show that con-
sumption of LGI food under conditions
of reduced rapid-acting insulin dosing
after evening exercise improves post-
prandial glycemia, reducing hyperglyce-
mia and concentrations of circulating
inflammatory markers in combination
with providing protection from hypogly-
cemia for ~8 h after exercise. However,
beyond this time, risk of late-onset noc-
turnal hypoglycemia persists, regardless
of the GI of the postexercise meal and
bedtime snack.

We recently demonstrated the im-
portance of reducing the rapid-actingin-
sulin dose administered with the meal
after as well as before exercise to extend
the period of protection from postexer-
cise hypoglycemia (5). Now, we demon-
strate that under these conditions, the
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Figure 3—Time-course changes in interstitial glucose throughout the postlaboratory period. Data are presented as mean = SD. Red trace, HGI; blue
trace, LGI. *Interstitial glucose area under the curve is significantly different between conditions (P = 0.05). Vertical lines indicate nocturnal or
daytime periods. End of nocturnal period indicates when patients awoke.

composition of the postexercise meal
plays an important role in modulating
postprandial glycemia. Blood glu-
cose concentrations were significantly
greater with the HGI than with the LGI
postexercise meal and snack, conse-
quently exposing all patients in the HGI
condition to hyperglycemia during the
laboratory observation period. Con-
versely, the incidence of hyperglycemia
was reduced by 60% after the LGI condi-
tion (40%) versus the HGI condition
(100%). Indeed, in the affected patients,
hyperglycemia was less pronounced and
tended to be only transient and short
lasting after LGl meals. Despite clear
postprandial differences in glycemia be-
tween the two conditions, all patients
were still protected from hypoglycemia
during their time in the laboratory. Pres-
ently, there are relatively few dietary
guidelines to assist individuals with type
1 diabetes in managing postexercise gly-
cemia. However, we have shown that by
consuming an LGI postexercise meal and
drink, postprandial hyperglycemia can be
reduced without exposure to hypoglyce-
mia. This observation is important be-
cause the aim of diabetes management
is to normalize blood glucose concentra-
tions (32), especially when incorporating
exercise into patients’ lives (1).

Given the potential for such large dif-
ferences in postprandial glycemia with

this strategy, we examined this impact
on metabolic, hormonal, and inflam-
matory measures. This is important
because regular exposure to metabolic,
hormonal, or inflammatory distur-
bances could significantly influence
long-term diabetes-related complica-
tions in patients who regularly exercise
(26). Here, we show that meal GI has
significant implications for postprandial
circulating inflammatory markers; spe-
cifically, we demonstrate for the first
time with nonclamp techniques and
replication of free-living conditions
that TNF-a and IL-6 were dramatically
increased following an HGI meal. An
otherwise comparable LGl meal com-
pletely prevented rises in these inflam-
matory cytokines. The clinical relevance
of these findings should not be under-
estimated because offsetting hypergly-
cemia and inflammation is important for
preventing early pathogenic diabetes-
related complications (23). Additionally,
B-hydroxybutyrate concentrations did
not rise significantly during either con-
dition (Fig. 2A), remaining similar to
premeal and resting concentrations.
Basal insulin dose remained unchanged,
and despite a reduction in rapid-acting
insulin dose, circulating insulin con-
centrations remained sufficient for a
suppression in B-hydroxybutyrate pro-
duction (33) and to drive ketone body

disposal (34). Concentrations during
both trial conditions were well below
those deemed clinically significant
(>1.0 mmol/L) (22).

When type 1 diabetic patients exer-
cise in the evening, consumption of a
carbohydrate-based snack before bed
is recommended (29). Blood glucose
was typically within the euglycemic
range before the consumption of the
bedtime snack following LGl but still
hyperglycemic following HGI (LGI ~7.5
mmol/L, HGlI ~12.2 mmol/L). Outside
formal studies, patients within normal
blood glucose range before bed often
choose to raise blood glucose concen-
trations by consuming a carbohydrate-
based snack (29) due to fear of nocturnal
hypoglycemia (35). However, patients
in the hyperglycemic range before bed
may be tempted to administer corrective
insulin units, which in an exercise-induced
insulin-sensitized state (36,37) is likely
to cause a rapid fall in glucose during
the night. Avoidance of the bedtime
snack, and hence missing a valuable
source of carbohydrate before sleep, is
likely to exacerbate the risk of nocturnal
hypoglycemia. Despite large differences
in blood glucose concentrations before
bed following HGI and LGl in the current
study, levels fell in both conditions, be-
coming comparable at 3 h after consum-
ing the bedtime snack, with similar rates
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of nocturnal hypoglycemia thereafter.
This finding indicates the patients are at
risk for late-onset nocturnal hypoglyce-
mia despite the consumption of a bed-
time snack, with a predicted nadir >8 h
postexercise (5,9) and regardless of the Gl
of the snack or blood glucose levels be-
fore bed.

So that we could investigate the im-
pact of the Gl of evening meals and
snacks, patients consumed enough car-
bohydrates (consuming 2.6 g/kg BM
during the evening) to cover the cost
of the bout of exercise, with patients
using ~1.7 g/kg in total during exercise
and with total daily carbohydrate intake
matching current recommendations
[~5.0 g/kg (11,12)], thus establishing a
positive carbohydrate balance. Despite
consuming sufficient carbohydrates for
the recovery of muscle glycogen postex-
ercise and perhaps even consuming
more carbohydrate than is typical, hypo-
glycemia was still encountered late after
exercise in the early hours of the morn-
ing. These findings direct attention toward
the role of basal insulin administration in
avoiding nocturnal hypoglycemia after
evening exercise. Considering that once-
daily insulin glargine administration is as-
sociated with a glucose nadir 4-14 h later
(38,39), not only basal insulin dose but also
the timing of administration may be of
particular importance.

It is important to consider that the
patients in this study were treated
on a basal-bolus regimen; therefore,
outcomes may differ in patients using
continuous subcutaneous insulin infu-
sion therapy. However, the strategies
we used are likely to carry practical
and useful implications, so we suggest
that patients tailor these strategies ac-
cording to their own treatment regimen
and exercising habits. Indeed, this
should not detract from the importance
of the findings because this study shows
for the first time that consuming LGl
foods and drinks in tandem with re-
duced rapid-acting insulin dose follow-
ing evening exercise can play an
important role in normalizing glycemia,
preventing postprandial hyperglycemia
and inflammation, and protecting pa-
tients from postexercise hypoglycemia
for up to 8 h. The clinical utility of these
findings is clear because foods that pa-
tients habitually consume can be easily
exchanged with foods that offer the
same macronutrient content but are of

an LGl (e.g., substituting particular types
of breads, strains of rice, pastas, and
potatoes or sports drinks with various
carbohydrate compositions) to facilitate
more desirable postprandial glycemic
responses. However, it does not seem
that carbohydrate type or total carbohy-
drate intake alone are factors in the de-
velopment of late-onset hypoglycemia
because patients may still be exposed
to nocturnal hypoglycemia following
evening exercise. Future research on
basal insulin adjustment will determine
whether late-onset nocturnal hypogly-
cemia following evening exercise can
be avoided while harnessing the bene-
fits of consuming LGl foods with a re-
duced rapid-acting insulin dose during
the postexercise period.
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