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Abstract 
 
Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced in 

inflammatory conditions, may produce chloramides of glycosaminoglycans, the 

latter being significant components of the extracellular matrix (ECM). This may 

occur through the binding of myeloperoxidase directly to the glycosaminoglycans.  

The N-Cl group in the chloramides is a potential selective target for both reducing 

and oxidising  radicals,  leading possibly to more efficient and damaging 

fragmentation of these biopolymers relative to the parent glycosaminoglycans. In 

this study,the fast reaction techniques of pulse radiolysis and nanosecond laser 

flash photolysis have been used to generate both oxidizing and reducing radicals 

to react with the chloramides of hyaluronan (HACl)  and heparin (HepCl). 

The strong reducing  formate radicals and hydrated electrons were found to react 

rapidly with both HACl and HepCl with rate constants of (1-1.7) x 108 M-1 s-1 and 

(0.7-1.2) x 108 M-1 s-1 for formate radicals and 2.2 x 109 M-1 s and 7.2 x 108 M-1 s-

1 for hydrated electrons, respectively.  The spectral characteristics of the 

products of these reactions were identical and were consistent with initial attack 

at the N-Cl groups, followed by elimination of chloride ions to produce nitrogen-

centred radicals, which re-arrange subsequently and rapidly to produce C-2  

radicals on the glucosamine moiety supporting an earlier EPR study by Rees et 

al. J. Am. Chem. Soc. 125: 13719-13733; 2003.   

The oxidising hydroxyl radicals  also reacted rapidly with HACl and HepCl with 

rate constants of 2.2 x 108 M-1 s-1 and 1.6 x 108 M-1 s-1, with no evidence from 

this data for any degree of selective attack for the N-Cl group relative to the N-H 

groups and other sites of attack. The carbonate anion radicals were found much 

slower with HACl and HepCl than hydroxyl radicals (1.0 x 105 M-1 s-1 and 8.0 x 

104 M-1 s-1, respectively) but significantly faster than with the parent molecules 

(3.5 x 104 M-1 s-1 and 5.0 x 104 M-1 s-1, respectively).These findings suggest that 

these potential in vivo radicals may react in a site-specific manner with the N-Cl 

group in the glycosaminoglycan chloramides of the ECM, possibly to produce 

more efficient fragmentation.  
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This is the first study therefore to conclusively demonstrate that reducing radicals 

react rapidly with glycosaminoglycan chloramides in a site-specific attack at the 

N-Cl groups, probably to produce a 100 % efficient biopolymer fragmentation 

process. Although less reactive, carbonate radicals, which may be produced in 

vivo via reactions of peroxynitrite with serum levels of carbon dioxide ,also 

appear to react in a highly site-specific manner at the N-Cl group. It is not yet 

known if such site-specific attacks by this important in vivo species lead to a 

more efficient fragmentation of the biopolymers than would be expected for 

attack by the stronger oxidising species, the hydroxyl radical. It is clear however 

that the N-Cl group formed in inflammatory conditions in the extracellular matrix 

does present a more likely target for both reactive oxygen species and for 

reducing species than the N-H groups in the parent glycosaminoglycans. 

 

Graphical abstract 
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Introduction 
 
 
The extracellular matrix (ECM) is made up of huge multi-molecular complexes 

with arrays of link proteins and aggrecan molecules along a central hyaluronan 

backbone.  Hyaluronan (HA) is bound by a number of ECM and cell surface 

proteins and is a particularly important component of the ECM [1-5] .HA is 

involved in moderating many cellular processes, including proliferation, migration, 

adhesion and  apoptosis [6-11]. Large molecular mass fragments of HA are 

involved in space-filling and immunosuppressive roles, whilst smaller HA 

fragments have been shown to be pro-inflammatory and angiogenic; 

oligosaccharides may be involved in cell signalling (reviewed in [12]). 

Oxidative damage of the extracellular components by either enzymatic or non-

enzymatic pathways may have implications for the initiation and progression of a 

range of human diseases. These include arthritis, kidney disease, cardiovascular 

disease, lung disease, periodontal disease and chronic inflammation. Oxidative 

damage to HA by reactive oxidative species (ROS) has been the subject of 

numerous studies (reviewed in [13]). The potential mechanism of oxidative 

damage to the ECM and its role in human pathologies has also been discussed 

in a recent review [14]. 

Our previous studies on HA have measured HA fragmentation yields as a 

proportion of quantifiable fluxes of free radicals produced by ionising radiation.  In 

this way, the efficiencies of fragmentation of HA by a range of free radicals and 

ROS, including hydroxyl radicals, carbonate radicals, dibromide and dichloride 

radical anions and peroxynitrite were determined [15,16]. 
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The fragmentation of HA and other glycosaminoglycans has also been 

investigated intensively by Davies and co-workers using both electron 

paramagnetic resonance (EPR) spectroscopy and sensitive PAGE techniques to 

show peroxynitrous acid, carbonate and hydroxyl radicals react largely in a site-

specific process to produce an array of HA fragments, in a “ladder-type display” 

each separated from the neighbour by the molecular mass of the repeating 

disaccharide unit in HA [17,18]. Similar site-selective fragmentation was also 

observed when glycosaminoglycan chloramides (formed through reaction with 

hypochlorite) were reduced by copper (I) ions and superoxide anion radicals 

[19,20].  

The formation of chloramides and chloramines from the reaction of hypochlorite 

with amides and amines respectively was demonstrated in an early study [21] 

and is suggested to be a key process in inflammation, in which hypochlorite (from 

myeloperoxidase) may produce glycosaminoglycan chloramides. In vitro studies 

of the reactions of hypochlorite with glycosoaminooglycans have indeed 

demonstrated that chloramides are produced in yields and rates of reaction 

which are dependent upon both pH and the ratio of hypochlorite to 

glycosaminoglycan concentrations [22, 23]  and have  also shown that such 

derivatives may accelerate the fragmentation of glycosaminoglycans within the 

ECM [22]. Chloramides are weak oxidising agents and are therefore, potential 

biological targets for reducing radicals and other reducing agents. Indeed, it has 

been shown that superoxide radicals cause the fragmentation of HA via a metal 

ion- catalysed reaction with its chloramide derivative [19].  
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There is however, only a limited amount of kinetic data available on the direct 

measurement of the rate constants for the reactions between free radicals and 

glycosaminoglycans and none for the reactions with their chloramides. The 

technique of pulse radiolysis has been used previously to measure rate 

constants for the reactions of the hydroxyl radical  (.OH), the hydrated electron, 

(e-
aq) and the hydrogen atom (H.) with HA [24]. In a more recent study, this was 

extended to reactions of the dichloride radical anion (Cl2
.-), the dibromide radical 

anion (Br2
.-), the carbonate radical (CO3

.-) and the azide radical ( N3
.) [16].  

 

Strong reducing agents such as the hydrated electron, e-
aq, may be expected to 

react rapidly with chloramines and chloramides. Pulse radiolysis studies of the 

simplest chloramine, NH2Cl, showed that it reacts with the hydrated electron at 

diffusion-controlled rates (k= 2.2 x 1010 M-1 s-1) [25,26]. In more recent pulse 

radiolysis studies of the chloramines and chloramides of amino acid derivatives 

[27] and of chloro- and bromo- derivatives of model compounds, such as N-

bromoglutarimide (NBG) and N-bromosuccinimide (NBS) [28], hydrated electrons 

were also shown to react at near diffusion-controlled rates. In the latter study, 

superoxide radicals were also reacted with NBG and NBS and found to follow 

complex chain reaction pathways. In the case of N-chlorosuccinimide, a direct 

kinetic measurement could be made, yielding a rate constant of 8 x 105 M-1 s-1. 

An indirect method, based on EPR data, has also allowed an estimate of the rate 
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constant for the reaction of superoxide radicals with taurine monochloramine to 

be made (k = 5-6 x 102 M-1 s-1) [29].  

 

Consequently, in this study the fast reaction techniques of pulse radiolysis and 

laser flash photolysis have been used to directly measure the rate constants for 

the reactions of both oxidising and reducing radicals with the chloramides of HA 

and heparin, the latter being the most heavily sulphated glycosaminoglycan, 

which provides an opportunity to investigate both the effect of charge and 

sulphate group on the reactivity with free radicals. The biologically-relevant 

hydroxyl and carbonate radicals have been selected as oxidising species in this 

study whilst the strong reducing agents , hydrated electron and formate radicals 

have been selected as models for the in vivo but less strongly reducing agents 

such as superoxide and the disulphide radical anions of glutathione The kinetic 

data has also allowed the degree of selectivity to be determined, through reaction 

at the N-Cl group,  a potential route to efficient fragmentation of the biopolymers 

in inflammatory conditions in the ECM. 

.   

Materials and methods 
 
a) Materials 
 
Sodium formate, hypochlorous acid, tert-butanol and sodium bicarbonate were all 

of the highest quality available (Sigma Aldrich). HA (both 80 kDa and 0.8 MDa) 

were gifts from Novozymes and the heparin sodium salt (Alfa Aesar) was of  

research grade.N-acetylglucosamine and taurine were purchased form Sigma 
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Aldrich ( see Scheme 1 for the structures of HA, heparin , N-acetylglucosamine 

and taurine).  Water for buffer preparation was prepared by an Elga system 

(resistivity 18 MΩ). 

Scheme 1 

 

b) Preparation of chloramines and chloramides 

The chloramides were prepared from each of HA (4 mg/ml), heparin (6.4 mg/ml), 

taurine (1.25 mg/ml) and glucosamine (1 mg/ml) by reacting with pH- adjusted 

HOCl (2-9 mM) at 37°C and were terminated by addition of excess taurine to 

remove unreacted HOCl. Polymer chloramide reactions were carried out for a 

duration of 5 hrs at 37°C, which was followed by dialysis in 0.1 M phosphate 

buffer to remove taurine and taurine chloramines. The preparations resulted in a 

mixture containing both the chloramide and the parent glycosaminoglycan. 

Typical preparations comprised 60 % HA and 40 % HA chloramide and, for 
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heparin preparations, 80 % heparin chloramide, 20 % heparin. Taurine 

monochloramine (TauCl) solutions were prepared by the addition of equal 

concentrations of taurine and hypochlorite at pH 7.4. The reaction was complete 

within the mixing time. N-Acetylglucosamine chloramide was prepared in a 

reaction mixture containing 1 mM hypochlorite and 10 mM N-acetylglucosamine 

for 90 minutes at 37°C to produce 1 mM of the chloramide. The synthesised 

chloramides and taurine monochloramine were used in pulse radiolysis and laser 

flash photolysis as soon as possible thereafter. The chloramide concentrations, 

prior to pulse radiolysis, were determined using the TNB assay [30]. Solutions for 

the laser flash photolysis and pulse radiolysis experiments were made up in 0.01 

M phosphate buffer and were saturated as appropriate with research grade 

nitrous oxide, argon or nitrogen , as appropriate. In the case of the carbonate 

radical experiments, air saturated solutions were used. 

 

c) Pulse radiolysis and laser flash photolysis 

Pulse radiolysis studies were carried out using both the linear accelerator at the 

Curie Institute, Orsay, France and the picosecond laser triggered electron 

accelerator ELYSE at Laboratoire de Chimie Physique, Université Paris Sud . 

In the Curie set-up, free radicals were generated by 600-1200 ns pulses of 4 

MeV electrons. Radiation doses generated per pulse were calibrated from the 

absorbance of the thiocyanate radical (SCN )2
.- produced from the pulse 

radiolysis of 10 mM air saturated thiocyanate ion solutions in 10 mM phosphate 

buffer at pH 7.0 where  G(SCN)2
.- = 0.30 µmol.J-1, ε = 7400 M-1cm-1 at 472 nm.  
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The ELYSE laser-triggered accelerator delivered 15 ps electron pulses with 

energy 4-9 MeV at 3 nC per pulse with a repetition rate of 1 to 50 Hz. The doses 

generated by the laser-triggered accelerator were in the range 19-30 Gy.  

 

For laser photoexcitation experiments, 1 ml samples were excited using the 4th 

harmonic (266 nm) of a Q-switched Nd-YAG laser (Brilliant B, Quantel) in a 1 ml 

quartz cuvette of 1 cm pathlength. The energy output of each laser pulse was 

approximately 40 mJ and pulses were 6-8 ns in duration. Data was collected 

using an Applied Photophysics LKS-60 flash photolysis instrument with detection 

system at right angles to the incident laser beam. The probe light (150 W xenon 

lamp) was passed through a monochromator before and after passage through 

the sample. Absorbance changes were measured using a photomultiplier tube 

and kinetic transients were typically collected over 200 ms. For measurements 

over faster timescales (typically < 1 ms), the output of the xenon arc lamp was 

pulsed using a xenon arc pulser (Applied Photophysics) and transients were 

measured using an Infiniium oscilloscope model no. 54830B (Agilent 

Technologies).  

 

Results and Discussion 

Reduction by formate radicals 

Formate radicals were produced by both pulse radiolysis and by laser flash 

photolysis. In the former technique, nitrous oxide saturated solutions of 0.1 M 

formate containing a range of concentrations of HACl (2.0 x 10-4 M to 9 x 10-4 M), 
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HepCl (1.2 x 10-3 M to 4 x 10-3 M), TauCl (8.0 x 10-5 M to 1.6 x 10-4 M) and N-

acetylglucosamine chloramide (GlcAcNCl)  (1.1 x 10-4 M to 1.1 x 10-3 M) were 

pulse-irradiated.  Under these conditions, all primary radicals produce formate 

radicals in a yield of 0.62 μm J-1, as follows: 

 

 H2O    eaq,  H
. ,  .OH , H2 , H2O2, H3O

+     (1) 

 

 e-
aq + N2O  .OH + OH- + N2    (2) 

 .OH + HCOO-  CO2
.- + H2O    (3) 

 H. + HCOO-  CO2
.- + H2     (4) 

 

Laser flash photolysis was also used to produce the formate radical in yields of 

up to 4.1 x 10-5 M. This was achieved by excitation at 266 nm of nitrogen 

saturated solutions containing 30 mM persulphate (S2O8
2-) and 10-50 mM 

formate (HCOO-). Upon excitation at 266 nm, persulphate (extinction coefficient 

of approximately 20 M-1 cm-1) produces sulphate anion radicals (SO4
.-) with a 

quantum efficiency close to 2 [31-33] (reaction 5). SO4
.- has a peak of maximum 

absorbance at 455 nm but several different values have been measured for its 

extinction coefficient [31-40]. The reasons for the wide range of reported values 

have been discussed in detail [33, 36] and based on these findings, a value of 

1600 M-1 cm-1 at 455 nm has been used in the current work. 

 

  S2O8
2-  2SO4

.-      (5) 
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In the presence of formate, SO4
.- oxidises formate to CO2

.-,  with a rate constant 

for reaction (6) of (1.1 - 1.7) x 108 M-1 s-1 [41, 42]. 

 

  SO4
.- + HCOO-   CO2

.- + SO4
2- + H+   (6) 

 

At 10 mM formate, the decay of the SO4
.-, monitored at 455 nm, was complete 

within 2-3 μs (Figure 1a), consistent with the above second-order rate constants.  

Figure 1b shows the production of formate observed at 270 nm, on the same 

timescale. Although the presence of very low concentrations of oxygen, up to 

1μM can not be discounted  as an impurity in the nitrogen used to de-aerate the 

solution, this concentration would only react with a maximum of 2-4% of the 

formate radical concentration produced ( see below) to form superoxide radicals. 

The latter would be much longer-lived than formate radicals – however there was 

no indication of such a long-life component. It seems likely therefore that  the 

formation of either superoxide radicals or peroxy radicals to any significant extent 

can be discounted in these experiments. 



 13

 

Figure 1 Transient absorbance changes on laser flash photolysis of a nitrogen 
saturated 30 mM persulphate, 10 mM formate solution at pH 7.4: a) 450nm ; b) 
270nm. 
 

Addition of HA, heparin, HA chloramide and heparin chloramide at 

concentrations of up to 4 mM did not increase the rate of decay of SO4
.-, 

indicating an upper limit of 4 x 108 M-1 s-1 for reactions with these substrates. 

Hence, it is unlikely that reactions of the sulphate radical with these 

glycosaminoglycans and their chloramide derivatives will compete significantly 

with the formation of CO2
.- at the formate concentrations employed. Using an 

extinction coefficient of 1600 M-1 cm-1 at 455 nm for the sulphate radical, typical 

initial yields at the end of the laser pulse were in the range (2.5 – 4.1) x 10-5 M, 

producing identical yields of the formate radical. In the presence of HA and 

heparin chloramides, over a timescale up to 50 μs, an increase in absorbance 

could be observed in the 300-400 nm range, as shown in Figures 2a and 2b at 
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320 nm. There is a rapid decrease in absorbance over 2-3 μs corresponding to 

the conversion of sulphate anion radicals to formate radicals, followed by a 

slower increase in absorbance, attributable to the product of the reaction of 

formate radicals with the chloramides (reaction (7)):  

 

  CO2
.- + HACl / HepCl  products    (7) 

 

Figure 2  Transient absorbance changes at 320nm  on laser flash photolysis of a 
nitrogen saturated solution of 30 mM persulphate, 10 mM formate solution 
containing ; a) 1 mM HACl ; b) 1mM HepCl. 
 

Although all the chloramide solutions contain unsubstituted gycosaminoglycan, 

the latter are unlikely to react with reducing radicals, as demonstrated in an 

earlier  pulse radiolysis study of hyalruronan. Figure 3 shows the spectra in the 

300-400 nm region measured at the end of the latter reaction for both HACl and 

HepCl solutions, which show maxima 320 / 360nm  for HepCl and a much less 

characteristic spectrum for HACl . 
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Figure 3 Spectra at 50μs after laser flash photolysis of a nitrogen saturated 
solution of 30 mM persulphate, 10 mM formate solution containing ; a) 1 mM 
HACl ; b) 1mM HepCl. 
 

The second-order rate constants for reaction (7) were obtained from log (A∞ - At) 

versus time plots (from kinetic traces, such as those in Figure 2) consistent with  

pseudo first-order kinetics, where A∞ and At are absorbances at the end of the 

reaction and times t. The resulting values were (1.7 +/- 2.0) x 108 M-1 s-1 and (1.2 

+/- 1 x 108) M-1 s-1 for HACl and HepCl respectively.  

From Figure 3, the apparent extinction coefficients could be calculated based on 

a formate radical yield of 2.5 x 10-5 M. These values were 480 (370 nm) and 680 

(360 nm) M-1 cm-1 for HACl and HepCl respectively. However, the true values are 

likely to be significantly higher due to competing reactions, particularly the self-

reactions of formate and product radicals. Using the IBM Chemical Kinetics 

Simulator v1.01 programme and assuming rate constants for the self-reaction of 

formate and product radicals to be 2 x 107 M-1 s-1 (the latter measured in a 
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separate experiment but not shown) and 5 x 108 M-1 s-1 (assumed for the self-

reaction of product radicals) respectively, more realistic extinction coefficients of 

930 (370 nm) and 1130 (360 nm) M-1 cm-1 for HACl and HepCl respectively were 

estimated. 

 

In pulse radiolysis experiments, the competing self-reactions of formate and 

product radicals were also significant.  In order to gain accurate measurements 

of rate constants and also extinction coefficients at key wavelengths of the 

products, experiments were repeated at higher concentrations of chloramide. 

Figure 4 shows kinetic traces at 330 nm for HepCl concentrations in the range 

(1.15 – 4.6) x 10-3 M. These show a clear concentration dependence of the rates 

of reaction. Plots of log (A∞ - At) versus time yielded  a linear k (s-1) v [HepCl] plot 

as shown in the inset to Figure 4. From the slope, a second order rate constant 

of (6.8 +/- 1.0) x 107 M-1 s-1 was calculated, a value similar to that of (1.2 +/- 0.5) 

x 108 M-1 s-1 found in the laser flash photolysis experiments. Figure 4 also shows 

the effect of the competing self-reactions more clearly. At the concentrations of 

formate radicals produced in these experiments (2.0 x 10-5 M) , the apparent 

extinction coefficient at 330 nm at 50 μs after the pulse can be calculated as 

1700-1800 M-1 cm-1, similar to the value of 1700 M-1 cm-1 found at the same 

wavelength in the laser experiments.  For the highest HepCl concentration of 4.6 

x 10-3 M, where competing reactions are minimised, the formate radical product 

is produced in a much shorter time of about 6 μs with an extinction coefficient of 

2300 M-1 cm-1.  
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Figure 4  Transient absorbance changes at 330 nm on pulse radiolyis of nitrous 
oxide saturated solutions of 0.1 M formate and HepCl ( 1.15 x 10-3 M to 4.6 x 10-3 
M), [CO2

.-] = 2.0 x 10-5 M). The inset shows a plot of k (s-1) v [HepCl]. 
 

Experiments with HACl were limited to significantly lower concentrations than for 

HepCl and produced data which supported the kinetic and spectral data already 

determined in the laser flash photolysis experiments described above. 

 

Limited pulse radiolysis experiments were carried out on the chloramide of the 

model monosaccharide, N-acetylglucosamine (N-AcGlcCl). Figure 5 shows 

kinetic traces, monitored at 330 nm, at two concentrations (1.1 x 10-4 M and 1.1 x  

10-3 M) of the sugar. The rate of formation of the radical product is significantly 

faster at the higher N-AcGlcCl concentration than at the lower concentration 
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although a difference of 10 is not so apparent. At the higher concentration, some 

distortion at early times from the pulse is observed whilst at the lower 

concentration , the rate of growth is moderated by a significant self-reaction of 

the radicals.     The rates of reaction are however dependent upon [N-AcGlcCl] 

and clearly faster, as might be expected for a smaller molecule, than those of the 

polymer chloramides, with a second-order rate constant of (1.8 +/- 0.4) x 108 M-1 

s-1 being estimated. At the highest [N-AcGlcCl], the extinction coefficient at 330 

nm for the product was calculated as 2500 M-1 cm-1, consistent with value of 

2300 M-1 cm-1 found above in pulse radiolysis of high concentrations of HepCl. 

 

 

Figure 5  Transient absorbance changes at 330 nm on pulse radiolyis of nitrous 
oxide saturated solutions of 0.1 M formate and N-AcGlcCl ( 1.1 x 10-4 M to 1.1 x 
10-3 M), [CO2

.-] = 2.0 x 10-5 M). 
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Reduction by the hydrated electron 

Hydrated electrons, e-
aq, were generated by pulse radiolysis of argon-saturated 

0.1 M tert-butanol solutions containing a range of chloramide concentrations. 

Radiolysis of aqueous solutions produces the primary radicals, eaq, hydrogen 

atoms (H.) and hydroxyl radicals, (.OH), as shown in reaction (1). In the presence 

of tert-butanol, hydroxyl radicals are scavenged to produce non-reactive species, 

allowing the reactivity of the hydrated electron to be studied  independently. The 

rates of reaction of  eaq  with taurine monochloramine, (TauCl) , HA chloramide 

(HACl) and heparin chloramide (HepCl) were determined from the decay of 

absorbance at 660 nm, attributable to the hydrated electron. The decays were 

followed typically for up to 2 μs after the pulse and were found to obey first-order 

kinetics. Figure 6 shows the kinetic trace for the reaction of hydrated electrons 

with HACl at concentrations in the range, 1 x 10-4 M to 1 x 10-3 M. The rate of 

decay increases with increases in [HACl] as shown in the inset to Figure 6, from 

which a second-order rate constant of (2.2 +/- 0.3) x 109 M-1 s-1 can be 

determined. Similar experiments were carried out with HepCl and taurine 

monochloramine (TauCl). All the hydrated electron rate constants are 

summarised in Table 1. As shown already for the reaction of formate radicals 

with HACl and HepCl, transient spectra in the wavelength range, 300 nm-400 nm 

were also observed at the end of the hydrated electron reactions. Although these 

spectra were of poorer quality than those obtained in the laser flash photolysis 

experiments, the free radical products are formed much faster and (allowing for 

the intrinsic decay of the hydrated electron) , in about 70%  yield . They did not 



 20

therefore require kinetic simulations to allow for decay of the free radical products 

to estimate extinction coefficients.  The spectra (not shown) showed  broad 

absorption in the range 300 -350 nm tailing off at wavelengths greater than 

350nm, with an estimated extinction coefficient of 1700 +/- 400 M-1 cm-1at 320 

nm. The laser and pulse radiolysis data taken together provide support for the 

formation of C-centred radicals and not N-centred radicals as discussed below. 

 

 

 

 

 

 

 

 

 

 

Figure 6  Decay of absorbance at 660 nm on pulse radiolysis of an argon 
saturated solution of 0.1 M t-butanol containing ; a)1.0 x 10-4 M, b) 5.0 x 10-4 M 
and c) 1.0 x 10-3 M HaCl at pH 7.4. The inset is a plot of k (s-1) values  v [HACl] . 
 

“Substrate, S” k ( eaq + S) M-1 s-1 

  

HACl 2.2 x 109 

HepCl 7.2 x 108 

TauCl 9.2 x 109 

 
Table 1 Rates of reaction of the hydrated electron with HACl, HepCl and TauCl. 
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From the above experiments with the reducing radicals of formate and hydrated 

electron, it is clear that both species react rapidly with the chloramides. As 

expected from the respective standard reduction potentials of the hydrated 

electron (-2.9 V, [43]) and carbon dioxide (-1.9 V, [44]), the hydrated electron 

reacts much faster than the formate radical with the chloramides, with rate 

constants close to those of diffusion-controlled reactions. The rate constants for 

the reaction of the hydrated electron can be compared to those measured for the 

small model molecule, NH2Cl, where values of 2.2 x  1010 M-1 s-1 were found 

[25,26].  Pulse radiolysis has also been used to measure hydrated electron 

reaction rates with chloramines and chloramides of amino acid related models, 

where rate constants in the range, 109 M-1 s-1 to 1010 M-1 s-1 were found [28]. 

 

 

Hence, the above studies have shown that both formate radicals and hydrated 

electrons react with HA and heparin chloramides to produce species with a broad 

absorption in the range 300-400 nm with maxima close to 320 or 330 nm and 

with associated extinction coefficients approaching 2300  M-1 cm-1. These 

spectral characteristics are very similar to those of free radicals produced from 

oxidation of the model compounds,N-methylformamide (NMF), 

dimethylformamide (DMF), N-methylacetamide (NMA) and N,N-

dimethylacetamide (DMA) [45,46]. These molecules have an analogous structure 

to that in the glucosamine moiety of HA. When hydroxyl radicals were reacted 

with them, similar spectra with maxima between 340 nm and 380 nm  and 
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extinction coefficients of  1000-2000 M-1 cm-1 were observed [45]. These spectra 

were all attributed to free radicals having the structures RCONRCH2
. ( where R 

can be H- or CH3-). N-centred radicals , in contrast, did not absorb at all in tnis 

region , having maxima at < 235nm [45]. Similar spectra were also observed for 

the oxidation of DMF by hydroxyl radicals ([45] and by sulphate anion radicals 

[46].  It seems clear therefore that the same assignments attributable to carbon-

centred free radicals can be made in the current study on HACl and HepCl, 

providing support for the 1,2 hydrogen shift mechanism proposed by Davies and 

co-workers [19] as shown in reaction 8 and in more detail in Scheme 2 in which a 

chloride ion is eliminated by one-electron reductants to form a nitrogen-centred 

radical in the first instance followed by rapid re-arangement to form a C-2 radical 

on the glucosamine moiety. Both EPR data and ion-exchange chromatography to 

detect chloride in  the one-electron reduction of glycosaminoglycan chloramides 

as well as in pulse radiolysis studies of the reaction of the hydrated electron with 

chloramines and amides confirm that chloride ion is produced in yields of 100% 

[47, 63]. 

 

  CO2
.- / e-

aq + HACl / HepCl  HA. / Hep.  + Cl-   (8) 
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Scheme 2 

 

Although reaction (8) must produce N-centred radicals in the first instance, these 

spectra indicate that carbon-centred radicals only are observed, consistent with a 

rapid internal rearrangement.  The current study provides strong spectral 

evidence to support the formation of such carbon-centred radicals on the 

glucosamine moiety as shown in Scheme 2. As in the EPR study, the nitrogen-

centred radicals must be short-lived as only carbon-centred radicals could be 

detected in the current study.  

  

Oxidation by hydroxyl radicals 

Kinetic data for the reaction of hydroxyl radicals with HACl and HepCl were 

obtained using the competing reactions: 

 .OH + HA  products ; k9 = 4.0 x 108 M-1 s-1  [24,48]    (9) 
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 .OH + Hep  products ; k = 2.2. x 108 M-1 s-1  [48]   (10) 

 .OH + HACl  ( or HepCl)   products  ; k 11        (11) 

 
.OH + ABTS2-   ABTS.- + H2O ; k12 = 1.2 x 1010  M-1 s-1 [49]  (12) 

In the pulse radiolysis of nitrous oxide saturated solutions containing 2 x 10-5 M 

ABTS2- and HACl ( 2.5 x 10-4 M to 1.0 x 10-3 M), the changes in absorbance of 

the ABTS.- radical at 415 nm were monitored up to 20 μs after the pulse.  Oxygen 

as an impurity is reduced to very low levels by the use of nitrous oxide , allowing 

a 100% yield of hydroxyl radicals via reactions (1) and (2). Additionally, the 

ABTS.- radical , used in the competition set out in reactions (9) –(11) does not 

react with oxygen. The measurement of rate constants for reactions (11) and (12) 

should not be affected by any low levels of oxygen.  In these experiments,  both 

the first order rate constant for ABTS.- radical formation and the ratio of ABTS.- 

radical absorbance at [HACl] = 0 M and at each [HACl] were measured. Figure 7 

shows the effect of HACl concentration on the ratio of absorbances ,OD(ABTS.-

)0/OD(ABTS.-)c , at 415 nm at the end of the reaction of hydroxyl radicals with the 

competing HACl and ABTS2- species, where    OD(ABTS.-)0  and OD(ABTS.-)c  are 

the absorbances at [HACl] = 0 M and at other HACl concentrations respectively. 

Consideration of the competing reactions shows that: 

OD(ABTS.-)0 /OD(ABTS.-)c = (k12[ABTS] + k11[HACl] + k9[HA]) / k12[ABTS]  
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Figure 7  Effect of HACl concentration on the absorbance ratio ,  (OD(ABTS.-

)0/OD(ABTS.-)c (see text ) at 415nm  at the end of the reaction of hydroxyl radicals 
with 2 x 10-5 M ABTS2- . ( in nitrous oxide saturated solutions of 2 x 10-5 M 
ABTS2- containing 2.5 x 10-4 M to 1.0 x 10-3 M HACl) 

 

 

As a consequence of the method of preparation, the concentrations of HACl and 

HA are in a fixed ratio where the ratio [HA] / [HACl] is 1.9.. Hence, the latter 

equation reduces to : 

 

 OD(ABTS.-)0 /OD(ABTS.-)c = 1 + ( k11 + 1.9 k9) [HACl]  / k12 [ABTS]  

 

From the slope of figure 7, and using the known k9 and k12 values, a value of k11 

of (2.2 +/ 1.0) x 108 M-1 s-1 was calculated.  

 

Similar experiments were also carried out for HepCl where the method of 

preparation produced solutions containing Hep and HepCl in a fixed ratio ([Hep] 

= 0.25 [HepCl] ). The data (not shown) produced a values for k (.OH + HepCl) of 

(1.6 +/- 0.3 x 108) M-1 s-1. 
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Hydroxyl radicals react rapidly with both HA and heparin, with k values of  4.0 x 

108 M-1 s-1  and  2.2 x 108 M-1 s-1 respectively. With the model monosaccharides, 

glucuronic acid and N-acetylglucosamine (sole constituents of HA), the rate 

constants are much faster at 1.8 x 109 M-1 s-1 [48].  Within the error limits, hydroxyl 

radicals have been shown to react with HACl in the current study at a similar rate 

to HA itself, indicating that the N-Cl group is not  a more specific target than N-H. 

Similarly, in the case of HepCl, the rate constant determined here (1.6 +/- 0.3 x 

108) M-1 s-1), is sufficiently similar to the earlier value  of  4.0 x 108 M-1 s-1  found 

for the parent , heparin, to indicate that the N-Cl group does not confer any 

selectivity of attack. Thus, it is likely that hydroxyl radicals will abstract hydrogen 

from the many C-H groups in these molecules as well as from the N-H groups. 

Most if not all these C-centred radicals, including any arising from re-

arrangement of the N. radical,  will produce peroxy radicals. It has been shown 

previously that peroxy radicals of hyaluronan produced by reaction of hydroxyl 

radicals lead to about 15% less fragmentation [16]. 

 

Oxidation by carbonate radicals 

Laser flash photolysis (excitation at 266 nm) of air-saturated 30 mM persulphate 

solutions containing 300 mM bicarbonate at pH 8.5 produced high yields of the 

carbonate anion radical, CO3
.- , via reaction (5) followed by reaction (13): 

 

 

  SO4
.-  + HCO3

-   CO3
.- + SO4

2- + H+   (13) 

 

Reaction (13) is relatively slow, with rate constants of 2.8 x 106 M-1 s-1 [50] and 

9.1 x 106 M-1 s-1 [32] having been reported. Hence, the high bicarbonate 

concentration ensures that this reaction is complete within approximately 5 μs or 

less. The carbonate anion radical, CO3
.-, exists in equilibrium with the protonated 

form, HCO3
. with a pKa of 7.9 [51]. 

 

  HCO3
.    CO3

.- + H+      (14) 
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Upon laser flash photolysis of the persulphate / bicarbonate solution , the 

carbonate anion radical was formed within several microseconds and its 

formation and decay were monitored kinetically at 600 nm where the extinction 

coefficient of the carbonate radicals is 1860 M-1 cm-1 [52]. Carbonate radical 

concentrations of 7.5 to 10 μM were produced in typical experiments.  

 

Figure 8 shows the decay of CO3
.- (at 600 nm) both in the absence and presence 

of the parent glycosaminoglycans , HA (2.5 mM) and heparin (5mM), the 

monosaccharide, N-acetylglucosmine (5 mM) and also the amino acid taurine (5 

mM). (Only a single concentration of the glycosminoglycans was used ( as also 

for their chloramides, see below) since the sulphate anion radical would react at 

higher concentrations whilst lower concentrations would not compete with the 

self-reaction of the carbonate radicals). In the absence of substrates, the 

carbonate anion radical decays relatively slowly over the 12 ms timescale. It 

decays by self-reaction with a rate constant of (1.0 +/- 0.1) x 107 M-1 s-1 as 

determined from a plot of 1/ [CO3
.-] v time (plot not shown). In the presence of 

taurine, the decay of CO3
.- is much faster – a plot of log  [CO3

.-] v time produced 

a rate constant for the reaction of (1.0 +/- 0.1) x 105 M-1 s-1. This appears to be 

the first rate measurement for the reaction of carbonate radicals with taurine. The 

effects of HA, heparin and N-acetylglucosamine on the decay of the carbonate 

radical are less pronounced. Here, kinetic simulation was used to estimate the 

rate constants. In this relatively straightforward process,. Only two reactions were 

simulated, the self-reaction of carbonate radicals ( k= 1.0 +/- 0.1 x 107 M-1 s-1) 

and the reaction of carbonate radicals with HA, Hep or NAcGlc. The values 

obtained were similar, ranging from 3.5 x 104 M-1 s-1 to 5 x 104 M-1 s-1. Table 2 

summarises all the kinetic data for these parent molecules. 
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Figure 8 Decay of carbonate anion radical of absorbance at 600 nm in the 
presence of ; a) no substrate, b) 2.5 mM HA, c) 5 mM Hep, d) 5 mM NAcGlc, e) 5 
mM Tau ( the dotted lines show the simulated decays for a) , b) , c) and d)). ( in 
air-saturated solutions of 30mM persulphate,and 300 mM bicarbonate at pH 8,5 , 
0.01 M phosphate buffer). The inset shows the pseudo first –order plot for the 
faster taurine reaction. 
 

“Substrate, S” k (CO3
.- + S) M-1 s-1 

  

Hyaluronan 3.5 x 104 

Heparin 5.0 x 104 

Taurine 1.0 x 105 

N- acetyl-glucosamine 5.0 x 104 

 

Table 2 Rates of reaction of the carbonate radical with HA, Hep, NAcGlc and 
Tau. 
 

Figure 9 shows the decay of CO3
.- in the presence of the chloramides (including 

some proportion of the parent molecules) of HA, heparin and taurine. All decays 

are significantly faster than the decay of CO3
.- in the absence of chloramide, with 

the fastest being observed in the case of TauCl. As before, kinetic simulations 

were carried out to allow for the self-reaction of carbonate  radicals as well as 

with the chloramides and the parent biopolymers The latter rates are known from 

Table 2  and  hence, the rate constants for reaction with the chloramides can be 
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calculated in a relatively straightforward manner. Table 3 summarises the kinetic 

data for these chloramides which shows rate constants of (1.2 +/- 0.2) x 105 M-1 

s-1   and  (8.0 +/- 1.0) x 104 M-1 s-1 for HACl and HepCl respectively, values which 

are  a factor of 2.9 and 1.6 x  faster respectively than those determined for the 

parent molecules. Similarly, as for the parent amino acid, taurine, TauCl reacts 

significantly faster (k = 1.4 +/- 0.2 x 106 M-1 s-1)  than the glycosaminoglycan 

chloramides and also faster by a factor of 10 than the parent taurine.  

 

Figure. 9. Decay of carbonate anion radical of absorbance at 600 nm in the 

presence of (trace a) no substrate, (trace b) 3 mM HACl/2 mM HA, (trace c) 3.8 

mM HepCl/0.7 mM Hep, or (trace d) 3 mM TauCl (the dotted lines show the 

simulated decay for traces b and c), in air-saturated solutions of 30 mM 

persulfate and 300 mM bicarbonate at pH 8.5, 0.01 M phosphate buffer. 

“Substrate, S” k (CO3
.- + S) M-1 s-1 

  

HACl 1.2 x 105 

HepCl 8.0 x 104 

TauCl 1.4 x 106 

  

 

Table 3 Apparent rates of reaction of the carbonate radical with HACl/HA, HepCl 
/Hep and TauCl ( conditions as in Figure 10). 
 
Hence, it is clear that the presence of the N-Cl group in both HA and heparin 

provides a significantly more attractive target than the N-H groups, with a factor 
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of 1.6 (HepCl) – 2.9( HACl) times greater reactivity of carbonate anion radicals 

with HACl and HepCl. Carbonate radicals are only moderately strong oxidizing 

agents and can be expected to be more selective than hydroxyl radicals. 

Hydroxyl radicals are strong oxidizing agents and are known to react rapidly with 

rate constants in excess of 108 M-1 s-1 and do so by abstracting hydrogen at all 

the -CH(OH)- groups in simple carbohydrates, in oligosaccharides and in 

polysaccharides  ( reviewed in von Sonntag, 1986 [62] ) . Their reactivity is thus 

largely unselective with regard to the site of attack. In hyaluronan, hydroxyl 

radicals are also highly reactive ( k = 8 x 108 M-1 s-1 [24] ) and also likely to be 

unselective in their sites of attack with abstraction possible  at 11 C-H bonds in 

HA . In contrast , the moderately strong oxidizing agent , the bromide radical ion, 

reacts at similar rates to the carbonate radical in the current study, and was 

found only to abstract hydrogen at C-1 of 2-deoxy-D-ribose , in a uniquely site-

specific reaction [61].  By comparison, therefore, the presence of N-Cl appears , 

to present also a unique target in these glycosaminoglycan chloramides. 

Abstraction of the chlorine atom from N-Cl ,for example, would lead to an N-

centred radical which would, at least in part, re-arrange rapidly to produce the C-

2 radical on the glucosamine moiety, as in Scheme 2 or in part to produce C-4 

radicals on the uronic acid moiety [19]. These radicals would react rapidly in the 

presence  of oxygen to produce  peroxyl radicals. The various routes to 

fragmentation of glycosaminoglycan chloramides via peroxy radical intermediates 

have been discussed in detail by Rees et al, [19]. 

 

Conclusions 

 

Localised excess production of HOCl has been implicated in a number of 

diseases that involve an acute or chronic inflammatory response (e.g. 

atherosclerosis, rheumatoid arthritis and asthma) [53,54] .There is evidence that 
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binding of myeloperoxidase to matrix components and cell-surface 

glycosaminoglycans  directs oxidative damage towards these 

biopolymers[55,56]. At sites of inflammation within the ECM, activated 

phagocytes release the haem enzyme myeloperoxidase and produce high 

concentrations of the superoxide anion  and its dismutation product, hydrogen 

peroxide via an oxidative burst. Myeloperoxidase is a highly basic protein and is 

known to bind, via electrostatic interactions, to negatively charged materials such 

as the polyanionic glycosaminoglycans   [55]. In perlecan, for example, it binds to 

the heparin sulphate side-chains of this proteoglycan [57]. Myeloperoxidase 

reacts with hydrogen peroxide to form a mixture of hypochlorous acid and its 

anion hypochlorite. Relatively high concentrations of HOCl are likely to be formed 

in vivo under both physiological and pathological conditions. It has been 

estimated , for example, that activation of 5×106 neutrophil cells ml-1 generates 

300–400 μM HOCl over 1–2 hours [58,59], with 2.5–5 mM HOCl produced at 

sites of inflammation [60]. In the ECM, where HA has a central structural role, it 

can be anticipated that HOCl will react preferentially with neighbouring proteins. 

There is little evidence for a direct reaction ,in the ECM, between hypochlorous 

species and reactive N-H groups in HA and heavily-sulphated 

glycosaminoglycans such as heparan sulphate. However, such a theoretical 

model does not take into account accessibility of the reactive N-H groups in 

proteins and glycosaminoglycans in an extracellular environment or  the 

possibility of localized chlorination and oxidation reactions when the cationic 

myeloperoxidase itself is localized preferentially at glycosaminoglycan moieties in 
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the extracellular matrix. The  role of glycosaminoglycan chloramides in the 

potential fragmentation of these biopolymers by free radicals and reactive 

oxidative species remains open.  

 

This study has demonstrated that the N-Cl group in glycosaminoglycan 

chloramides confers selectivity towards free radicals and reactive oxidative 

species. Reducing radicals are expected to be highly, perhaps 100%, selective in 

their attack, as shown in this study , as models of less strongly-reducing agents 

such as superoxide and glutathione disulphide anion radicals, by the exclusive 

reaction of formate radicals and hydrated electrons at N-Cl to eliminate chloride 

ions. The initially-formed nitrogen-centred radical re-arranges rapidly to form a 

carbon-centred radical, as shown in Scheme 2 (supporting the earlier proposal 

made in an EPR study [19]) probably also leading to a 100 % efficient 

fragmentation of the biopolymers. The potential in vivo oxidising radicals, in this 

study hydroxyl radicals and carbonate anion radicals, also show some significant 

degree of selectivity, particularly in the case of the biologically-relevant carbonate 

anion radical. This free radical is much more selective than hydroxyl radicals and 

is therefore much more likely to reach sensitive targets, such as those in the 

ECM. This study has shown that carbonate anion radicals are much more likely 

to react with N-Cl groups in the chloramides than with N-H groups, perhaps to 

react solely at the N-Cl group.  Despite the large difference in charge density 

between HA and heparin, this study has not found any large effects of charge on 

reactivity, indicating that both non-sulphated and heavily-sulphated components 
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of the ECM are equally likely to be site-specific targets for reducing radicals and 

moderately strong oxidising agents such as the carbonate radical . The question 

remains open whether the greater degree of site-specific attack on ECM 

chloramides by both reducing agents and by oxidising agents such as carbonate 

radicals will lead to more efficient fragmentation than would be found for the 

parent biopolymers.. 
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