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Abstract 
 
Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced in inflammatory 
conditions, may produce chloramides of glycosaminoglycans, perhaps through the binding of 
myeloperoxidase directly to the glycosaminoglycans.  The N-Cl group in the chloramides is a 
potential target for reducing species such as Cu(I) and superoxide radicals. Laser flash photolysis 
has been used here to obtain, for the first time, the rate constants for the direct reaction of 
superoxide radicals with the chloramides of hyaluronan and heparin. The rate constants were in 
the range 2.2 -2.7 x 103 M-1 s-1. The rate constant for the reaction with the amino acid, taurine, 
was found to be much lower at 3.5 -4.0 x 102 M-1 s-1. This demonstration that superoxide anion 
radicals react directly with hyaluronan and heparin chloramides may support the mechanism first 
proposed by Rees et al, Biochem. J. 381: 175-184; 2004 for an efficient fragmentation of 
these glycosaminoglycans in the extracellular matrix under inflammatory conditions. 
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Introduction 
 
The extracellular matrix (ECM) is made up of huge multi-molecular complexes with 

arrays of link proteins and aggrecan molecules along a central hyaluronan backbone.  

Hyaluronan (HA) is bound by a number of ECM and cell surface proteins. These HA-

binding proteins are termed hyaladherins and share a homologous HA binding domain 

with the link protein, which is referred to as the Link homology domain [1]. Examples 

include aggrecan, versican, and tumor necrosis factor alpha stimulated gene 6 (TSG-6) 

[2]. 

With this central structural function, HA is a particularly important component of the 

ECM [3, 4], as demonstrated by the fact that a hyaluronan synthase-2 knockout is 

embryonically lethal in mice [5]. HA also provides a hydrated environment [6] for 

growing, moving and renewing cells and tissues [7], activates signalling events in cells 

and is involved in moderating many cellular processes, including proliferation, migration, 

adhesion and  apoptosis [8-11]. HA appears to have a range of significant biological 

functions dependent upon its molecular mass. Large molecular mass fragments are 

involved in space-filling and immunosuppressive roles, whilst smaller HA fragments 

have been shown to be pro-inflammatory and angiogenic; oligosaccharides may be 

involved in cell signalling (reviewed in [12]). 

Oxidative damage of the extracellular components by either enzymatic or non-enzymatic 

pathways may have implications for the initiation and progression of a range of human 

diseases. These include arthritis, kidney disease, cardiovascular disease, lung disease, 

periodontal disease and chronic inflammation. Oxidative damage to hyaluronan by 

reactive oxidative species, and in particular free radicals, has received much attention, 
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largely through the ease of monitoring its fragmentation using viscometric techniques, 

which is reviewed in [13]. The potential mechanism of oxidative damage to the ECM and 

its role in human pathologies has also been discussed in a recent review [14]. 

Our previous studies on HA have measured HA fragmentation yields as a proportion of 

quantifiable fluxes of free radicals produced by ionising radiation. For this purpose, both 

viscosity changes and a combination of gel permeation chromatography with multi-angle 

laser light scattering have been used to measure changes in molecular weight of the 

polydispersed hyaluronan.  In this way, the efficiencies of fragmentation of HA by a 

range of free radicals and reactive oxidative species including hydroxyl radicals, 

carbonate radicals, dibromide and dichloride radical anions and peroxynitrite have been 

determined [15,16]. 

The fragmentation of hyaluronan and other glycosaminoglycans has also been 

investigated intensively by Davies and co-workers using both electron paramagnetic 

resonance (EPR) spectroscopy and sensitive PAGE techniques. The use of the latter 

technique showed the novel and potentially biologically significant result that 

peroxynitrous acid, carbonate and hydroxyl radicals react largely in a site-specific 

process to produce an array of HA fragments, in a “ladder-type display” each separated 

from the neighbour by the molecular mass of the repeating disaccharide unit in HA, thus 

mimicking to a significant extent the action of the enzyme, hyaluronidase [17,18]. 

Similar site-selective fragmentation was also observed when glycosaminoglycan 

chloramides (formed through reaction with hypochlorite) were reduced by copper (I) ions 

and superoxide anion radicals [19,20].  
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The formation of chloramides and chloramines from the reaction of hypochlorite with 

amides and amines respectively was demonstrated in an early study [21] and is suggested 

to be a key process in inflammation, in which hypochlorite (from myeloperoxidase) may 

produce glycosaminoglycan chloramides.  Such derivatives may accelerate the 

fragmentation of glycosaminoglycans within the ECM [22]. Chloramides are weak 

oxidising agents and are therefore potential biological targets for reducing radicals and 

other reducing agents. Indeed, it has been shown that superoxide radicals cause the 

fragmentation of HA via reaction with its chloramide derivative [19].  

 

Strong reducing agents such as the hydrated electron, e-
aq, may be expected to react 

rapidly with chloramines and chloramides. Pulse radiolysis studies of the simplest 

chloramine, NH2Cl, showed that the hydrated electron reacts with it at diffusion-

controlled rates (k= 2.2 x 1010 M-1 s-1) [23,24]. In more recent pulse radiolysis studies of 

chloramines and chloramides of amino acid derivatives [25] and of chloro- and bromo- 

derivatives of model compounds such as N-bromoglutarimide (NBG) and N-

bromosuccinimide (NBS) [26], hydrated electrons were also shown to react at near 

diffusion-controlled rates. In the latter study, superoxide radicals were also reacted with 

NBG and NBS and found to follow complex chain reaction pathways. In the case of N-

chlorosuccinimide, a direct kinetic measurement could be made, yielding a rate constant 

of 8 x 105 M-1 s-1. An indirect method based on EPR data, has also allowed an estimate of 

the rate constant for the reaction of superoxide radicals with taurine monochloramine to 

be made (k = 5-6 x 102 M-1 s-1) [27]. 
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It seems clear, therefore, that there is no direct, unambiguous kinetic measurement of the 

rate constants for the reaction of superoxide radicals with the centrally-important 

chloramides of key glycosaminoglycans of the ECM. Consequently, in the present work 

we have used the laser flash photolysis technique to measure rate constants for the 

chloramide derivatives of both hyaluronan and heparin, the latter being a model for 

sulphated glycosaminoglycans of the ECM.   

 
 
Materials and methods 
 
a) Materials 

The following materials were purchased as indicated : hyaluronan (Novozymes), heparin 

(Alfa Aesar) , hypochlorite solution, taurine (Sigma Aldrich), superoxide dismustase 

from bovine erythrocytes , > 3kU/mg protein (Sigma Aldrich). All other reagents were of 

analytical grade. 

 
b) Preparation of chloramides and chloramines 

The chloramide derivative of hyaluronan (HACl) was produced by reaction of 4 mg/ml ( 10 mM 

in disaccharide units) hyaluronan (HA) in chelex treated 0.1 M phosphate buffer pH 8.5 with 9 

mM hypochlorite for 300 minutes at 37°C. The reaction was monitored at 292 nm to ensure that 

there was less than 0.3 mM unreacted HOCl which was then quenched by the addition of 2 mM 

taurine ( conditions leading only to taurine monochloramine formation as confirmed by its 

characteristic absorption maximum at 251 nm)) , followed by extensive dialysis in 9.5 mM borate 

buffer.  

The [HACl] was also confirmed by TNB assay. In this assay, A solution of 5-thio-2-nitrobenzoic 

acid  (TNB) was prepared by hydrolysis of 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in 50 mM 

NaOH through gentle stirring in a dark container until the yellow colour development reached a 
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maximum, which took about 5 minutes. This TNB solution was diluted 40 times in 0.1M 

phosphate buffer (pH 7.4) prior to any assays and added to (10-25µl) of the chloramides to be 

assayed. These samples were then incubated in the dark at room temperature for 15 minutes after 

which absorbances were read spectrophotometrically at 412 nm and concentrations of 

chloramides measured using an extinction coefficient for TNB (ε412 14,100 M−1 cm−1 ) .In this 

reaction 1 mol of chloramides oxidizes 2 mol of TNB to 1 mol of DTNB [21]. 

 Typical stock solutions prepared in this way were stored at 4 °C and contained 3.4 mM HACl + 

1.6 mM HA. 

The chloramide derivative of heparin (HepCl) was synthesised from the reaction of 6.4 mg/ml 

heparin  ( 10 mM in disaccharide units) hydrated in chelex treated 0.1M phosphate buffer pH 6.5 

with 9 mM hypochlorite for 180 minutes at 37°C. The unreacted hypochlorite ( less than 0.1 mM)  

in the reaction was quenched by addition of 1mM taurine ( conditions again ensuring the 

formation of the monochloramine only). The taurine monochloramine that was formed was 

removed by extensive dialysis 10 mM borate buffer (pH 9.5). HepCl was then assayed using TNB 

to confirm its concentration. Typical stock solutions prepared in this way were stored at 4°C and 

contained 6.8 mM HepCl + 2.2 mM Hep. 

For solution preparation for the laser flash photolysis experiments, all dilutions were carried out 

in chelex-treated borate buffer (pH 9.5) and contained 5 µM EDTA. The sodium formate and 

sodium persulphate stock solutions were also prepared in chelex -treated borate buffer (pH 9.5). 

In all the experiments, the reagents were added just prior to any saturation with oxygen or air, 

with the exception of the cytochrome c competition experiments where the cytochrome c was 

added immediately before laser excitation to prevent possible cytochrome c oxidation by 

persulphate. 
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c) Laser flash photolysis 

For laser photoexcitation experiments, 1 ml samples were excited using the 4th harmonic (266 

nm) of a Q-switched Nd-YAG laser (Brilliant B, Quantel) in a 1 ml quartz cuvette of 1 cm 

pathlength. The energy output of each laser pulse was approximately 40 mJ and pulses were 6-8 

ns in duration. Data was collected using an Applied Photophysics LKS-60 flash photolysis 

instrument with detection system at right angles to the incident laser beam. The probe light (150 

W xenon lamp) was passed through a monochromator before and after passage through the 

sample. Absorbance changes were measured using a photomultiplier tube and kinetic transients 

were typically collected over 200 ms. For measurements over faster timescales (typically < 1 ms), 

the output of the xenon arc lamp was pulsed using a xenon arc pulser (Applied Photophysics) and 

transients were measured using an Infiniium oscilloscope model no. 54830B (Agilent 

Technologies).  

 

Results 

Formation of superoxide radical using laser flash photolysis: 

Laser flash photolysis was used to produce the superoxide radical in yields of up to 4.1 x 10-5 M. 

This was achieved by excitation, at 266 nm, of solutions containing 30 mM persulphate ( S2O8
2-) 

and 10-50 mM formate ( HCOO-) in the presence of either air or oxygen and 50 μM EDTA. Upon 

excitation at 266 nm, persulphate (extinction coefficient of approximately 20 M-1 cm-1 ) produces 

sulphate anion radicals (SO4
.-) with a quantum efficiency close to 2 [28-30] (reaction 1). SO4

.- has 

a peak of maximum absorption at 455 nm but several different values have been measured for its 

extinction coefficient [28- 37]. The reasons for the wide range of reported values have been 

discussed in detail [30, 33] and based on these findings, a value of 1600 M-1 cm-1 at 455 nm has 

been used in the current work. 
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  S2O8
2-  2SO4

.-      (1) 

In the presence of formate, SO4
.- oxidises formate to CO2

.-,  with a rate constant for reaction (2) of 

1.1 to 1.7 x 108 M-1 s-1 [38, 39]. 

 

  SO4
.- + HCOO-   CO2

.- + SO4
2- + H+   (2) 

At 10 mM formate, the decay of the SO4
.-, monitored at 450 nm, was complete within 2-3 μs, 

consistent with the above second-order rate constants.  Addition of hyaluronan, heparin, 

hyaluronan chloramide and heparin chloramide at concentrations of up to 4 mM did not increase 

the rate of decay of SO4
.-,  indicating an upper limit of 4 x 108 M-1 s-1 for reactions with these 

substrates. Hence, it is unlikely that reactions of the sulphate radical with these 

glycosaminoglycans and their chloramide derivatives will compete significantly with the 

formation of CO2
.- at the formate concentrations employed. Using an extinction coefficient of 

1600 M-1 cm-1 at 450 nm for the sulphate radical, typical initial yields at the end of the laser pulse 

were in the range 3.5 – 4.1 x 10-5 M. In the presence of oxygen, CO2
.- reacts rapidly (k = 2.4 x 109 

M-1 s-1) [40] to produce the superoxide radical (reaction 3). 

 

  CO2
.- + O2  O2

.- + CO2     (3) 

In oxygenated solutions (approximately 1 mM oxygen), superoxide radicals would thus be 

produced within about 2 μs.  

Kinetic measurements of the decay of superoxide radical absorbance 

The superoxide radical exists in equilibrium with its protonated form, HO2
.  (pKa = 4.8) [41]: 

 

  HO2
.   O2

.- + H+     (4) 
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At pHs above the pKa therefore, the principal species is the superoxide radical anion. The major 

route for its decay in the absence of substrates is via reaction with its protonated form, HO2
.. As 

the pH is increased, it has been shown that the observed second-order rate constant decreases 

logarithmically [41]. At the pH of 9.5, chosen for the experiments in the current study, a second-

order rate constant in the range 103 to 104 M-1 s-1 may be anticipated [41]. The absorption 

spectrum due to superoxide only can be observed at pHs above 7, with an absorption maximum at 

240 nm and an extinction coefficient of 2430 M-1 cm-1. In the current study, superoxide formation 

and decay was monitored at 270 nm, where an extinction coefficient of 1500 M-1 cm-1 was 

assumed [41]. 

 

Figure 1 shows the formation and decay of the superoxide radical at 270 nm in the absence and 

presence of 3 mM hyaluronan, heparin and also the amino acid taurine. In the absence of 

substrates, the initial concentration of superoxide is 4.1 x 10-5 M and is therefore consistent with 

all CO2
.- radicals reacting with oxygen. Its decay was simulated kinetically using the IBM 

Chemical Kinetics Simulator v1.01 programme by assuming a simple dismutation reaction  for 

the overall reaction given in (5): 

 

  O2
.-
  +   HO2

.   H2O2 + O2     (5) 
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Figure 1  

Decay of the superoxide radical absorbance at 270 nm in the absence (a) and presence of 3 mM hyaluronan 
(b), 3 mM heparin (c) and 3 mM taurine (d). All  solutions contained 30 mM sodium persulphate, 50 mM 
sodium formate, 5 μM EDTA in 10 mM borate buffer at pH 9.5, and were oxygen saturated. 
 

A good fit to the experimental data was obtained in this way using k (5) = 5.5 x 103 M-1 s-1 , 

consistent with the values anticipated at pH 9.5 [41]. This demonstrates that there can be little or 

no reaction of superoxide radicals with trace amounts of transition metal ions such as copper (I) 

and copper(II), whose simple aquo complexes react at diffusion controlled rates with superoxide. 

The use of EDTA to complex any such trace metal ions produces EDTA complexes which are 

relatively unreactive.  

Reactions of superoxide with HA, Hep and Tau 

In the presence of 3 mM HA and Hep, there is a small decrease in the initial concentration of 

superoxide, which is attributable to minor variations in laser pulse energy and also some small 

(<10%) reaction of SO4
.- with HA or Hep. For these glycosaminoglycans, there is clearly no 

detectable reaction with superoxide radicals as trial simulations indicate that k (O2
.- + HA or Hep) 

< 5 M-1 s-1  (i.e. is unreactive). In the presence of 3 mM taurine, there is a small increase in the 
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rate of decay of the superoxide radical absorbance at 270 nm. Simulation of this decay indicates 

that k(O2
.- + taurine) = 10 +/- 5 M-1 s-1, which can be compared with the existing known value of 

< 103 M-1 s-1  measured at pH 7.4 [42]. 

 

Reactions of superoxide with HACl, HepCl and TauCl 

Figure 2 shows the decay of the superoxide radical absorbance at 270 nm in the presence of 1mM 

and 2 mM HACl (with respective HA concentrations of 0.32 mM and 0.64 mM).  There is little 

or no effect of HACl at these concentrations on the initial amount of superoxide observed, 

confirming that there is no significant competition of the chloramide for either SO4
.- or CO2

.-., 

perhaps attributable to the electronic repulsion of the ionized carboxyl groups close to the N-Cl 

functions in the biopolymers. However, it is clear from the 1 mM and 2 mM HACl experiments 

that the rate of decay of superoxide increases dramatically in the presence of the chloramide. 

Simulation of the decay of superoxide, assuming only dismutation of superoxide (reaction 5) and 

a reaction with HACl, produced good fits to the data by using values of k( O2
.- + O2

.-) equal or 

close to 9.0 x 103 M-1 s-1. The second-order rate constants for the reaction of superoxide with 

HACl were thus calculated to be 2.2 x 103 M-1 s-1 at 1 mM HACl and 2.4 x 103 M-1 s-1 at 2 mM 

HACl. There was no need to include the reactions of superoxide with the parent 

glycosaminoglycans in the simulation due to their very low rate constants. Hence, for the first 

time, a direct kinetic measurement has established a value of 2.4 +/- 0.3 x 103 M-1 s-1 for the 

reaction: 

 

  O2
.-
  + HACl  products      (6) 
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Figure 3 
Decay of the superoxide radical anion absorbance at 270 nm in the absence or presence of HepCl.  a) 0 
mM HepCl fitted to k(O2

.- + O2
.-) = 5.5 x 103 M-1s-1 (---); b) 1 mM HepCl fitted to k(O2

.- + HepCl) = 2.5 
x103 M-1s-1 and k(O2

.- + O2
.-) = 9.0 x 103 M-1s-1 (---); c) 2 mM HepCl fitted to k(O2

.- + HepCl) = 2.6 x103 
M-1s-1 and k(O2

.- + O2
.-) = 9.0 x 103 M-1s-1 (---). All  solutions contained 30 mM sodium persulphate, 50 

mM sodium formate, 5 μM EDTA in 10 mM borate buffer at pH 9.5, and were oxygen saturated. 

Figure 2 
Decay of the superoxide radical anion absorbance at 270 nm in the absence or presence of HACl.  a) 0 
mM HACl fitted to k(O2

.- + O2
.-) = 5.5 x 103 M-1s-1 (---);  b) 1 mM HACl fitted to k(O2

.- + HACl) = 2.2 
x103 M-1s-1 and k(O2

.- + O2
.-) = 8.0 x 103 M-1s-1 (---); c) 2 mM HACl fitted to k(O2

.- + HACl) = 2.4 x103 
M-1s-1 and k(O2

.- + O2
.-) = 9.0 x 103 M-1s-1 (---) .All  solutions contained 30 mM sodium persulphate, 50 

mM sodium formate, 5 μM EDTA in 10 mM borate buffer at pH 9.5, and were oxygen saturated. 
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Similar experiments were carried out using 1 mM and 2 mM HepCl solutions (also containing 

0.25 mM and 0.5 mM Hep respectively). The kinetic data are shown in figure 3 and demonstrate 

a definite reaction of superoxide with HepCl. Kinetic simulations produce good fits to the data, 

indicating k(O2
.-  + HepCl) = 2.5 +/- 0.3  x 103 M-1 s-1. 

 

The effect of the monochloramine of the amino acid, taurine, on the decay of the superoxide 

radical was also studied using 1 mM and 2 mM TauCl. Figure 4 shows the kinetic data at 270 nm. 

Unlike the experiments with HACl and HepCl, the initial concentration of superoxide is 

significantly affected by the presence of the chloramine, decreasing relative to the control 

experiments, by approximately 50% and 66% in the 1 mM and 2 mM TauCl experiments 

respectively.  

 

 

 

 

 

Figure 4  
Decay of the superoxide radical anion absorbance at 270 nm in the absence or presence of TauCl. a) 0 
mM TauCl fitted to k(O2

.- + O2
.-) = 7.0 x 103 M-1s-1 (---); b) 1 mM TauCl fitted to k(O2

.- + TauCl) = 3.5 
x102 M-1s-1 , k(O2

.- + O2
.-) = 4.0 x 103 M-1s-1 and k(O2

.- + RO2
.) = 1.0 x 105 M-1s-1 (---); c) 2 mM TauCl 

fitted to k(O2
.- + TauCl) = 4.0 x102 M-1s-1, k(O2

.- + O2
.-) = 5.0 x 103 M-1s-1 and k(O2

.- + R.) = 2.1 x 105 M-

1s-1 (---). All solutions contained 30 mM sodium persulphate, 50 mM sodium formate, 5 μM EDTA in 
10 mM borate buffer at pH 9.5, and were oxygen saturated.  
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The most likely explanation is that CO2
.-, a strong reducing agent (the one-electron reduction 

potential of CO2 being -1.9 V [43]), reacts faster with TauCl than with the glycosaminoglycans 

chloramides. By simple competition of this reaction with the reaction between CO2
.- and oxygen 

(reaction (3) above), and using k(3) = 2.4 x 109   M-1 s-1 [40], it can be estimated that k(CO2
.- + 

TauCl) = 2.4 x 109   M-1 s-1.  

 

Figure 4 also shows that an increase in the concentration of TauCl does increase the rate of decay 

of superoxide. Kinetic simulations of the kinetic data for the 1 mM and 2 mM TauCl experiments 

using only the superoxide dismutation (reaction (5) ) and the reaction between superoxide and 

TauCl did not produce consistent k(O2
.- + TauCl) values. In view of the significant competition of 

CO2
.- for both oxygen and TauCl, it seemed plausible that the peroxy radicals (designated here as 

RO2
.) formed in the CO2

.- / TauCl reaction could also react with superoxide radicals. Inclusion of 

this latter reaction with rate constants in the range of 1-2 x 105 M-1 s-1 produced good fits and 

consistent values for k(O2
.- + TauCl) = 3.5-4.0  x 102 M-1 s-1).  

 

Kinetic measurements of the reduction of ferricytochrome c by the superoxide radical 

An additional approach to determine the rate of reaction of superoxide with the 

glycosaminoglycan chloramides and taurine monochloramine involved monitoring the rate of 

reduction of ferricytochrome c (cyt c) at 550 nm in the absence and presence of the latter 

substrates. Laser flash photolysis of oxygenated solutions containing 30 mM persulphate, 50 mM 

formate, 50μM cyt c, 50 μM EDTA at pH 9.5 produced a growth in absorbance at 550 nm over 1 

s . Under these conditions, CO2
.- reacts much more rapidly with oxygen ( k = 2.4 x 106 s-1 ) than 

with ferricytochrome c( k= 3.5 x 104 s-1 [50]) and the growth  was therefore assigned to the 

reduction of ferricytochrome c by superoxide (see figure 5a). To provide additional support for 

the latter assignment, the experiment was repeated in the presence of 0.5 μM superoxide 
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dismustase. The resultant kinetic trace ( 5d and also the inset ) shows that the amount of 

ferrocytochrome c formed in now only 3% of that seen in figure 5a indicating that the enzyme has 

removed superoxide radicals effectively. Using a difference extinction coefficient of 2.11 x 104 

M-1 cm-1 for the ferri- and ferro- forms of cytochrome c [44], the yield of ferrocytochrome c 

reduction is 1.5 x 10-5 M. This is lower than the superoxide concentrations observed at similar 

laser energies in the absence of cytochrome c. This can be attributed to a significant proportion of 

the laser energy being absorbed by the cytochrome c, which has a strong absorption at the laser 

excitation wavelength of 266 nm. However, it should be noted that the laser flash photolysis of 

cytochrome c solutions alone did not produce any long-lived transient species which could 

interfere with the superoxide absorbance. The rate of reduction of ferricytochrome c, shown in 

figure 5 was 2.0 x 105 M-1 s-1, which is consistent with the value of 1.5 x 105 M-1 s-1 determined at 

pH 9.5 in a key study of the effect of pH on the reaction of cytochrome c with superoxide [45]. 

Figure 5 

Reduction of ferricytochrome c by the superoxide radical observed at 550 nm in the absence or presence of 
HACl. a) 0 mM HACl  fitted to k(O2

.- + O2
.-) = 1.0 x 104 M-1s-1  and k(O2

.- + cyt c) = 2.0 x 105 M-1 s-1 (---); 
b) 2 mM HACl fitted to k(O2

.- + O2
.-) = 1.0 x 104 M-1s-1,  k(O2

.- + cyt c) = 2.0 x 105 M-1 s-1 and k(O2
.- + 

HACl) = 2.4 x 103 M-1 s-1 (---); c) 3 mM HACl fitted to  k(O2
.- + O2

.-) = 1.0 x 104 M-1s-1, k(O2
.- + cyt c) = 3.0 

x 105 M-1 s-1 and   k(O2
.- + HACl) = 2.7 x 103 M-1 s-1 (---). All solutions contained 30 mM sodium 

persulphate, 10 mM sodium formate, 50 uM ferricytochrome c, 5uM EDTA in 10 mM borate buffer at pH 
9.5, and were oxygen saturated; d) as for a) with addition of 0.5μM superoxide dismutase ( the inset shows 
an enlarged portion of this kinetic trace) 
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Reduction of ferricytochrome c in the presence of HACl, HepCl and TauCl. 

Figure 5 also shows the effect of 2 mM and 3 mM HACl on both the rate and the yield of 

reduction of ferriccytochrome c. As [HACl] is increased, the rate increases and the yield 

decreases. Simulations, using only the dismutation of superoxide (reaction 5) and the reaction of 

superoxide with cyt c, yielded k(O2
.- + HACl) values of 2.4 x 103 and 2.7 x 103 M-1 s-1 

respectively. These values are very similar to the rate constants obtained using the decay of 

superoxide absorbance at 270 nm. Similar experiments were also carried out with solutions 

containing 2 mM HepCl and 4 mM HepCl and these are shown in figure 6. Kinetic simulation 

yielded values of k(O2
.- + HepCl) values of 2.2 x 103 and 2.7 x 103 M-1 s-1 respectively, again 

similar to those obtained in the 270 nm experiments. 

 

Figure 7 shows the rates of reduction of ferricytochrome c in the presence of 1 mM, 2 mM and 4 

mM TauCl. The effect is more dramatic than that observed in the HACl and HepCl experiments, 

which is attributable to the reduction in superoxide yield that arises from the competition of CO2
.- 

for oxygen and TauCl. In the absence of TauCl, the ferrocytochrome c yield of 1.1 x 10-5 M has 

also been used as the initial superoxide radical yield. Consequently, the initial yields of 

superoxide radical in the TauCl for the 1mM and 2 mM TauCl experiments can be calculated as 

5.5 x 10-6 M, 3.7 x 10-6 M . However, unlike the more direct measurements of superoxide decay 

measured at 270 nm in the absence of cytochrome c (see figure 4), simulation of the kinetic data 

in figure 7 using the same reaction scheme, did not produce reasonable fits. The extra complexity, 

due to the presence of both peroxy radicals of taurine (from the reaction of CO2
.- with TauCl) and 

ferricytochrome c, meant that accurate fitting of the data was not possible. Nevertheless, the 

reduction in ferrocytochrome c yields as [TauCl] was increased is consistent with a reaction of 

superoxide radicals with TauCl.  
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Figure 6 
Reduction of ferricytochrome c by the superoxide radical observed at 550 nm  in the absence or presence 
of HepCl. a)  0 mM HepCl fitted to k(O2

.- + O2
.-) = 1.0 x 104 M-1s-1, k(O2

.- + cyt c) = 2.0 x 105 M-1 s-1 (---
); b) 2 mM HepCl fitted to   k(O2

.- + O2
.-) = 1.0 x 104 M-1s-1, k(O2

.- + cyt c) = 2.2 x 105 M-1 s-1 and k(O2
.- 

+ HepCl) = 2.2 x 103 M-1 s-1 (---); c) 4 mM HepCl fitted to k(O2
.- + O2

.-) = 1.0 x 104 M-1s-1, k(O2
.- + cyt c) 

= 2.5 x 105 M-1 s-1 and k(O2
.- + HepCl) = 2.7 x 103 M-1 s-1 (---). All solutions contained 30 mM sodium 

persulphate, 10 mM sodium formate, 50 uM ferricytochrome c, 5uM EDTA in 10 mM borate buffer at 
pH 9.5, and were oxygen saturated. 

Figure 7  
Reduction of ferricytochrome c by the superoxide radical observed at 550 nm  in the absence or presence 
of TauCl. a) 0 mM TauCl; b) 1 mM TauCl; c) 2 mM TauCl ; 4mM TauCl All solutions contained 30 
mM sodium persulphate, 10 mM sodium formate, 50 uM ferricytochrome c, 5uM EDTA in 10 mM 
borate buffer at pH 9.5, and were oxygen saturated. 
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Discussion 

In the present work we have used laser flash photolysis techniques to provide two direct 

approaches to determine the rate constants for the reaction of superoxide radicals with the 

chloramides of hyaluronan and heparin, as well as that of the monochloramine of an 

amino acid, taurine. Measurements of superoxide rate constants are often hindered by the 

typically low rates of reaction with many substrates in conjunction with the almost 

diffusion-controlled rates with trace metal aquo ions, such as Cu2+
aq. In this study at pH 

9.5, the use of chelex resins and EDTA (to remove ions such as Fe2+
aq ,  Fe3+

aq and Cu2+ 

and to make Cu2+ species considerably less reactive), resulted in the lifetime of 

superoxide extending to some 10 s, in line with the established values for superoxide 

dismutation at this pH [41]. The possibility that the chloramides might bind small 

amounts of Cu2+ and so account for the significant effect of the chloramide and 

chloramine derivatives on the decay of superoxide seem therefore implausible. The 

binding of Cu2+ to hyaluronan (K= 3000 M-1 [46]) is relatively weak and would not 

compete with EDTA. Pulse radiolysis experiments have previously been used to study 

the effect of pH on the rate of reaction of superoxide with ferricytochrome c, which 

would be expected to bind Cu2+ ions much more strongly than glycosaminoglycans. 

However, whilst Cu2+ ions did increase the rate of decay at pHs between 7 and 8.5, there 

was no effect at higher pHs where unreactive hydroxo complexes of Cu2+ are formed 

[45]. These considerations argue strongly for the lack of any effect of trace copper ions 

on the decay of superoxide and conversely, provide an unambiguous demonstration that 

direct reactions between superoxide radicals and the chloramide / chloramine derivatives 

are being observed in our laser flash photolysis experiments.  
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The rate constants for HACl and HepCl, summarised in Table 1, are remarkably similar, 

indicating perhaps that activation to the transition state is localised at the N-Cl group. 

Additionally the charge on the glycosaminoglycan has little or no effect on the rate 

constants. Heparin chloramide, the most-heavily sulphated glycosaminoglycan, has no 

effect on the reaction of the superoxide anion radical when compared to that with HACl. 

Glycosaminoglycans however, are not simple ionic species and are strongly associated 

with their sodium counterions, mitigating any simple kinetic relationships between 

charged species. The lack of an effect from a sulphate group bound directly to the N atom 

of the N-Cl group again indicates a high localisation of the transition state in reactions 

with superoxide. There are no other direct measurements of these rate constants in the 

literature. However, previous EPR experiments have provided an estimate for the rate 

constant for reaction of superoxide with taurine chloramines of 5-6 x 102 M-1 s-1 [27]. 

This value is very close to the values of 3.5 -4.0 x 102 M-1 s-1 determined in the current 

study. In the previous study [27], a thermal source of superoxide, di-(carboxybenzyl) 

hyponitrite (SOTS-1), was used to generate superoxide. Reaction with the taurine 

chloramines was demonstrated by the inhibitory effect of superoxide dismutase. In a later 

study, again using SOTS-1 to react with the chloramides of hyaluronan and chondroitin 

sulphates, it was concluded, through the inhibitory effect of EDTA, that the superoxide 

reaction was mediated, at least in part, by Cu2+aq [20], presumably through the redox 

cycling of Cu(II) and Cu(I) leading to reduction of the N-Cl group by Cu(I). An identical 

conclusion was also made for the chloramines and chloramides of heparin sulphate [47]. 

This indirect mechanism for reaction of superoxide with glycosaminoglycan chloramides 

may be in competition with the direct reaction demonstrated in this study. At the 
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relatively low concentrations of chloramides, 200–300 μM used in the earlier studies 

[20,27,47], as little as 1 nM of Cu2+
aq involved in effective redox cycling at pH 7.4 would 

be the main channel of reaction, since superoxide reacts at diffusion-controlled rates with 

Cu (I/II) aquo complexes. At the pH of 9.5 and the higher chloramide and chloramine 

concentrations used in this study, the direct reaction is dominant.  

Table 1  

R-NCl k( O2
.- +R-NCl) 

M-1s-1  

HACl 2.4 +/- 0.3 x 103 

HepCl 2.5 +/- 0.3 x 103 

TauCl 3.8 +/- 0.3 x 102 

 

Table 1 
Second-order rate constants for the reaction of superoxide anion radicals with HACl, HepCl and TauCl 
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Scheme 1  
A  mechanism for the fragmentation of HACl by superoxide anion radicals ( see [20]). 
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The mechanism of the direct superoxide reaction is likely to involve the one-electron 

reduction at the N-Cl site in which chloride ions are liberated. The one-electron reduction 

by the strong reducing agent, the hydrated electron, of the simplest chloramine, NH2Cl, 

was found to occur at diffusion-controlled rates by pulse radiolysis and assumed to 

liberate chloride ions [23, 24]. Superoxide radicals are weak reducing agents (E(O2/O2
.- = 

-0.33 V) [48] and can be expected to react much more slowly than strong reducing 

agents. From EPR studies, it has been proposed that both Cu(I) and superoxide radicals 

transfer an electron to the chloramides, forming nitrogen-centred radicals in the first 

instance which then undergo a 1, 2 shift that results in C-2 carbon-centred radicals (see 

Scheme 1 and [20]). The nitrogen-centred radicals are short-lived and only the C-2 

radicals can be detected [47]. Pulse radiolysis studies of the reaction of hydroxyl radicals 

with amides produced carbon-centred radicals with characteristic absorption spectra in 

the UV/visible region but also did not detect any nitrogen-centred radicals [49]. Although 

such free radicals may, in principle, be detected in the reaction of superoxide radicals 

with glycosaminoglycan chloramides, the low rate constant for the reaction makes it very 

difficult to detect the initial free radical products as they will decay much more quickly 

than they are formed. It is then the scission of the glycosaminoglycan C-2 radicals which 

leads to the fragmentation of the biopolymer. It has been estimated that Cu(II)/Cu(I) ions 

are at least 50% efficient in their reaction in causing fragmentation [47]. There were no 

similar estimates in the latter work for the reactions of superoxide radicals.  

 

In conclusion, therefore, superoxide radicals have been shown for the first time to react 

directly with the chloramides and chloramine studied here. There is however no evidence 
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yet that the direct reaction leads to an electron transfer taking place to produce C-2 

radicals and then fragmentation. The occurrence of such a reaction in vivo (i.e. one not 

requiring the presence of adventitious metal ions such as Cu(I) or Fe(II)) would be very 

significant.  

 Localised excess production of HOCl has been implicated in a\number of diseases that 

involve an acute or chronic inflammatory response (e.g. atherosclerosis, rheumatoid 

arthritis and asthma) [51,52] .There is evidence that binding of myeloperoxidase to 

matrix components and cell-surface glycosaminoglycans  directs oxidative damage 

towards these biopolymers[53-55]. At sites of inflammation within the extracellular 

matrix, activated phagocytes release the haem enzyme myeloperoxidase and produce 

high concentrations of the superoxide anion  and its dismutation product, hydrogen 

peroxide via an oxidative burst. Myeloperoxidase is a highly basic protein and is known 

to bind, via electrostatic interactions, to negatively charged materials such as the 

polyanionic glycosaminoglycans   [55]. The combination of site-specific production of 

chloramides via binding of myeloperoxidase to glycosaminoglycans and the likely 

selectivity and potential efficiency in causing fragmentation by superoxide radicals in 

their reactions with extracellular matrix chloramides may be the main channel of 

fragmentation in inflammation. 
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