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Abstract

The blending of coloured fibre is explored as a sustainable method of colouration
when coupled with sustainable fibre and dyeing choices such as spun-dyed Lenzing
Viscose Austria. It was found that a selection of spun-dyed colours (primaries) can be
used to create homogenous 4-colour blends when mixed in specific groups. The use of
4-colour blends ensures that the optimal amount of colours within a gamut are
produced with the lowest possible number of primaries depending on the acceptable
mean colour difference of the 4-colour blends. The acceptable mean colour difference
of a blend (measured by averaging each pair of colour differences between the
primaries in a blend) can be derived using example 4-colour blends and participant

observations at a set viewing distance.

Using MATLAB, a method of estimating the number of primaries required to fill a given
gamut in CIELAB colour space was developed. Primaries can be distributed across
CIELAB colour space and grouped into tetrahedral groups of four for blending. The
mean colour difference of the tetrahedral 4-colour blends can be increased or
decreased by varying the number of primaries within a gamut. It was also found that
the maximum mean colour difference of blends in order for them to appear solid

(when viewed at a specific viewing distance) was transferable to blends in knit form.

Comparisons of existing blend prediction models with the prediction possibilities of a
standard neural network and novel neural network were undertaken using data
gathered from 333 blended samples. The results showed that neural networks
outperformed the existing prediction models and can be successfully used to predict

the colour of blends to an industry standard.

The investigations of this thesis have shown that a sustainable colouration system
using spun-dyed viscose blends is possible and that accurate colour predictions of

these blends can be made.
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Chapter 1 Introduction and literature review

1.1 Introduction

Fibre blending is the method of blending a limited number of pre-dyed coloured fibres
together, in specific proportions, to create new colours. Coloured fibre blending has
been suggested as an alternative, more environmentally sustainable, method of textile

colouration (Philips-Invernizzi et al., 2000).

Fibre blending is thought of as a sustainable method of colouring textiles as it limits
the amount of secondary dyeing processes that are normally involved in textile
colouration; instead of altering a dye recipe, the recipe of the blended fibres is altered.
To truly promote the use of fibre blending as a means of sustainable colouration for
textiles and fashion, spun-dyed viscose fibres (from Lenzing Austria) are used in the
experimental work within this thesis due to their environmental merit. Benefits of
blending spun-dyed fibre include limiting the amount of fibre wasted as a result of un-
matched colouration and limiting the amount of dye, water and chemicals used to
colour textile fibres due to the spun-dyeing process. The blending of coloured fibre
could be extended to recycled fibre. Fibre blending of coloured fibres from recycled
materials already exists as a method of re-engineering second-hand textiles. Textiles
are deconstructed through cutting, shredding and carding to produce fibres for

blending, spinning and knitting, giving the textile fibre new value (Hawley, 2006).

For coloured fibre blending to become a viable competitor to conventional dyeing
practices, a method of accurately predicting the colour of blends from a set of
coloured fibres (or primaries) must be established. A primary can be defined as a
colour from which all other colours can be created by combining the primary colours in
different proportions (OED, 2014). In fibre blending, primaries are coloured fibre which
are blended together to create multiple new colours. Whilst there are some existing
methods of coloured blend prediction, their success has been limited due to the
complex relationship between incident light and the surface characteristics of fibre

blends (Burlone, 1983).



1.1.1 Aims and objectives

The aim of this research was to investigate a sustainable method of colouring textiles
for fashion and textiles which is flexible, accurate and environmentally sustainable. The
application of this research within the fashion industry was of particular interest due to
the speed at which fashion trends and seasons are changing. It was anticipated that a
system of colouration can be developed which allows small amounts of coloured
textiles to be produced with accuracy. To do this, it is proposed that instead of dyeing
fibre, yarns and fabrics to a specific colour for a particular design, that coloured fibre is
instead blended together in various proportions to achieve homogenous, solid
appearing colours. By doing this, only a selected number of dyed colours (primaries)

would be required.

In order for coloured fibre blending to become a commercially viable form of textile
colouration, investigations were made into the processes involved. This broadly
included three areas; firstly, the process of choosing which fibres to blend together so
that solid colour effects are produced, secondly, the estimated number of primaries a
colouration system would need, and finally, the development of an accurate system

for the colour prediction of the fibre blends.

The research objectives to achieve this model were therefore:

1. To identify the maximum colour-difference tolerance between a pair or group
of primaries so that once blended they produce solid colour effects;

2. To define the number of primaries that a fibre blending colouration system
requires so that almost any colour could be produced as a blend from a set of
primaries;

3. To test existing methods of blend prediction and compare these to prediction

models using neural networks.

This thesis approaches these different objectives over the course of five chapters. This
first chapter includes the literature review which outlines the current fibre, fashion

and textiles industry. In particular, the environmental impact of different fibre types,



and the way in which they are consumed within the fast-fashion and textiles industry,
is considered. The benefits of spun-dyeing, rather than conventional dyeing, is
discussed as well as the benefits of blending spun-dyed fibre to produce new colours.
Existing blend prediction models are identified before the possibility of using neural
networks is proposed. Chapter 2 outlines the materials and methods used within this
thesis. This includes the materials and methods used to produce blended samples,
colour measurement and the methods used to assess blended samples using
observers. Chapter 3 is composed of two experiments in which blended samples were
prepared using a variety of primaries. The blended samples were assessed by
observers with normal colour vision in order to understand when different primaries
appear as one colour when blended. This allowed calculations to be made as to the
threshold of colour difference (in CIELAB AE) between individual primaries within a
blend so that once blended they appear as a solid colour. Chapter 4 builds upon the
work in chapter 3, investigating the number of primaries a fibre blending colouration
system may require to create a large (or specific) range of solid fibre blends. Finally,
chapter 5 tests existing and novel blend prediction models for the application of

accurate fibre blending within industry.

1.2 Textiles for fashion: the demand

Each year the global population continues to increase. The current estimate for global
population is over 7 billion people and this is projected to rise to over 8 billion people
by 2025 (United Nations, 2013). With this continued rise in population comes an
unavoidable increase in global demand for the world’s limited resources, textiles being
one of them. In 2012, over 85.9 million tonnes of fibre was produced globally; of this,
68 % (58.6 million tonnes) of the production was composed of man-made fibres.
Within Europe, 4.6 million tonnes of man-made fibre was manufactured, including
over 1 million tonnes of polyester and 562,000 tonnes of cellulosic fibres (CIRFS, 2014).
The environmental and social impact and sustainability of producing these vast
amounts of different fibres (and consequently fashion and textiles) is wide ranging and
diverse as different fibres require different inputs and processing techniques. Within
textiles for fashion, both natural and man-made fibres are used to sustain global

clothing demand, an area which has seen rapid changes in recent years.



The fashion industry has traditionally promoted new trends for consumers across the
course of two main fashion seasons; spring/summer and autumn/winter. Fashion
trends and garment collections are often predicted and planned months or years in
advance. More recently, however, there has been a shift by retailers to move towards
a fast-fashion formula. Anson (2010) identifies that some markets are producing
fashion garments in cycles of up to 12 seasons per year. Fast-fashion is profit-led with
short lead times and a high turnover of garments. These garments are often of poor
quality, as there is an increasing presumption that they may only be worn a few times
before being discarded, garment price therefore being of upmost importance (Tham,
2013). The economic push to produce cheap and readily available garments has
compromised the quality and durability of the garments being produced (Fletcher,
2015). Fast-fashion is popular for retailers as it allows them to give multiple short
seasons of trends which react directly to consumer demand. Zara is an example of a
retailer that has implemented this method of supply and demand very successfully,
producing huge ranges of garments compared to their competition (The Economist,
2005). A whole collection of garments, from design concept to completed
manufacture, can be ready for sale in Zara stores within three to four weeks (Chu,
2014). With over 450 million garments distributed in over 1,700 stores across the
globe, Zara only decides up to 50 % of its collections before the start of a season, the
rest is introduced depending on sales figures and changing trends (Berfield & Baigorri,
2013; Ferdows et al., 2005). One benefit of producing clothes in this fast and tightly
controlled supply and demand method, is that Zara only produce more of the
garments which are selling well, limiting their end of season surplus and therefore
waste. Zara’s high turnover, fast-fashion formula is a particularly extreme example of
fast-fashion; however it highlights the changing shape of the fashion industry where
the successful sale and demand of small runs of clothing leads to a quick turnover of
successful products and trends. Consumers want more clothes and more variety and

the industry is responding quickly.

The fashion retail industry is big business within the UK with £38.4 billion spent on
clothing in 2005. The average amount spent in the UK on clothes per person was

estimated to be £625 in 2004 (Allwood et al., 2006). Fletcher (2008) describes the



consumer’s desire for new clothes as a means of re-formulating ones identity in
response to changing fashion trends. Campbell (2006) views the consumption of goods
as a means of satisfying the consumer’s desire for new and novel pleasurable
experiences. Michael Flanagan, chief executive of Clothescource, highlights that the
majority (86 %) of the world’s spending on fashion originates from only 15 % of the
planet’s population. Flanagan argues that the consumption of fashion garments is not
solely motivated by a need to follow fashion trends but a desire by the wealthy for real
or perceived comfort or performance benefits (Flanagan, 2013). Fashion consumption
in the UK has shown significant growth in recent years, with the amount of clothes
purchased per capita increasing rapidly. For example, between 2001 and 2005 the UK
saw a 37 % increase in the amount of clothes purchased per capita. Concurrently,
almost 40 kg of clothing and textile waste per person was disposed of within each of
those years (Allwood et al., 2006). Currently, Europeans consume 90 m? of clothing per
year; this is in stark contrast to an average Bangladeshi who consumes less than 1 m?
per year (Flanagan, 2013). Flanagan (2013) calculates that when the world’s twenty
poorest and most populous countries consume as many clothes as are consumed in
Europe and America, then the world will need to produce three times more fabric and
energy than it is currently producing. Whilst the motivations behind the consumption
of fashion textiles are complex, the reality of the industry is clear; that the global
demand and consumption of textiles is increasing alongside a growing global
population. Sustainable methods of textile manufacture and colouration must

therefore be considered if the rate of textile consumption is to be fulfilled responsibly.

1.2.1 Textile fibres

A variety of fibres, both natural and man-made, are being used within fashion and
textiles. The selection of fibre type, method of manufacture and method of colouration
of textiles for fashion all depend on a variety of design decisions including the garment
end use, the season in which the garment is to be sold, the cost of manufacture, the
market level at which the garments will be sold and availability of the fibres or textiles.
Ultimately, however, the choice of fibre is often based on the cost and speed of

production, rather than the environmental impact of the fibre (Sherburne, 2009).



Fletcher and Grose (2012) highlight various important impacts that the creation of a
garment has on ecological and social systems. These include the inputs of producing a
fibre or garment (how much water, energy and/or chemicals have been used); the
waste outputs produced in the manufacturing process (waste water, chemicals,
airborne emissions); the use stage (how is the garment washed); the end-of-life
disposal (is the fibre or garment biodegradable or is it destined for landfill?); the social
impact of workers producing the fibres (working conditions and pay); and finally the
impact of fibre production on local communities (including health and natural
resources) (Fletcher & Grose, 2012). These complex issues all have a role in the
environmental, social and economic sustainability of fashion. One way of quantifying

the sustainability of a product is through life cycle assessments.

Life cycle assessments (LCAs) of products, such as fashion garments, have become a
commonly used and trusted method of assessing the environmental, social and
economic impact that the life of a product has, from raw material (cradle), to end of
life disposal (grave) (Lee, 2013a). The International Organisation for Standardisation
(ISO) has produced two ISO standards; ISO 14040 (2006a) and ISO 14044 (2006b)
which provide guidelines for companies and organisations to produce reliable LCAs of
products and services. LCAs can highlight particular negative processes or materials
within the life cycle of a product. Companies and organisations can use this
information to change or improve a product’s environmental performance (Lewis &

Gertsakis, 2001).



Lee (2013b) identifies five life cycle stages to consider when looking at the impact of a

product from cradle to grave:

1) Raw materials stage: the natural resources and processes used to produce the
raw materials;

2) Manufacturing stage: the processes and activities used to produce a product
from manufacturing entrance to exit gate;

3) Distribution stage: the processes or activities involved between manufacturer’s
exit gate and sale of product;

4) Use stage: how long a product will last and how much use and energy will be
consumed within the product’s lifetime;

5) End of life stage: the recycling, reuse and disposal (including incineration or

landfill) of a product.

From an environmental point of view, Lewis et al. (2001) identify the design stage of a
product, specifically where the materials for a product are selected, as being the key
point at which the life cycle impact of a product is decided. If a product is designed
with consideration as to the amount of waste, raw materials, energy and water
consumption that will be used, then those properties are known and can be altered to
influence (and potentially improve) the life cycle of a product (Lewis et al, 2001).
Sherburne (2009) argues that for textiles, the highest impacts on the LCA of textile
fibres (excluding the social impacts) include the over use of water in production
processes (which can have associated effects such as de-oxygenation and salinisation
of water supplies), the over use of chemicals including pesticides and chemicals used in
production, exploitation of non-renewable materials and energy sources, waste and
transportation. Other environmental impacts specific to textiles include de-
oxygenation of water supplies, loss of biodiversity and loss of soil fertility (Sherburne,

2009).

The dyeing stage of textiles is also an area of high environmental impact, with large
amounts of additional water and chemicals used. It is estimated that 378 billion litres

of water a year are used by the textile industry (Clay, 2004). The use stage of garment



has also been shown to have a deceptively large impact on the LCA of a fibre. In 1993,
Franklin Associates produced a report on the LCA of a polyester blouse. The report
illustrated that the majority of energy use (82 %), majority of carbon dioxide emission
(83 %) and large percentage of solid waste (66 %) of the LCA of the blouse occurred
through washing and drying (Franklin Associates, 1993). Whilst this study is now
perhaps relatively outdated as consumer purchasing and use of fashion garments has
evolved (for example, washing machines have become more energy efficient and the
frequency at which we wear garments (particularly trend fashion pieces) is reducing)
the study does highlight the complexity of LCA of fashion garments (ENDS Report,
2007; Fletcher & Tham, 2004; Gibson, 2013).

1.2.2 Natural and synthetic fibres

Depending on the fibre type, the LCA of a textile garment can vary. Textile fibres can
be broadly divided into natural and man-made fibres. Natural fibres are those made
from vegetable fibres such as cotton, animal protein fibres such as wool and mineral

fibres such as asbestos.



Figure 1.1 shows some commonly used natural and man-made fibres within fashion

and textiles industry.

Mineral origin

Textile fibres

Figure 1.1 Examples of natural and man-made textile fibres
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The separation within man-made fibres of those fibres made from synthetic polymers
and those fibres made using natural (or bio-based) polymers can also be seen in Figure
1.1. Synthetic polymer-based fibres are those manufactured from polymers which
have been synthesised from chemical elements or compounds, whereas natural-based
polymer fibres (often called regenerated fibres) are made from naturally occurring
fibre-forming polymers (Denton & Daniels, 2002; Mclntyre, 2005). Synthetic polymers
are manufactured using petrochemicals and minerals and these create fibres including
polyurethane and polyester (Fletcher & Grose, 2012). One group of synthetic bio-
based fibres are produced using regenerated cellulose polymers (extracted from
natural fibres such as beech wood and bamboo) to create fibres including viscose and

lyocell.

Natural fibres, and synthetic fibres which have been produced from bio-polymers, are
fundamentally biodegradable. In contrast, synthetic polymer-based fibres can take
hundreds of years to decompose in landfill (Black, 2011). Biodegradability is an
important consideration when assessing the LCA of fibres and textiles (Ciechanska &
Nousiainen, 2005). The renewability of natural and synthetic fibres is also different.
Fibres are said to be renewable if they can be cultivated over months or years and,
crucially, be replenished without detriment to the rate of their harvest (Fletcher &
Grose, 2012). Examples of renewable fibres include natural fibres such as cotton and
bamboo, and regenerated cellulose fibres such as viscose and lyocell. Non-renewable
fibres are manufactured using materials (such as oil or minerals) which take hundreds
of thousands or even millions of years to replenish. Non-renewable fibres include
polyester and nylon (Fletcher & Grose, 2012). With limited access and supplies of non-
renewable source materials such as crude oil, renewable fibres are a much more

reliable and sustainable source for long term textile production.

The renewability and biodegradability of natural fibres contributes to the common
perception that natural fibres must always be more environmentally friendly
compared to man-made fibres. However, the whole life cycle of a fibre from raw
material to eventual disposal must be considered. Whilst natural fibres are sustainable

in the fact that they are renewable, the farming and processing of natural fibres such
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as cotton and wool are often highly intensive with un-sustainable environmental
consequences (Lewis et al., 2001). The following sub-sections discuss some of the
global environmental and social impacts that the production of popular fibres,
including cotton, wool, polyester and viscose, have within the fashion and textile

industry.

1.2.2.1 Cotton

Cotton is the most highly produced natural fibre within the textile industry. In 2012,
24.68 million tonnes of raw cotton fibre was consumed globally (Fibre Organon, 2013).
Approximately three quarters of the global supply of cotton is produced in the
developing world and 45 % of this cotton is consumed in Europe and America (Black,
2011). Cotton uses high levels of water in both the irrigation and processing stages.
Over 50 % of the world’s cotton is irrigated in dry countries such as Egypt and
Uzbekistan where water is scarce (Soth, 1999). Depending on the environment in
which it is grown, it is estimated that it can take between 7,000 and 29,000 litres of
water to grow 1 kg of cotton (WWF, 2003). One study estimated that it can take over
2,700 litres of water to produce one cotton t-shirt (EJF, 2014). In a 2006 study into the
life cycle of a plain, dyed cotton t-shirt, it was estimated that a total of 109 megajoules
(MJ) of energy was consumed across the product’s life span; 24 MJ was consumed in
the production of the t-shirt and 65 MJ consumed in the use stage, showing that
washing, drying and ironing can also have a significant impact of the LCA of a garment

(Allwood et al., 2006).

Added to the water and energy demands of both the production and use stages of
cotton garments, there is also the chemical use in the growing of cotton crops. Many
cotton crops are treated with fertilisers, pesticides and herbicides which can leech into
the surrounding water and soil (Wakelyn & Chaudhry, 2007). The high demand for
water and use of harmful chemicals to support cotton growth can have hugely
detrimental effects on regions and countries. In Uzbekistan, poor irrigation practices
and water contamination have resulted in the Aral Sea basin being dramatically

reduced to 10 % of its original size (Hecht, 2014). The dry desert basin has left the local
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population exposed to agricultural chemicals and contaminated drinking water (Grose,

2009; EJF & Pesticide Action Network UK, 2007).

1.2.2.2 Wool

Wool is the fibrous protein hairs from the fleece of sheep. The term wool is also often
used to include other sources of animal hair such as cashmere or alpaca within the
textile industry (Black, 2011). The global demand for wool is much smaller than cotton,
with only 1.08 million tonnes, as opposed to 23.46 million tonnes of cotton, consumed
globally in 2012 (Fiber Economics Bureau, 2013). However the amount of wool
consumed in Western Europe in 2012 (352.7 million Ib) was not far from the amount of
cotton that was also consumed (396.8 million Ib) (Fiber Economics Bureau, 2013). The
cleaning of wool in order for it to be suitable for fashion and textiles is fairly intensive.
The fleece of a sheep is sheared off in one piece at which point it can weigh
approximately 3.6 kg, this raw weight is reduced however after cleaning and scouring
(Black, 2011). Approximately two thirds of the weight of raw wool is dirt, grease, dried
sweat and skin flakes (Lewis et al., 2001). To clean the wool of these impurities, large
amounts of water, detergent, chemicals and scouring are required. This in turn
produces large amounts of harmful effluent (Lewis et al.,, 2001; Russell, 2009).
Conversely, some of the natural grease in wool is a useful by-product of the cleaning

process and is made into lanolin for use in soap and cosmetics (Black, 2011).

1.2.2.3 Polyester

Synthetic man-made fibres made from petrochemicals have dominated the textile
industry in recent years. In 2012, polyester fibres, most commonly in the form of
poly(ethylene terephthalate) (PET) fibres, contributed to 88 % (43.3 million tonnes) of
the total synthetic polymer fibres produced globally (Fiber Economics Bureau, 2013).
Polyester fibres are appealing within the fashion and textile industry as they are

durable, lightweight, easy to dye and inexpensive to produce (East, 2005).

The main chemicals used in the manufacture of PET are terephthalic acid (TA) and
ethylene glycol (EG) (East, 2005). After polymerisation, the liquid polymer is extruded

into strands of fibre where it is solidified and either cut to a required length or made
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into a continuous filament yarn (East, 2005). It is argued that the highest impact stage
in the life cycle of polyester for fashion and textiles is the environmental and social
cost of oil exploration and oil extraction (Fletcher, 2008). The production of polyester
uses much less water than cotton; however, the energy consumed during polyester
production is fairly high, at 109 megajoules (MJ) per kilogram of polyester. Of this, 46
MJ is consumed at the raw material stage and 63 MJ consumed in the processing of

the raw material into fibre (Fletcher, 2008; Laursen & Hansen, 1997).

1.2.2.4 Viscose

Whilst regenerated cellulosic man-made fibres such as viscose are yet to compete with
the vast amounts of polyester produced globally and within Europe, cellulosic fibres
have established themselves as an appealing alternative to other man-made fibres
(Textiles Intelligence, 2013). Reasons for this include their biodegradability,

renewability, and comfort properties.

Viscose is most commonly made from wood, of which approximately 40-50 % is
composed of cellulose (Lenzing, 2012). Cellulose can also be extracted from plants and

some bacterium; any living organism which uses photosynthesis (Figure 1.2).

Light energy \

(Carbon dioxide + water) Glucose + oxygen

Chlorophyll

Figure 1.2 Process of photosynthesis

First recognised by French chemist Anselme Payen in 1838, cellulose (CgH100s), is an
organic polysaccharide (repeating glucose structure) with diverse and far reaching
applications. Cellulose is a linear-chain polymer, comprising of repeating B-D-gluco-
pyranose molecules, with a C4-OH group at one end and a C1-OH group at the other
end (see Figure 1.3). The large number of hydroxyl groups present in cellulose allow for

high rates of changeability and hydrogen bonding (Klemm et al., 2005).
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Figure 1.3 Structure of cellobiose

Viscose, a type of regenerated cellulose, dates back to the late 19th century. In 1891,
British chemists Charles Cross, Edward Bevan and Clayton Beadle first discovered that
cotton and wood cellulose could be treated with an alkali and carbon disulphide to
produce cellulose xanthate. This was then coagulated in aqueous ammonium sulphate
before being returned to pure cellulose through treatment with dilute sulphuric acid.
Cross and Bevan successfully patented this process in 1893 (Woodings, 2000).
Meanwhile, Charles Henry Stearn and Charles Fred Topham were working on a method
of spinning filaments; Stearn patenting a successful procedure in 1898 (Stearn, 1898;
Woodings, 2000). In May 1898, Cross and Stearn combined their expertise in cellulose
dissolution and spinning technology, and launched the Viscose Spinning Syndicate Ltd.
The company sold its viscose process rights and patents to Samuel Courtauld & Co Ltd
in July 1904. Courtaulds grew from strength to strength, and by 1909 the company was
producing good quality viscose in both the UK and America. Production of viscose
increased worldwide following the expiration of the viscose patents and production
increased from 14,000 tonnes to 225,000 tonnes per year from 1920 to 1931. The
production of viscose continued to increase and by 1973, annual production had
increase to 3,856,000 tonnes (Woodings, 2000). In 2012, 4.07 million tonnes of man-
made cellulosic fibres were produced globally, indicating the growth that regenerated

cellulose fibres have seen (Fiber Economics Bureau, 2013).
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Since Cross and Bevan’s patent in 1893, the production of viscose has developed to
become a more efficient process. The modern viscose process most commonly
involves the following process. Wood is chipped, pulped and soaked in sodium
hydroxide (NaOH) (commonly known as caustic soda) to break the internal hydrogen
bonds, in turn swelling the fibres. This slurrying process changes the cellulose into
sodium cellulosate, or alkali cellulose to use its common name. This is then pressed
and the remaining caustic soda is recycled back into the process. The alkali cellulose is
then oxidised and mixed with carbon disulphide (CS,) to produce sodium cellulose
xanthate. This is then dissolved in more caustic soda to finally produce viscose. The
viscose is held in a vacuum to ripen and remove any trapped air, after which it is
passed through a filter to ensure its purity. Finally the viscose is passed through a
spinneret, coagulating and neutralising as it enters a bath of sulphuric acid, sodium
sulphate, zinc sulphate and water. The resulting filaments are either collected in bales
of short staple fibre or in continuous yarns (Wilkes, 2000).The rate of coagulation and
stretching, as well as the concentration of the viscose solution, all contribute to the

particular characteristics of the viscose end product (Nevell, 1995).

Depending on the exact method of production, the LCA of viscose production can vary.
In the same 2006 study into the LCA of a cotton t-shirt as discussed in section 1.2.2.1,
the LCA of a viscose blouse was also considered (Allwood et al., 2006). In this case, the
energy consumed in the manufacture of the viscose blouse (11 MJ) was much less than
the energy consumed in the manufacture of the cotton t-shirt (24 MJ). The use phase
of the viscose blouse also consumed considerably less energy (7 MJ) compared to the
cotton t-shirt (65 MJ) (Allwood et al., 2006). Perhaps the greatest impact on the LCA of
viscose for fashion and textiles is the chemical emissions and waste water effluent.
These important areas have been highlighted within the textile industry and
companies are beginning to change their manufacturing processes so that chemicals

are recycled and reused (Lewis et al., 2001).

European market leaders of cellulosic fibres, such as Lenzing AG, have enthusiastically
promoted cellulosic fibres such as Lenzing Viscose Austria and Tencel® (a form of

lyocell) as more sustainable fibre choices for fashion and textile products. Their focus
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on environmental sustainability, in particular with regard to materials and production
have given Lenzing industrial recognition with awards such as the European
Commission’s Ecolabel (Lenzing 2014a). The label, awarded to Lenzing in 2002
recognises products and services which have less impact on the environment and
health throughout their life cycle compared to comparative goods and services

(Lenzing 2014a).

Lenzing Viscose Austria is produced using wood sourced from beech and eucalyptus
trees which have been grown in compliance with the sustainable forestry legislation.
Neither beech nor eucalyptus trees require artificial irrigation so the water
consumption to grow them is minimised (Lenzing, 2008). Lenzing Viscose Austria is
produced in a similar way to the common viscose process described above. Pulp from
an integrated plant is alkalised in caustic soda, depolymerised and mixed with carbon
disulphide (CS;) to produce cellulose xanthate. The cellulose xanthate is then dissolved
in caustic soda before being filtrated, degassed and aged. The viscose solution is put
into a spin-bath containing sulphuric acid, sodium sulphate and zinc sulphate. It is then
spun in an acid salt bath to create the viscose filaments. Finally, the fibres are
bleached, finished and dried. Importantly, up to 70 % of the CS, used to produce the
viscose is recycled back into the production process, reducing the LCA of the fibre

production stage (Shen et al., 2010).

The integrated plant allows the whole production process of Lenzing Viscose Austria,
from wood to fibre, to be done on one site, reducing the amount of fossil fuel
consumed in the production of the fibre. Bark waste and waste from the pulp
production process contributes to the fuelling of the pulp and fibre production
processes with the remaining energy for production (40 %) sourced using externally
purchased bark and municipal solid waste from an incineration plant next to the

factory (Shen & Patel, 2008).

1.2.2.5 Tencel®
Lenzing Tencel® (a form of lyocell) is produced in a similar way to viscose; however, the

production process has been altered so that less chemicals are used and the
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production of the fibre is done in a closed-loop process, that is, almost 100 % of the
solvents used in the manufacture of Tencel® fibres is recovered and the remaining

emissions are treated in biological water treatment plants (Lenzing, 2014d).

Unlike the viscose production process, Tencel uses NMMO (N-methylmorpholine-N-
oxide) to dissolve the wood pulp to regenerate cellulose. The use of the highly toxic
chemical carbon disulphide (CS,) is completely eliminated and the production process
steps are reduced (Shen & Patel, 2008). This method of production reduces the
amount of water consumed; with Tencel® using 10-20 times less water compared to
the equivalent amount of cotton (Shen & Patel, 2008). The yield of Tencel® per m? of
soil is also much higher than cotton. For every 6 m? of soil, 1 cotton t-shirt is produced

as opposed to ten Tencel® t-shirts (Lenzing, 2014d).

As the global demand for textiles continues to increase, viable and sustainable
methods of producing fibres for fashion and textiles must be considered. Whilst
natural fibres such as cotton are perceived to be the ultimate fibre choice for
sustainability, as they are completely natural, this is not necessarily the case when the
whole life cycle of a fibre (including the environmental, social and economic impacts)
of a fibre is considered. Regenerated cellulose fibres such as Lenzing Viscose Austria
and Tencel® are an exciting option for the future of textiles for fashion. The main
benefits of using these fibres include; reduced water consumption in both raw material
production and fibre processing; reduced pesticide use; high yield; biodegradability;

and renewability of raw materials.

It is therefore proposed that this research may be used to develop a colour blend
prediction model for regenerated cellulose fibres such as Lenzing Viscose Austria and
Tencel®. The resulting model would promote the use of environmentally responsible

fibre choices in combination with commercially viable colouration techniques.
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1.3 Colouration of fibres for fashion and textiles

Textile colouration is of great importance, adding value and aesthetic quality to all
types of textile products; from fashion to transport furnishings. Fletcher and Grose
(2012) describe textile colouration as one of the most important elements in the
commercial appeal of fashion products. Colour can rapidly change the appearance of a

garment and even prompt additional purchases (Fletcher & Grose, 2012).

The colouration of textiles has been popular for thousands of years. Textile colouration
using natural materials is thought to date back to before 2500 BC. Plants, insects and
shells were popular resources for colouring materials right up to the late nineteenth
century. The range and intensities of colours were however limited and dyed materials
often had a low resistance to fading from daylight. The discovery of synthetic dyes in
1856 revolutionised the dyeing industry, with synthetic dyes completely replacing the

use of natural dyes within commercial industries by the 1940s (Ingamells, 1993).

W.H. Perkin discovered the first synthetic dye, Mauveine, in 1856. Since then, a
plethora of synthetic dyes have been produced, dramatically increasing the amount of
colours available and allowing the colouration of both natural and synthetic fibres. The
basic principles of dyeing textiles include diffusion of soluble dye particles within a dye-
bath, adsorption of the dye by the material, diffusion of the dye from the surface of
the fibre to its interior, and the fixation of a dye to the fibre through physical bonds
(Cegarra et al., 1992). This form of dyeing can be described as wet-processing.
Depending on the fibre type, different dyes are used. Whilst natural fibres such as
cotton have good permeability, synthetic fibres such as polyesters and have a higher
crystallinity, and are therefore much harder to penetrate (Cegarra et al, 1992).
Consequently, different classes of dyes have been developed with specific molecular
structures which enable the colouration of specific fibre types. The degree to which a
dye transfers from a dye bath to fibre is called exhaustion. To aid exhaustion of dye to
fibre, chemical auxiliaries are often used (Perkins, 1996). The rate of fixation varies
between fibre and dye types and any dye which is not fixated to a fibre during

exhaustion remains within the effluent (Fletcher & Grose, 2012).
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1.3.1 Environmental impact of dyeing textiles

Regardless of the type of dye or fibre, the colouration of textiles has, like the
production of textiles, its own range of environmental impacts. As already identified in
section 1.3, the dyes manufactured in today’s commercial environment are synthetic.
Unfortunately, the use of synthetic dyes in both the dyeing and finishing processes of
textiles can consume large amount of chemicals, water and energy and produce
harmful waterborne and airborne pollutants (Cattoor, 2007; Lewis et al., 2001).
Globally, over half of the production of colorants (estimated to be over 1 million
tonnes per year) is used for dyeing textiles (Nousiainen, 1997). Cattoor (2007)
identifies discharge water as a particular environmental impact from dyeing and

finishing due to the high chemical load that the waste water contains.

Whilst the earliest form of dyeing using natural dyes used small quantities of dye
(which was applied to fibres without the need for additional chemical processes), the
discovery of synthetic dyes changed the scale and process of dyeing on a vast scale
(Gregory, 2007). A large number of the earliest workers involved in the production of
synthetic dyes such as fuchsine and auramine (between 1930 and 1960), suffered from
bladder cancer due to the carcinogenic nature of the dye ingredients (Hunger, 2003).
Since the discovery that some dye ingredients could be harmful, assessment of the
toxicology and ecotoxicology of dyes and pigments has become conventional practice
with tight safety regulations implemented in most industrial countries (Gregory, 2007).
However, the presence of any dye or chemical within waste water can be harmful and
consequently waste water must be treated accordingly. Whilst there are
environmental regulations in place, such as the European Union environmental
legislation or the United States Environmental Protection Agency, regulations are not
consistent across the globe (Christie, 2007). It ultimately remains the responsibility of
the dye-house to minimise its environmental impact beyond the given regulations.
Minimisation of the use of harmful chemical auxiliaries, re-use of dye-baths and
reduction of water consumption are among the possible options for reducing the
negative impact of textile dyeing, but this is often unfortunately subjective to

commercial and monetary considerations (Bide, 2007).
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1.3.2 Spun-dyed fibres

Spun-dyed fibres can provide an environmentally positive alternative to conventional
dyeing techniques. As outlined in section 1.3, one of the main areas of environmental
concern related to textile dyeing is related to the use of water, but with spun-dyeing,
water consumption associated with conventional dyeing techniques is removed. Up to
30 litres of water per meter of viscose fabric can be saved through spun-dyeing
compared to conventional dyeing (Birla Cellulose, 2012a). Spun-dyeing is a method of
dyeing man-made fibres during their production. When manufacturing regenerated or
synthetic man-made fibres such as viscose or polyester, a colorant can be added to the
spin-bath. The spinning dope is then extruded through a spinneret with the colour
inherent to the resulting fibre (AATCC, 2000; Manian et al., 2007). Other benefits of
spun-dyed fibres include; good light-fastness, uniformity of colouration, exact
reproducibility of colour and ability to dye fibres which are normally more difficult to
dye, such as polypropylene, due to their high crystalline structure (Filature Miroglio,

2009; Manian, et al., 2007).

The environmental benefits of spun-dyeing are even more substantial when using
fibres which have been manufactured in a particularly environmentally way. As
identified, Lenzing Viscose Austria and Tencel® are examples of this; integrating
pulping and fibre manufacturing, recycling and reusing harmful solvents and gases, and
extracting useable by-products. The amount of water and energy saved through spun-
dyed is also considerable. It is estimated that just over 50 litres of water is saved when
spun-dyeing black Lenzing Viscose Austria, with a reduction in processing energy of up

to 80 % when compared to conventional dyed viscose (Taylor, 2012).

Due to the environmental and social impact of conventional wet-process dyeing, the
colouration of textiles can have a large impact on the LCA of fashion and textiles. A
recent study by Terinte et al. (2014) compared the cradle-to-gate LCA of
conventionally dyed knitted modal (jet dyed) with spun-dyed modal fibre. The results
showed that across all LCA categories, including categories such as acidification,
eutrophication and ozone layer depletion, the spun-dyed fibres caused less

environmental impact (often less than half the environmental impact) compared to the
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conventionally dyed fabric (Terinte et al., 2014). With regards to water consumption, it
was found that the spun-dyed fibre used only 86 litres of water per kg of fibre which
was almost half the amount used in the jet-dyeing of the modal fabric which consumed
162 litres per kg of fibre. The benefit of spun-dyeing is even greater when compared to
conventionally dyed cotton which was found to use 25 times more water than the

spun-dyed modal (Terinte et al., 2014).

Whilst the environmental benefits of spun-dyeing are clear, spun-dyeing is not without
its limitations. The main limitation to spun-dyeing, and therefore its current limited
application within the textiles for fashion industry, is that large quantities of each
spun-dyed colour must be produced at a time in order for the process to be
economically worthwhile. The machines for example must be cleaned between the
manufacture of different spun-dyed colours. This process takes time away from
production and so manufacture of individual spun-dyed colours must be of a quantity
substantial enough to be worthwhile. Companies such as Lenzing and Birla Cellulose
produce minimum runs of between 5 and 10 tonnes of individual spun-dyed colours
(Birla Cellulose, 2012b; Taylor, 2012). This limits both the range of spun-dyed colours
companies can offer and also the markets to which they sell to. As identified, the fast-
fashion formula employed by many fashion companies requires smaller volumes of
textiles to be produced at one time, (as they increasingly respond to consumer
demand). Companies such as these many not therefore use spun-dyed fibre (despite
their environmental appeal) as the volume of production is too high for their needs.
This is where the benefits of blending coloured fibre are advantageous. Instead of
producing unique spun-dyed colours, unique colours in smaller quantities can be
produced by blending a selection of primary spun-dyed colours. Companies need only
stock a set number of spun-dyed primaries with which to blend, reducing the amount
of surplus dyed fibre. It is also thought that spun-dyeing can be used to improve brand
reputation due to the large environmental savings (Terinte et al., 2014). Economical
savings can also be made with the use of spun-dyeing. Spun-dyeing not only uses less
water as already identified, but also uses less colorant (with 80 % less pigment used in
the spin bath compared to conventional dyeing), and also less energy (consuming 50 %

less non-renewable energy compared to conventional dyeing) (Terinte et al., 2014).
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Spun-dyeing is therefore an appealing alternative to conventional dyeing and coupled
with fibre blending its application within textiles for fashion could become a much

more sustainable and appealing method of textile colouration.

1.3.3 Blending coloured fibre to produce colours

The blending of coloured fibres to produce new colours has been well documented in
the literature (Burlone, 1983; Burlone, 1990; Miller et al., 1963; Guthrie et al., 1962). In
1957, Guthrie and Oliver discussed the possibilities of using a catalogue of 3-colour
blends, their X, Y, Z values calculated and listed in a catalogue (Guthrie & Oliver, 1957).
Guthrie and Oliver included discussion on the means with which coloured fibres should
be blended, encouraging the blending of colours using a carding machine to produce
homogenous blends akin to subtractive mixing (Guthrie & Oliver, 1957). Burlone
identified that careful sample preparation and measurement is also essential for colour

matching accuracy (Burlone, 1983).

Blending coloured fibre has also attracted increased interest from a recycling point of
view. Waste textile materials can be mechanically reduced to fibres before being
carded and spun into yarn for knitting or weaving (Black, 2011). From an industrial
point of view, the option of having a set number of primary colours from which to
produce a wealth of additional colours could be appealing if the blending is accurate
and predictable. Having a set of primaries would limit the amount of dyeing required.
Once the core primaries are dyed, these can be blended to produce a wealth of new
colours. The combination of coloured fibre blending with spun-dyeing in particular
would prove beneficial from both an environmental and industry stand point. As
identified, the production of spun-dyed fibres is usually done in high volumes (often
over 5 tonnes) so that the process is financially viable (Birla Cellulose, 2012; Taylor,
2012). This limits the application of spun-dyed fibre within the fashion industry in
particular, as companies often require relatively small amounts of coloured fibre or
textiles due to the fast-fashion turnover of trends and garments. If spun-dyeing were
to be used in the form of a palette of primaries from which thousands of colours could
be blended then it would be possible to supply smaller amounts of coloured fibre to

industry. Rather than producing specific coloured fibres for a company, colour would
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be matched using a blend of specific primaries. The number of primaries that would be
required to match a large range of colours is of particular interest; if too many
primaries are required such that it is not feasible to store them then coloured fibre
blending would not be a viable option for colouring textiles. Companies such as Birla
Cellulose, who specialise in cellulosic fibres, already stock large numbers of spun-dyed
fibres (up to 69 readily available colours) (Birla Cellulose, 2012b). If these 69 colours
were carefully selected primaries then it would be possible to create thousands of new

colours, which are all discernible from one another, through fibre blending.

1.4 Colour: what is it?

Whilst the perceived meaning and symbolism associated with colour can vary from
culture to culture, it is thought that the fundamental physiology of the human eye,
which allows us to see colour, gives all humans approximately the same visual
experience of colour (though of course this is only true for people without colour

deficiencies).

Colour is greatly important in enriching our environment. A natural phenomenon,
colour can help us to distinguish our surroundings and differentiate between similar
objects within it. Differentiating objects not only by their shape, size and texture, but
also by their colour has a great evolutionary advantage. For example, two berries
which may appear the same in shape and size may be more or less edible, even
poisonous, but if we can distinguish them by their different colours, we can choose to

eat the one we know to be safe and discard the other.

Colours can be symbolic, their meaning varying greatly between cultures. For example,
white is a colour traditionally worn by Western brides on their wedding day. The
colour is associated with purity and the beginning of a new life as a married woman;
however, in China, the colour white has very different associations, being linked to
death and mourning. So whilst it is thought that we all physically see colour in the
same way the meaning of colour may change culturally. Within textiles and fashion,
colour is a key design tool. Colour greatly influences the feel of a garment and inspires

colour palettes for trends and fashion seasons (Fletcher & Grose, 2012).
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There are three important contributors to the way we see colour. Firstly there is the
human visual system itself, the source of light and finally the material with which the

light interacts.

1.4.1 Colour vision

The human experience of colour is possible due to the visual system’s ability to detect
a small section of the electromagnetic spectrum, ranging between 360 and 780 nm
(Berns, 2000). This section is called the visible spectrum and is commonly referred to
as light. Light entering the eye is absorbed by light-sensitive photoreceptors called rods
and cones. The information received by the photoreceptors is interpreted by the brain
as colour. Whilst light itself is not coloured, the varying wavelengths of light that enter

our eyes are perceived as different colours by the brain.

Rods and cones are the light-sensitive photoreceptors found in the retinas of our eyes.
There is only one type of rod and three types of cones. Rods have a peak sensitivity of
around 500 nm and are only activated in low levels of light (Tilley, 2011). When the
light source is 0.003 candela per square meter (cd/m?) or lower, the rods are activated,
giving us monochromatic or scotopic vision (Ohta et al., 2005). The three varieties of
cones (referred to as L, M and S cones) have different peak sensitivities in the long-,
medium- and short-wavelength regions of the visible spectrum (Hunt, 1998). L cones
are most sensitive to the green-yellow region (560 nm), M cones most sensitive to the
green region (530 nm) and S cones most sensitive to the blue region (420 nm) (Tilley,
2011). The overlapping of the spectral sensitivities of the cones contributes to better
colour discrimination (Hunt, 1998). At high light levels, greater than 3 cd/m?, the cones
activate and we have colour or photopic vision. When the light source is of intensity
somewhere in the middle, or suddenly changes from dark to light, then the rods and
cones can both be active at the same time and this is called mesopic vision (Ohta &
Robertson, 2005). When light enters the eye the photoreceptors are excited and relay
electrical pulses to the brain via the optic nerve. The brain in turn perceives the

particular ratio of cone responses at any specific location as colour (Hunt, 1998).
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The approximately spherical structure of the eye is integral in allowing the optimum
amount of light to enter the eye and focus upon the light sensitive cells contained
within the retina at the back of the eye. Light enters the eye through a transparent
area of tissue called the cornea. The cornea is part of the tough, white outer layer of
the eye, called the sclera. Light then passes through the anterior chamber, the lens and
through the vitreous humor; a solution that fills the inner chamber of the eye. Light
finally reaches the rods and cones within the retina, the innermost lining of the eye.
The information received is relayed to the brain via the optic nerve and interpreted by
the brain as colour. In order to optimise the amount of light entering the eye, the iris,
contained within the choroid layer which is located between the sclera and the retina,
can expand and contract to adjust the amount of light entering the eye through the

pupil (Viqueira Pérez et al., 2010).
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A simple illustration of the structure of the eye can be seen in Figure 1.4.

Lens

Anterior chamber Fovea

Vitreous humor

Figure 1.4 Cross-section diagram of the structure of the eye

As already stated, the rods and cones can be found within the retinal layer of the eye.
They do not cover the whole of the retina however and are located centrally at the
back of the eye around a small area, around 1.5 mm in diameter, called the fovea
centralis. This area has the highest concentration of cones and does not usually include
any rods. Rods are distributed around the wider surrounding area (Ohta & Robertson,
2005). It should be noted that there are more L and M cones than S cones and that the
specific number of cones can vary from person to person (Berns, 2000). Another area
located in the back of the eye is the optic disc, where ganglion cells carrying
information to the brain via the optic nerve are situated. There are no photoreceptors

here which results in a blind spot (Viqueira Pérez et al., 2010).

1.4.2 Light sources
As identified, our visual system is activated by light. Sources of light can vary from the

natural, such as the sun, to man-made sources such as filament light bulbs. The source
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of light greatly influences the amount of electromagnetic energy, namely relative
power, which is emitted at each wavelength of the visible spectrum. For example,
daylight emits high amounts of all wavelengths across the visible spectrum, giving it a
high relative power (Berns, 2000). Light sources such as the sun, candles and burning
coal are described as incandescent. This means that that their light, and resulting
colour, are a result of a material being heated up enough to emit increased amounts of
radiation in the form of light (Berns, 2000). As the temperature of a material increases,
so does the amount of light being emitted. Black body radiators, or Planckian radiators,
rely solely on their temperature and are objects or materials which absorb and emit all
wavelengths (Hunt, 1998). Perfect black bodies do not actually exist in nature, but the
characteristics of natural light sources such as the sun are very close. The temperature
of a perfect black body, in kelvins (K), can be compared with and used to describe a
non-black body object by comparing their colour, and therefore their correlated colour
temperature (Kuehni, 2005). Unlike perfect black body radiators, artificial light sources
such as mercury and fluorescent lamps do not emit all wavelengths. Depending on the
particular light source, a light source may have different spectral peaks within the
visible spectrum. This can result in the colour of an object being distorted under

different lighting conditions (Berns, 2000).

In order to accommodate for this potential change in colour within commercial fields
such as textile colouration, illuminating conditions are specified using CIE standard
illuminants. The most popular CIE standard illuminants are D65 (for average daylight)
and standard llluminant A (for incandescent light). These standards are a
representation of the two most common forms of light interacted with on a daily basis.
D65 has a correlated colour temperature of approximately 6500 K and llluminant A has
a correlated colour temperature of approximately 2856 K (CIE & IEC, 1987; ISO, 2011b;
Ohta & Robertson, 2005). Objects viewed under different illuminants can appear
differently. If two objects appear to match under one illuminant and not another, the
objects are described as exhibiting illuminant metamerism (Berns, 2000). One way to
assess the visual appearance of a light source is by measuring its radiance. Radiance is
the amount of light from the visible spectrum that is emitted from a light source. This

information is often plotted on a normalised relative spectral power distribution curve,
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and this allows the appearance of different light sources to be compared (Fairchild,

2005).

1.4.3 Light and objects

Colour perception also depends greatly upon the physical composition of a material
that light comes into contact with. When light penetrates the surface of an object,
photons of light interact with the molecular structure of the material. This interaction
of light and material give the surface appearance of a material including colour.
Depending on the interaction of light and material, either all or part of the radiation is

refracted, reflected, scattered or absorbed.

Refraction occurs when light travelling through a medium of one refractive index (for
example air) reaches a medium of a different refractive index (such as paint) and this
interaction changes the direction in which the light was travelling (Sinclair, 1997). This
phenomenon can be seen when light passing through the air meets a transparent
object at an angle such as light entering a glass prism. In this instance the light passes
through the glass prism and is separated as it leaves due to the different refractive
indices of the various wavelengths; producing a rainbow effect (Kuehni, 2005). The
refractive index describes the amount to which light is slowed down as it passes
through a material, in comparison to its speed in air. The refractive index can vary from
one material to another, and when light passes through two adjoining materials with

different refractive indices, some of the light is reflected (Berns, 2000).

Reflection is when light comes into contact with a smooth surface and changes
direction on impact. The angle at which the incident light makes contact with a
material is the same angle at which the light is reflected, making the prediction of
reflectance easily calculable (Kuehni, 2005). This type of reflection is specifically called
specular reflection and causes objects to appear glossy (Berns, 2000). The prediction of
the scattering of light is however much more difficult. Scattering is an irregular form of
reflection where incident light comes into contact with a rough surface and is
scattered in many directions (Kuehni, 2005). When light is scattered by a rough

surface, specular reflection is reduced and light is diffusely reflected (Berns, 2000). The
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extent of scattering will depend on the material that the light comes into contact with.
For textile fibres and fabrics, scattering is often very high and irregular due to the
complex structures of the fibres and fabrics (Sinclair, 1997). Scattering is affected by
the particle size that wavelengths come into contact with. Whilst small particles scatter
small amounts of light, larger particles scatter increasingly more light. When the
particles are larger than the wavelengths interacted with, the amount of scattered
light begins to decrease. Transmission can also occur, where light passes directly
through a material. Transmission is usually observed with transparent objects or

materials (Berns, 2000; Kuehni, 2005).

Absorption is when photons of light respond to the energy levels of a material, so
much so that the light loses its energy and is no longer visible to the human eye; it has
been absorbed by the material. When this happens, some of the energy absorbed is
re-emitted as heat (Kuehni, 2005). Black bodies are an excellent example of this. If an
object absorbs all visible wavelengths then it appears black, as all the energy that we
could interpret as colour, is removed. No real objects absorb all the light energy falling
on to them and in most cases, an object or material will selectively absorb some of the

light and reflect or scatter the remainder (Kuehni, 2005).
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Figure 1.5 lllustration of transmission, reflection, scattering and absorption

characteristics of light with materials
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This combination of absorption, scattering and reflectance results in the appearance of
coloured materials such as textile fabrics; the colour we see being mediated by the

eye’s response to those wavelengths which are scattered and reflected.

The spectral reflectance of an object can be measured using a spectrophotometer.
Most devices measure spectral reflectance data at 10 nm intervals; however, this is
dependent on the device used. A spectrophotometer is comprised of a light source, CIE
standardised illuminating and viewing geometry, monochromator and detector. The
illuminating and viewing geometries define the illuminating angle and viewing angle,
for example, 45°/0°. The monochromator disperses the reflected light so that it passes
to the detector (Gupte, 2010). For non-self-luminous coloured samples such as textile
fibres, a light source that emits light across the spectrum is required.
Spectrophotometers measure the reflectance of a given sample across a defined range
of wavelengths, taking measurements at specified intervals. The Spectraflash® 600
PLUS spectrophotometer, which is used in this study, records at wavelengths at 10 nm
intervals between 360 nm and 700 nm. The instrument uses a barium-coated
integrated (or Ulbrict) sphere with an 8° angle of collection (d/8°) (Datacolor, 2007).
Samples placed in the viewing port are illuminated (usually using D65 lighting) and
light reflected from the sample at the 8° angle is collected. A second reference beam
consisting of the light reflected from the inner sphere surface can also be collected if

the option for specular reflection is included (Battle, 1997; Datacolor, 2007).
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An illustration of the Spectraflash® 600 PLUS spectrophotometer used in this study can

be seen in Figure 1.6.
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Figure 1.6 Diagram of the Spectraflash® 600 spectrophotometer

Spectrophotometers can be used to accurately measure the reflectance factors of
textile samples. When measuring loose fibre, particular care must be taken to ensure
that the specimen is uniform. It is also recommended that several measurements are
taken in order to obtain an average measurement (Gangakhedkar, 2010; Hunter
Associates Laboratory, Inc., 2008). Spectrophotometers are also integral pieces of
equipment for the accurate calculation of colour differences and colour matching.

Spectral reflectance data can be converted into tristimulus values (such as CIE XYZ) so
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that comparisons of colour can be made (Hunt, 1998). This will be discussed further in

the following section 1.4.4.

1.4.4 Organising colour

When discussing colour, we commonly use names such as red, yellow, orange etc., to
describe the colours we see. We also often use adjectives with these colours to further
indicate their appearance, such as vivid red or mustard yellow. However, due to the
vast variations of colours we are able to perceive (MacAdam, 1947), it would perhaps
be impossible to allocate descriptive names to them all. There is then the problem of
whether a descriptive name of a colour effectively conveys its appearance to another
person. It must also be considered that each person may perceive the same colour
slightly differently due to our unique visual systems. Whilst the communication of a
colour is not usually a problem when talking about colour in general, for example
when describing the colour of an everyday object in conversation, it can be a problem
within the fashion and textile industry. For example, a designer within the UK may
design a dress with a specific colour in mind; in order for the dyehouse in China to
match that specific colour quickly and efficiently there must be a reliable way of

communicating it.

The communication, description and organisation of colour is not a new concept and
many artists, designers and scientists past and present have strived to create effective
colour systems. There are two main types of colour specification systems. The first is
based on the orderly arrangement of colours based on their appearance and includes
systems such as the Munsell system and the Swedish Natural Colour system (NCS). The
second specification system is based on additive colour mixing and this includes the
Commission Internationale de I’Eclairage (CIE) system. There are also colour naming
systems, such as the Pantone System, which is predominantly used to communicate
colour between designers and manufacturers. Originally a system developed for
graphic designers, the Pantone system has expanded and now provides references for
a wide variety of industries including fashion and architecture. The Pantone System
consists of reference books containing individually named coloured swatches, or stock.

Pantone references are widely used by fashion and textile designers as a creative tool
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for assembling seasonal colour palettes and communicating them to manufacturers
(Pantone, 2014). Naming systems such as the Pantone System provide a good basis for
communicating the general appearance of a colour; however, the colours are not

exhaustive are often ordered in an aesthetic rather than perceptually ordered system.

1.4.4.1 Colour appearance systems

The Munsell system is perhaps the most well-known colour appearance system and
dates back to 1905. American artist Albert Munsell used painted colour chips to
arrange colours by their hue, value (lightness) and chroma (chromatic intensity). The
structure of Munsell’s system is cylindrical with five main hues (red, yellow, green, blue
and purple) and five intermediate hues (yellow-red, green-yellow, blue-green, purple-
blue and red-purple) radiating from a central axis. The value (or lightness) is the height
of the cylinder with white at the top and black at the bottom. The chroma is
represented by concentric circles around the axis. Whilst Munsell originally wanted a
uniform sphere shape to his system, he soon realised that the maximum chroma of the
different hues varied and consequently produced an irregular spherical shape called
the Munsell tree (Kuehni, 2005; Munsell, 1905). In 1907 Munsell published his first
‘Atlas of the Munsell Color System’ which was revised and extended in 1915 (Munsell,
1907; Munsell, 1915). In 1929 the Munsell Color Company produced another revised
version of Munsell’s Atlas and called it the Munsell Book of Color (Munsell Color
Company, 1929). The visual scales of this book were subsequently revised by the
Colorimetry Committee of the Optical Society of America (OSA), to produce the 1943
Munsell Renotations which are still in use today (Newhall et al., 1943). The revisions
included revising aim colours of the Munsell system using the CIE system of
colorimetry (Kuehni, 2005). A total of 2746 chromatic and 9 achromatic colours have
been defined, of which 65 % have been produced as colour chips for reference

(Kuehni, 2003).

1.4.4.2 Colour mixing systems
Colour mixing systems, such as the CIE system, are based on the additive mixing of
three coloured primary lights in order to match a specific colour (Ohta & Robertson,

2005). The amounts of each coloured light, or primary, required to match a given
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colour can then be quantified numerically (rather than being described using a name
or coordinate from a system such as Munsell’s) (Rigg, 1997). Additive mixing itself is
the mixing of two or more coloured lights which we then perceive as one colour. This is
different to subtractive colour mixing which is most commonly seen in the mixing of
physical materials such as paint, ink or dyes. Whilst the mixture of the three primaries
used in ink jet printing (cyan, magenta and yellow) will produce an almost black colour,
the mixing of the additive primaries (usually red, green and blue) will produce white
light. The additive primaries produced in one lab can be accurately produced in
another (Rigg, 1997). This is unlike the subtractive mixing of paints and dyes which is

subject to a person’s unique visual systems and human error.

In 1931 the Commission Internationale de I’Eclairage (CIE) standardised the colour
matching functions (red, green and blue primaries) so that additive colour systems
would use consistent stimuli, where [R] = 700.00 nm, [G] = 546.1 nm and [B] = 435.8
nm (ISO, 2011a). These functions were determined in two separate studies using
observers with normal colour vision. The first in 1929 by Wright (Wright, 1929) used 10
observers, and the second in 1931 by Guild (Guild, 1931) used 7 observers. In the
experiments, observers were asked to match a target colour (generated using an
incandescent lamp) using light from the red, green and blue primaries using a small 2°
field of view. The results of each experiment were averaged and slightly adjusted so
that proportions of [R], [G] and [B], as colour matching functions #(1), g(1) and b(1),
could be used to create a function identical to the CIE luminous efficiency V(4) (ISO,

2011a).

In reality, the use of ¥(1), g(A) and b(1) posed difficulties as it is not possible to
match all possible colours using combinations of the three [R], [G], [B] primaries as

some colours are too pure (Rigg, 1997).
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In order to match a very pure colour, for example colour [C], it is sometimes necessary
to first add one primary, for example [R], to [C], so that primaries [G] and [B] can

match [C] as in Equation 1.

C[C] + R[R]

G[G] + B[B]

Equation 1

Equation 1 can be arranged as Equation 2 which shows that the recipe for [C] is

now —R, G and B.

C[C] = —R[R] + G[G] + B[B]

Equation 2

Having a negative value (in this case —R) posed difficulties in early colour matching
practices when calculations of tristimulus values were done manually (Ohta &
Robertson, 2005). In order to solve this problem, the CIE introduced new primaries [X],

[Y] and [Z] using the following Equation 3, Equation 4 and Equation 5 (I1SO, 2011a);

x(1) = [0,467(2) + 0,31g(2) + 0,20b(D)|n

Equation 3
y(2) =[0,17697+(1) + 0,81240g(2) + 0,01063b(1)|n
Equation 4
Z(1) = [0,007(2) + 0,01g(2) + 0,99b(1) |n
Equation 5

where n is a normalising constant, found using Equation 6 (1SO, 2011a);

V(4)
"= 0,176977(1) + 0,81240g(2) + 0,01063b(A)

Equation 6
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This created the CIE 1931 Standard Colorimetric System (CIE & EIC, 1987; CIE, 2004;
ISO, 2011a) with reference colour stimuli [X], [Y] and [Z]. The amount of [X], [Y] and [Z]
required to match any given colour can be given using the tristimulus values X, Y and Z.
Sometimes it is useful to calculate the tristimulus values as proportional amounts, and
then they are known as chromaticity coordinates (see Equation 7, Equation 8 and

Equation 9).

X
T Xtr+z
Equation 7
_ Y
Y= X+v+z
Equation 8
_ Z
T X+r+z
Equation 9

The new colour matching functions ensured that the tristimulus values to match a
colour would always be positive numbers (unlike for the 7#(1). g(4) and b(21), colour
matching functions). It is important to note that the CIE 1931 Standard Colorimetric
System was based on the 1931 RGB system and therefore 1931 RGB standard 2°
observers. The RGB standard 2° observers were therefore adopted as virtual observers
for the CIE 1931 system and called the CIE Standard Colorimetric Observer (CIE, 2004;
ISO, 20113a; Ohta & Robertson, 2005).

In 1964 two new standard observer experiments were carried out by Stiles and Burch
(1959) and Speranskaya (1959). Like the work of Wright (1929) and Guild (1931), the
experiments used observers to additively match a target wavelength colour using
three lights sources. However in Stiles and Burch and Speranskaya’s work, the field of

view was increased from 2° to 10° (Stiles & Burch, 1959; Speranskaya, 1959). The
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results of the two studies were averaged to produce the 10° CIE Supplementary
Standard Observer (Rigg, 1997). Increasing the viewing field was important as whilst
samples viewed at 2° may be perceived to be a good match in colour matching, the
same samples may appear differently at 10° due to the fact that the photoreceptors
are not uniformly distributed in the retina of the eye. This is closely linked to
metamerism where two samples may appear the same under one set of viewing
conditions (for example D65 lighting at a 2° field of view) however when seen under a
different set of conditions the samples appear different. The two samples are said to
be a metameric pair; they are spectrally different but appear the same under certain
conditions or by a certain observer. Using a field of view of 10° (as in the CIE 1964
Supplementary Colorimetric Observer) will usually highlight the occurrence of

metamerism (Hunt, 1998; ISO, 2011a).

A chromaticity diagram is a two-dimensional, horseshoe-shaped plane produced when
two of the chromaticity coordinates (by tradition this is usually x and y) are plotted
against each other. The two ends of the horse shoe shape (the spectrum locus) are
joined together using a straight line. This line shows the additive mixtures of the two
colour-matching functions. All possible additive mixtures of the functions fall within or
along the outline of horseshoe shape (Kuehni, 2005; Ohta & Robertson, 2005). If the
third colour matching function is included then a triangle is formed with the gamut of
all possible colours using the three colour-matching functions inside (Westland et al.,

2012).

There are thought to be two main restrictions of the CIE colorimetry system using [X],
[Y] and [Z] (Westland et al., 2012). The first restriction is that the system was based on
colour specification, rather than colour appearance. The second restriction is the non-
uniformity of the system, making it difficult to define that magnitude of perceptual
difference between two points with different tristimulus values. To combat this
problem a new three-dimensional colour space was proposed by the CIE in 1976 called

the CIE (1976) L*a*b* colour space (also known as CIELAB) (ISO, 2011c).
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In CIELAB, the tristimulus values of a measured object or material (given in X, Y and 2)
and the tristimulus values of a perfect reflecting diffuser under the same illumination
(given in X,, Y, and Z,) are normalised so that Y,, = 100. This is done using the following

Equation 10, Equation 11 and Equation 12 (CIE, 2004);

1
L" =116 AN 16
= 116(57) -

Equation 10

1 1

“ — 500 X\3 Y\3

@ =s00\(z) - ()
Equation 11

1 1

b* = 200 Y\3 Z\3

=200|(7) - (7)
Equation 12

This gives L*, a* and b* coordinates where L* is the variation in lightness on a scale of
0 to 100 where 0 = black and 100 = white; a* is the variation of red to green; and b* is
the variation from yellow to blue. The a* and b* axes form one plane with the L* axis
intersecting the plane at right angles. The CIELAB system is used to assess the colour
appearance of materials and objects and provide more accurate colour difference
measurements between two sets of stimuli. Euclidean colour difference is calculated

using the following Equation 13;

1
AE}, = [(AL")? + (4a*)? + (4b*)?]2
Equation 13
where AE is proportional to the colour difference perceived between two stimuli. For

an indication as to the scale of CIELAB AE colour differences, Rigg (1997) compares the

colour difference between black and white (100 CIELAB AE) with acceptable
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commercial colour differences in colour matching (between 1 and 2 CIELAB AE). It is
thought that a colour difference of 0.5 is the approximate threshold of perceptibility

for a person with normal colour vision (Westland & Ripamonti, 2004).

Most recently, the CIE recommended the CIEDE2000 colour difference formula as seen
in Equation 14 (Luo et al., 2000). Whilst the CIEDE2000 colour difference formula is
based on the CIELAB colour difference formula, it does not simply measure the
Euclidean distance between two stimuli. Instead, the CIEDE2000 formula measures
difference in lightness, chroma and hue and weights them depending upon where in
colour space the stimuli are, as well as improving the performance of blue colours and
grey colours (Luo et al., 2000). The CIEDE2000 colour difference formula has been
shown to produce the most reliable colour difference data when compared to other
formula such as CIELAB colour difference (Luo, 2002). However, it has been suggested
that the formula is most accurate when the colour difference between two stimuli is
less than 5 units, and that above this, CIEDE2000 performs less accurately than CIELAB
AE (Kuehni, 2005).

AEgo = [(AL'/(kpSL))* + (AC' [ (kcSe))? + (AH' [ (kySy))?

+ Rr(AC" /(e S0)) (AH' /CeyS)) 2

Equation 14

1.5 Models for predicting the colour of blended fibre

In order to predict the colour of a blend of fibres composed of more than one coloured
fibre (or primary), different prediction models have been explored. The most
rudimental method of prediction is using the average reflectance of a set of primaries,

weighted by their proportion within a blend. For example, see Equation 15;

Ry (A1) = 1R () + 2R, (1)

Equation 15



40

where the reflectance of the mixture Ry (4) at wavelength 4 is the weighted
reflectance of component R, (4) and R,(4) and c¢; and c, are the fractional quantities

of the two primaries (¢; + ¢; = 1).

However, many studies have shown that Equation 15 is a poor method of blend
prediction as reflectance is not linearly related to the proportion of each primary
within a blend (Burlone, 1984; Park & Stearns, 1944). Instead, most popular methods
use functions which transform reflectance with the aim of developing an additive

model.

1.5.1 Kubelka-Munk equation

For predicting the reflectance of dyed substrates, the most widely used formula is
Kubelka-Munk (Kubelka & Munk, 1931). The Kubelka-Munk equation has been used
within the textile and paint industry to predict dye and pigment recipes by calculating
a linear relationship between reflectance and colorant concentration of a substrate.
Equation 16 shows the Kubelka-Munk equation where K is the absorption coefficient,

S is the scattering coefficient and R, is the reflectance of an infinitely thick sample.

K (1-Ry)?

S 2R
Equation 16

Measures of the reflectance of an infinitely thick textile fabric sample can be obtained,

for example, by folding the fabric sufficiently so that it is opaque.

The K/S of both the individual dyes and the substrate and the K/S of the whole mixture
can be defined (Ingamells, 1993). One limitation with the Kubelka-Munk model is that
it presumes that the incident light is either directly absorbed or upwardly reflected by
a substrate and that the substrate is homogenous. Scattering where light is lost
through the edges of a substrate is not accounted for (Nobbs, 1985; Sinclair, 1997).
This therefore limits the application of the Kubelka-Munk model within textiles as the

absorption and scattering of textile fibres is much more complex.
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Whilst the single constant Kubelka-Munk model is less effective when used to predict
the colour of textiles compared to its use in colorant prediction, as discussed by
Burlone (1983), the two-constant Kubelka-Munk model is seen to perform much better
(Burlone, 1984). In two-constant Kubelka-Munk theory, each primary has two
constants; a pseudoabsorption constant K and a pseudoscattering constant S which
take into account the physical form of a sample of blended fibres. Using the two-
constant Kubelka-Munk model, Burlone achieved a 1.6 CIELAB colour difference
between prepared blends and blend predictions (Burlone, 1984). However, it is
thought that this method is not completely reliable however as it is (similarly to single-
constant Kubelka-Munk) based on subtractive mixing. In reality, blended fibres have
both subtractive and additive properties (Philips-Invernizzi et al., 2002a; Burlone,

1990).

1.5.2 Stearns-Noechel equation
In 1944, Stearns and Noechel published a new model for predicting the colour of wool

blends (Stearns & Noechel, 1944), see Equation 17,

fsn(Ru (D) = 1 F(R1 (D) + c,F (R2(D))

Equation 17

where Ry, (4) is the blend reflectance. The formula (function fgy) that transforms the

reflectance factors is shown in Equation 18;

1-R()
[b(R(L) — 0.01] + 0.01

[fsn (D] =

Equation 18

where b is a dimensionless constant. Stearns and Noechel (1944) empirically derived b

as 0.15 for wool blends.
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As b is empirically derived, it is expected to vary depending on fibre type. This has been
shown in the work of subsequent authors who have optimised b to be between 0.09
for viscose (Rong & Feng, 2005) and 0.25 for acrylic (Davidson & Taylor, 1965). Table
1.1 summarises some of the various b values derived for different fibres within the

literature.

Table 1.1 Variations of b for different fibre types as derived by different studies

within literature

Reference b value Fibre type No. colours in blend
Stearns and Noechel, 1944 0.15 Wool 2
Davidson and Taylor, 1965 0.25 Acrylic 2,3and 4
Burlone, 1984 0.11 Nylon 4

Aspland and Zhou, 2000 0.189 Polyester 2
Philips-Invernizzi et al., 2002 0.109 Cotton 2

Rong and Feng, 2005 0.09 Viscose 2,3&4

Davidson and Taylor (1965) produced ten blended samples with ten corresponding
blend predictions. The mean colour difference between the actual measured blended
samples and the predicted colour of the blends was 5.8 MacAdam units (Davidson &
Taylor, 1965). Burlone used 42 blended samples to test Stearns-Noechel’s model, the
result of which produced a minimum mean colour difference of 2.4 CIELAB AE (where b
was varied between 0.07 and 0.11) between blend samples and blend predictions
(Burlone, 1983; Burlone, 1984). Whilst Stearns-Noechel’s model has had limited
success in its original form as a method of predicting blend colours, variations of the

equation have proved encouraging.

Philips-Invernizzi et al. (2002a) used Stearns-Noechel’s model to predict the colour of
234 cotton blends in both the classic form and in modified forms. They found b to be
0.109 for the classical use of the Stearns-Noechel’s equation, which gave a mean
colour difference between measured colour of blend and predicted colour of blend as

1.85 CIELAB AE.
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The most practical and successful form of the Stearns-Noechel equation that they
investigated required optimising b for each wavelength (see Equation 19). This
produced improved results with a mean CIELAB AE of 1.66 (Philips-Invernizzi et al.,

2002a).

_(0.122 +42.75)
N 1000

Equation 19

Li et al. (2009) more recently produced a spectrophotometric algorithm based on
Stearns-Noechel’s model to optimally derive b. Using 36 three-component blends and
12 four-component blends, b was derived as 0.09. The three- and four-colour blends

produced an overall mean of 0.89 CIELAB AE.

1.5.3 Friele equation
In 1952, Friele produced a less empirical model than Stearns-Noechel’s equation which
built upon the principals of Kubelka-Munk theory. Friele related K/S to the function

fr(R(A)) to produce his own equation as seen in Equation 20 (Friele, 1952);

—s(1 — R(1))?
2R(A)

fe(R(D) =
Equation 20
where s is the Friele parameter, or scattering coefficient. In Friele’s original work on

wool blends the scattering coefficient was theoretically derived as s = 0.30 (Friele,

1952).
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Successive authors within the literature have altered the s coefficient depending on

the fibre type, as seen in Table 1.2.

Table 1.2 Variations of s for different fibre types as derived by different studies

within literature

Reference s value Fibre type No. colours in blend
Friele, 1952 0.30 Wool 2

Miller et al., 1963 0.28 Viscose rayon 3
Davidson & Taylor, 1965 0.11 Acrylic 2,3&4
Burlone, 1984 0.25 Nylon 4

In the same paper in which Burlone tested Stearns-Noechel’s equation with 42
blended sampled, Burlone also tested Friele’s equation. In this case a minimum mean
colour difference of 2.7 CIELAB AE %1 unit was recorded when s was varied from 0.19
to 0.27, showing larger colour differences between measured colour of a blend and
predicted colour of a blend compared to the results found using Stearns-Noechel’s

model (Burlone 1983; Burlone 1984).

Philips-Invernizzi et al. (2002b) more recently tested Friele’s equation using 17
coloured cotton primaries to create 28 blends (each composed of three colours). The
mean colour difference between prepared blends and blend predictions was 5.77
CIELAB AE. It is possible that lower colour differences may have been achieved if a
larger number of primaries were used to make four-, rather than three-colour blends

(Philips-Invernizzi, 2002b).

Miller et al. employed Friele’s equation for coloured viscose rayon blends where s was
found to be 0.28 (Miller et al., 1963). To empirically derive this value, the reflectance
values of a large amount of fibre blends were measured and compared to the
predicted values given by Friele’s equation, the s factor was then adjusted so that the
best agreement between the two sets of data was achieved. A total of 22 coloured

fibres were used in the experiment. The reflectance of each colour was measured and
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a National Elliot 405 computer made blend predictions for two- and three-colour blend
combinations at 10 % increments. The result was a catalogue of approximately 57,000
predicted colour blends in the form of X, Y and Z tristimulus values and blend recipes.
The difference in colour, AE, between actual blended samples and colour predictions
averaged 4.1 units of the National Bureau of Standards (NBS, now the National
Institute of Standards and Technology), on a scale of 1-9 units (Miller et al., 1963). For
a colour difference to be commercially insignificant to an observer, the NBS unit should
be less than one (Hunter, 1942). Whilst Friele’s model was not particularly successful
within the work of Miller et al. (1963), the work did highlight that to achieve solid

colour effects more than three colours should be blended together.

The question of how many primaries would be required to produce a large variety of
blends is important if colour blending is to be a viable option for textile industries. It
has been estimated by a number of authors that at least 50 primaries should be used if
a large range of solid blends are to be produced (Guthrie et al., 1962; Miller et al.,
1963; Philips-Invernizzi et al., 2002a). Philips-Invernizzi et al. also suggested that the
more colours within a blend, the more accurate a match will be (Philips-Invernizzi et

al., 2002a).

In other research, Guthrie and Oliver (1957) proposed that the colour of the primaries
selected should be as far apart in the colour spectrum, and as colourful and as
saturated as possible to achieve the greatest gamut of blended colours. This would
also take into account the possible dulling of colours once blended (Guthrie & Oliver,
1957). Further to these recommendations, it has been recommended that to create
homogenous blends that are appropriate for accurate colour measurement,
consideration must be made as to the amount of times the primaries within a blend
are carded. The length and fineness of the fibres may also affect the blend appearance
(Philips-Invernizzi et al., 2002a; Philips-Invernizzi et al., 2002b; Warburton & Lund,
1956).

It is clear that there are two important elements to creating a viable solution to textile

colouration by the blending of coloured fibre. Firstly, an accurate method of blend
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prediction that takes into account the complicated absorption and reflectance of
textile material is essential. Secondly, the selection of the primaries, including the
number of them and their position in colour space, is vital and must be well considered

so that a large number of blends with a solid colour appearance can be produced.

1.6 Artificial neural networks

The following sub-sections look at the application of neural networks as a method of
predicting colour. The first part looks at what neural networks are and explains the
basic principles of multi-layer perceptron networks. The second part of this section
looks into the practical and theoretical applications of neural networks in predicting
colour from existing sources. The third section outlines a typical neural network
structure for blend prediction. Finally, the fourth section proposes a novel application
of neural networks for predicting the colour of fibre blends which has not yet been

tested within the literature.

1.6.1 What are neural networks?

Artificial neural networks (ANNs) are computing systems based on the biology of the
brain. Within the brain, interconnected neurons process vast amounts of information
to perform complex computations (Haykin, 1999; Mehrotra et al., 1997). For example,
light entering the eye is processed by photoreceptors which transmit electrical signals
through the optic nerve to be interpreted by the neurons within the brain as colour
(Tilley, 2011). Complex processes such as this are done quickly by the brain neurons;
with tasks such as perceptual recognition taking 100-200 milliseconds for the brain to
compute (Haykin, 1999). Like the neurons within the brain, artificial neural networks,
or neural networks, are able to process complex relationships between a set of inputs
and outputs. Neural networks can be trained with example data using a learning
algorithm so that they can compute complex, non-linear tasks. Learning algorithms
allow neural networks to vary different parameters, or weights, so that the correct
relationship between the input vector and the output vector is achieved (Haykin,

1999).
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Neural networks can be structured in many ways. There are three main units which are
included in feed-forward networks; input units, output units and hidden units. Input
units are weighted by the input vector, for the prediction of fibre blends this could be a
number of primaries. The output units are weighted by the output vector, again for the
prediction of colours blends this could be reflectance at 35 different wavelengths
(from 360 nm to 700 nm in 10 nm increments). Finally, the hidden units are free
parameters which are weighted by the complexity of the internal relationship between
inputs and outputs (Rumelhart & McClelland, 1987; Westland, 1998). The optimum
number of hidden units must be derived empirically by running the neural network

and varying the number of hidden units used.

One of the simplest structures of neural networks is the single-layer feed-forward
network (or single-layer perceptron network) where only input and output units exist.
A single input layer will compute directly to an output layer (see Figure 1.7) and this
type of network is therefore used in simple, linear problem solving. This type of
network would not be appropriate for predicting the colour of blended fibre as that is
considered a non-linear relationship due to the complex nature of the blends with
regard to additive and subtractive colour mixing (Burlone, 1990; Warburton & Lund,

1956; Warburton & Oliver, 1956;).

Input layer Output layer

Input vector

Output vector

Figure 1.7 Example of a single-layer perceptron neural network

One of the most widely used neural network structures, that does include the input,
output and hidden units, is the multi-layer feed-forward network, otherwise known as

a multi-layer perceptron network (MLP). In MLPs the input vector informs the number



48

of input units which interact with the hidden units, within one or more hidden layers,
before continuing to the output layer (the size of which is informed by the output
vector). Each unit within the hidden layers and output layer also receives a weighted
input from a bias unit which is fixed as unity (Westland, 2012). The bias unit is not

shown in the example of an MLP in Figure 1.8 for simplicity.

Input layer

Hidden layer
Output layer

[

Figure 1.8 Example of a fully connected multi-layer perceptron network (MLP)

Input vector
Output vector

The function between any input and output unit is described as the activation function
(or transfer function). In MLPs the transfer function is usually non-linear (Westland et
al., 2012). The number of hidden layers within a MLP network can vary depending on
the complexity of the problem being solved. With increased hidden layers the network
will produce statistical results of a higher-order which, it is suggested, is more relevant
when there are a very large number of inputs within the input vector (Haykin, 1999). It
has been shown that for a large number of computations one hidden layer can
sufficiently produce accurate transformations between input and output data

(Funahashi, 1989).

1.6.1.1 Multi-layer perceptron networks and supervised learning

An advantage of using MLP networks is that they use supervised learning. Supervised
learning is when a neural network is given example input to output pairs of data in the
form of training sets. After training, the neural network is tested for its ability to
generalise and predict using unseen test sets (Schalkoff, 1997). During the training
stage, the network adjusts the weights (hidden units) within the hidden layers of the
network to learn the relationship between the two. As the network trains it calculates

the error (generalised delta rule) between input and output pairs. The training cycle
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(or training epoch) for all input-output pairs is repeated until the mean error between
the input and output pairs is sufficiently low (Haykin, 1999; Schalkoff, 1997; Westland,
2012). The training of the network can also be stopped by other stopping criteria such
as time elapsed or the number of epochs the data has used (this is dependent on the
design of the network). Once the network is trained the weights are fixed and the
testing set (which should comprise of data that the network has not seen before but
which is comprised of the same set of inputs), can be used to test the network. The
performance of the network can be measured using the results of the test data. A
good performance is quantified by small differences between the test data and

corresponding predictions.

It can be seen that the training of an MLP network is an important tool in allowing the
neural network to build knowledge, generalise and consequently make predictions of
data that it has not seen before (Shamey & Hussain, 2003; Westland et al., 1991). The
number of training samples required to train a network is important and depends on
the size of the network. As indicated, the size of the network is dependent on the input
and output as well as the number of hidden units (or weights) within the hidden
layer(s). Most importantly, when training a neural network, the number of weights
must be proportional to the number of training samples, as this affects the network’s
ability to generalise. If there are a large number of weights but only a small number of
training samples then the network will most likely over train, this will consequently
have a negative effect on any predictions (Westland, 1998). Whilst the training data is
likely to improve with an increased number of hidden units, this can cause over
training and subsequently affect the network’s ability to predict unseen data

(Westland, 2012).

1.6.2 Neural networks and colour prediction

The idea of using neural networks as a colour prediction tool is seen within the
literature from the early nineties (Bishop et al., 1991; Westland et al., 1991). Most of
this early colour prediction work and literature concerned the use of neural networks
as a method of colour prediction for dyes or printing inks rather than fibres (Bishop et

al., 1991; Westland, 1994; Westland, 1998; Westland et al., 1991;). Bishop et al. (1991)
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for example used a neural network to predict three dye concentrations (outputs) from
three CIELAB coordinates (inputs). The network was quite large with two hidden layers
composing of 8 and 16 units. The results showed a mean error of 1.46 CIELAB AE for
two-colorant mixtures, with 78.8 % of the predictions producing a CIELAB AE of less
than 0.8 (Bishop et al., 1991). It was subsequently recommended that for most
applications, colour prediction from recipe to reflectance is more advantageous than
colorant recipe prediction from reflectance as seen in the work of Bishop, et al.

(Westland, 2001).

To illustrate the use of MLP networks for colour prediction, Westland (2001) used 6
printing inks to produce 163 blends of printed colours. The network was trained using
123 samples and tested using 40 unseen samples. The network predicted the colour
appearance of the 40 blends with a mean colour difference between the actual printed
blend reflectance and predicted blend reflectance of approximately 1 CMC colour

difference unit (Westland, 2001).

One problem encountered with much of the early work using neural networks for
colour and colorant prediction was the ratio of training samples to weights within the
network. Often the number of training samples was very similar to the number of
weights. For example, Bezerra and Hawkyard’s work into the prediction of dye recipes
used 391 weights and 283 training samples and the results concluded that the neural
network was unsuccessful (Bezerra & Hawkyard, 2000). Cheung et al. used 129 weights
and 166 training samples for their investigation into the characterisation of colour
cameras, producing a median error of 2.89 CIELAB AE between target characterisation

colour and predicted colour (Cheung et al., 2004).

In order to produce reliable data predictions and avoid over-training, Sarle (2002)
recommends that the number of training samples should be at least 30 times the
number of weights. Sarle also estimates that a network with 20 hidden units may
require between 150 to 2500 training data (Sarle, 2002). One limitation in predicting
the colour of blends at 35 output units is that the network is immediately of a

substantial size. In order to successfully train a MLP network with a good testing error,
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a substantial training set must be used. The training and testing data can be used to
determine the optimum number of weights for the network by varying the number of
hidden units. An optimum number of weights will be found when both the training
error and testing error are low. It is likely that the training error will continue to
improve as the number of hidden units increases. The training error will improve fairly
evenly to a point, after which the errors will increase again or become irregular which

is a sign that the network has become over-trained.

1.6.3 Standard neural network for predicting fibre blends

In section 1.6.1 the suitability of using MLPs for solving complex problems, such as
predicting the colour of blended fibre, was identified. The prediction of reflectance of
fibre blends is complex due to the mixed absorption and scattering properties of
blended fibre. In this thesis, a MLP neural network is used to predict the colour of the

blended samples prepared in chapter three.

The number of inputs will be determined by the number of primaries within the output
vector, which is the number of primaries used to create the set of blended samples in
chapter three (8). The number of outputs will be determined by the spectral
reflectance factors of blends in 10 nm intervals, from 360 nm to 700 nm (35). The
network will be trained using 273 training samples and tested using 60 unseen testing
samples. The network will use one hidden layer and the number of hidden units will be
optimally derived by varying the number of hidden units until the smallest mean
colour difference (CIELAB AE) between the measured reflectance of a blend and

predicted reflectance of a blend is found.

Depending on the optimum number of hidden units, the 273 training set may or may
not be sufficiently large. For example, the network will use 8 inputs and 35 outputs, if
there are 3 hidden units then the number of weights will be 9 x 3 + 4 x 35 = 167.
Whether the number of training samples is enough will be determined through

training and testing.
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1.6.4 Novel neural network for predicting fibre blends

As well as a standard feed-forward MLP network, this thesis will also test a novel
application of ANN technology (in this thesis this will be referred to as a novel neural
network). The novel neural network uses a number of small networks which all have
the same inputs. Each small network is weighted and produces is own output. This
type of network could be compared to a modular-structured neural network to an
extent as both modular networks and this proposed novel network are comprised of
small networks which compute independently of one another. However, the individual
neural networks within a modular neural network are each informed by different input
vectors (Osherson et al., 1990). This is not the case with the novel network as each of

the individual networks is informed by the same inputs within the input vector.

The structure of the novel network will be such that instead of using eight input
vectors (8 primaries) to predict 35 output vectors (35 reflectance factors between 360
nm and 700 nm) as in the standard network, the novel network will use 35 small
networks, each one with the same eight input vectors (8 primaries) but each one
predicting its own spectral reflectance factor. The 35 small networks will predict the
spectral reflectance of 35 individual wavelengths from 360 nm to 700 nm in 10 nm
intervals. These 35 individual networks will culminate in the final output vector where

the whole reflectance of a blend is consequently known.

Using this novel structure has a substantial impact on the ratio of training samples to
weights as each individual network is now much smaller. Each of the 35 networks will
compute 8 inputs to 1 output. Again, if three hidden units within this network are used
as an example, then the number of weights for each individual network will be 9 x 3 +
4 x 1 = 31. This gives a much greater proportion between number of training samples

(273) and number of weights (31).

1.7 Primaries within blended samples
An important consideration that has been touched upon by some authors testing
existing blend prediction models is the number of colours to mix within a blend. When

we consider that colour space is three-dimensional, it lends itself to the idea that
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colour blending of fibres should also be three-dimensional. If there are two primaries
in colour space then we create a line between two points on which we can make any

mixture of the two, for example see Figure 1.9 (one-dimensional blending).

& @

Figure 1.9 Two primaries produce blending along a line within CIELAB colour space

(one-dimension)

When there are three primaries a plane is created (see Figure 1.10). By mixing these
three colours, any colour along or within the boundary of the plane can be produced

(two-dimensional blending).

Figure 1.10 Three primaries create a plane within CIELAB colour space (two-

dimensional)
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When a fourth primary is used a three-dimensional tetrahedron is produced, where
any colour along the boundaries or within the space of the four colours can be made,
thus giving three-dimensional blending (see Figure 1.11). The hue, chroma and value
(lightness) can all be varied depending on the point within the three-dimensional

space.

Figure 1.11 Four primaries create a three-dimensional tetrahedron within CIELAB

colour space (three-dimensional blending)

It is clear that using four primaries within a blend produces a much larger gamut of
blended colours than only blending two or three colours. When translating this
concept into a model for predicting the colour of blend recipes so that the blends
appear solid in colour, it is possible that a three-dimensional colour palette of
primaries could be produced. Primaries could be grouped into tetrahedral groups of
four. Depending on the target colour, a different tetrahedron of primaries may be used
so that the four primaries enclose the target colour. The next important consideration
to this is the spacing of the four primaries within each tetrahedron. The distance
between each pair of primaries within a tetrahedron can be measured using CIELAB
AE. With four primaries there would be six pairs of colour differences. The mean of
these six colour differences could be used to determine the number and spacing of
primaries (organised as a number of tetrahedron throughout colour space). Depending
on the mean colour difference of the tetrahedra and the size of the desired gamut, the

number of primaries to cover an area of colour space will vary. If a very large gamut of
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colours is desired then there will be more tetrahedra and therefore more primaries. If
only a very small gamut is required then the number of tetrahedra and therefore
primaries will be reduced. This is very much dependent on the even distribution of the
tetrahedra and the colour difference between each primary within each tetrahedron.
The mean colour difference required so that a four-colour blend will appear as a solid
colour must be determined. Once this is known it would be possible to produce a
palette of colours which are evenly divided into tetrahedra with specific mean colour
differences so that when blended they produce solid colour effects. Equally it would be
possible to deliberately increase the colour difference between the four primaries

within each tetrahedral group so that melange blends could be produced.

In order to achieve this, the point at which four colours appear as one, and not a
melange, must be defined. This is in itself an important question and one which is
dependent on a range of variables including; the distance at which a blend is seen; the
shadowing produced from the layering of carded fibre; and the eyesight of the
observer. It should also be noted that the appearance of a blend as a solid colour in

blended fibre form, may differ once in a knitted or woven form.

All these important considerations as to the primaries which are blended together
must be weighted with a method of blend prediction which is both reliable and easy to
use if fibre blending is to be used successfully within industry. Whilst the existing blend
prediction models have produced encouraging results, in particular the Stearns-
Noechell model, improved methods of prediction will be explored through the use of

artificial neural networks (ANNs).
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Chapter 2 Materials and methods

In this chapter the materials and methods used within the experimental work of this
thesis are outlined. Section 2.1 details the type of fibre used and the way in which the
fibres were coloured. Section 2.2 details the way in which the coloured fibres were
prepared and carded to create blended samples. Section 2.3 describes the methods
used for measuring the spectral reflectance of the blended samples using a
spectrophotometer, and the calculation of CIE (1976) L*a*b* values using MATLAB.
CIELAB AE colour differences between the primaries within a blended sample could
also then be calculated using MATLAB. Some of the blended samples were spun and
knitted and the method and specification of the knitted samples can be found in
section 2.4. Finally, both the blended samples and the knitted samples were observed
by a group of participants. The method of selecting the participants, the demographic
of the participants and the method of running the participant observations are

detailed in section 2.5.

2.1 Materials
The specification of the fibres used in this study and the methods in which they were

dyed are detailed in the following sub-sections.

2.1.1 Lenzing viscose
Virgin viscose staple fibre was provided by Lenzing AG. The denier of the fibre was 1.7

dtex and fibre length was 50 mm (Lenzing 2014c).

2.1.2 Lenzing spun-dyed viscose
Virgin spun-dyed viscose staple fibre was also provided by Lenzing AG. The denier of

the fibre was 1.7 dtex and the fibre length was 50 mm (Lenzing 2014c).

2.1.3 Lenzing viscose pack dyed

In some instances it was required that the same fibre that is described in section 2.1.1
was pack dyed to specific colour requirements. To do this, primary colours were first
selected in L*a*b* colour space. The L*a*b* values were converted to sRGB values and

matched as closely as possible to the sRGB values of Pantone colour references in
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Adobe lllustrator. Once the colours were closely matched, Pantone’s online colour
finder allowed the digital colour to be converted to the equivalent dyed cotton
reference in the Pantone Cotton Planner (Pantone, 2011). Using the Pantone Cotton
Planner, independent dyer Richard Noyes formulated the dye recipes to match the
Pantone colours as closely as possible. After each adjustment of the dye recipe, a
sample of the fibres was carded and measured using the spectrophotometer to ensure
that the colour differences were approximately the same as originally desired. Once
the dye recipes were agreed upon, ecru Lenzing viscose fibre was pack dyed by
outsourced company Progressive Threads. Pack dyeing allowed the fibres to be dyed
as evenly as possible and with minimal tangling of the individual fibres. This was
important as any knotting of the fibres may have affected the even carding of the

primaries.

After dyeing, each primary was again carded and measured so that accurate CIELAB
tristimulus values were known. Precise colour differences between each primary could
then be calculated (as despite appearing similar to the Pantone references by eye, the
spectral data would most likely be different to the original references due to

metameric factors).

2.2 Fibre blending
In order to create uniform webs of fibre composed of one or more primaries, it was
necessary to open and inter-mix the fibres through machine carding. The preparation

and carding of the samples is described in the following sub-sections.

2.2.1 Preparation of samples

The fibre used in this experiment was conditioned in a controlled environment for 48
hours prior to weighing for sample preparation. The fibre for each sample was weighed
to 2 decimal places. The room temperature was 20°C and the relative humidity was 65

+5%.

After the fibre was weighed it was opened by hand in ambient conditions. The fibre

was arranged evenly in a sample area size of 210 mm x 148 mm. When two or more
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primaries were used, care was taken to distribute the different colours as evenly as

possible across the sample area. An example of the fibre

2.2.2 Carding machine

In order to blend the fibre into a non-woven web, a small sample Tathams carding
machine was used. The machine comprised of an automatic feed belt, interconnecting
feed rollers, licker-in, a single main cylinder with three pairs of workers and strippers, a
single doffer and a fly comb. A second conveyor belt at the end of the fly comb
transported the web to a lapper which laid the web in a parallel batt formation. The

dimensions of the machine and direction of rollers can be seen in Figure 2.1.

Workers (145 mm wide) Strippers (92 mm wide)

Comb  Lapper

Feed belt / - S < l
\ (o]}
Feed rollers \
Main cylinder (700 mm wide) Doffer (650 mm wide)

Figure 2.1 Layout of small sample Tathams carding machine

Each fibre sample was placed onto the feed belt and processed through the carding
machine. After the first pass, the parallel batt was rotated 90° and passed through the
machine a second time. This action was repeated a third time to ensure homogenous
blending. To determine the optimum number of times to pass the batt through the
carding machine, the carded webs were measured using the spectrophotometer after
each pass through the carding machine. It was found that there was no significant
advantage to passing the samples through the carding machine a fourth time as the
resulting spectral reflectance measurements we consistent with the measurements

taken at three passes.
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As identified in the literature, careful preparation and handling of the carded blends
was essential for accurate colour measurement (Burlone, 1983; Guthrie & Oliver,
1957). The carding machine was cleaned of loose fibre between every sample in order
to minimalise fibre cross-contamination between samples. The samples were carded in
ambient conditions. An example of blended sample 2.23 can be seen in Figure 2.2. The

sample was a 4-colour blend with a mean colour difference of 15 CIELAB AE.

Figure 2.2 Blended sample number 2.23 with a mean colour difference of 15 CIELAB

AE (1:1 scale)

2.3 Colour measurement
After carding, the spectral reflectance of each blended sample was measured using a
spectrophotometer. The reflectance was then exported into MATLAB for data analysis,

comparison and conversion to L*a*b* coordinates.
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2.3.1 Spectrophotometer

A Spectraflash® 600 PLUS spectrophotometer (see Figure 2.3) and ColorTools software

was used to measure the spectral reflectance of each carded sample (Datacolor, 2007).

Figure 2.3 Datacolor 600™ Spectrophotometer

The measurement device had an optical geometry of d/8° and D65 lighting. A 30 mm
(illuminated) Large Aperture View (LAV) plate was used to give a large sample area for
measurement, as recommended by the Datacolor 600™ User’s Guide for measuring
samples with an irregular or textured sample surface (Datacolor 2007). The
measurements were taken using 100 % UV, no UV filter with the specular component

excluded (SCE).
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Before measuring the samples, the machine was calibrated and a standard was
measured. Samples were carefully folded until opaque before measuring. For each
sample 10 reflectance measurements were taken and the average reflectance was
calculated. The reflectance data of each primary was recorded at 10 nm intervals

between 360 nm and 700 nm.

2.3.2 Reflectance data in MATLAB

Using MATLAB, the reflectance data for each primary and blended sample was
converted to tristimulus values (X, Y and 2) using the MATLAB function ‘r2xyz’
(Westland et al., 2012). These tristimulus values were then converted to CIE (1976)
L*a*b* values using the MATLAB function ‘xyz2lab’ (Westland et al., 2012). The CIE
(1976) L*a*b* values (referred to in this thesis as CIELAB or L*a*b* values) were used
to plot the position of each sample in CIELAB colour space. In order to illustrate the
approximate visual appearance of each sample, sRGB values for each sample were
calculated in MATLAB using the function ‘xyz2srgb’ and plotted in CIELAB using the
corresponding sRGB colour (Westland et al., 2012). Example code can be seen in

Appendix I.

2.3.2.1 Calculating colour differences

The colour difference between two samples in CIELAB colour space can be calculated
by measuring the Euclidean distance between two pairs of L*a*b* points. This is done
using the CIELAB colour difference equation outlined in section 1.4.4.2. In this thesis,
MATLAB was used to calculate the colour differences (CIELAB AE) using the function
‘cielabde’ (Westland et al., 2012). Example code for calculating the colour difference

between two samples can be seen in Appendix II.

The calculation of colour differences (CIELAB AE) between two samples was
particularly important when looking at the primaries within a blend of two or more
colours. By calculating the colour difference between pairs of primaries, the average
colour difference of a group of primaries could be calculated. For example, a blended
sample made from the primaries p1, p2 and p3 would have three possible pairs of

colour differences; pl and p2, pl and p3, and p2 and p3. By averaging these three
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numbers, the average colour difference for the blend could be calculated. Example

code can be seen in Appendix IlI.

2.4 Preparing knitted samples

Once the fibres were blended using the method described in section 2.2, some
blended samples were made into knitted samples. Webs of blended fibre were spun
and knitted by Lenzing AG, Austria. The plain knit samples were produced on a circular
knit machine. The knitted samples had a thread count of 68, 24 ends per inch (EPI) and
44 picks per inch (PP1). An example of knitted sample 2.23, which is shown in web form
in section 2.2.2, can be seen in Figure 2.4. The sample was a 4-colour blend with a

mean colour difference of 15 CIELAB AE.

Figure 2.4 Knitted sample number 2.23 with a mean colour difference of 15 CIELAB

AE (1:1 scale)

2.5 Visual assessment of carded samples

In order to understand the relationship between the average colour difference (CIELAB
AE) of a blended sample and the sample’s appearance (as a solid colour or not),
participants were selected and asked to observe carded samples and rate them. A total
of 16 participants were recruited. Only observers with normal colour vision partook in
the visual assessments and this was determined using the methods described in
section 2.5.1. The results of the participant observations were used to determine the
optimum range of average colour differences (CIELAB AE) of a blend of primaries in

order for the blend to appear as a solid colour.
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2.5.1 Participant selection

In order to gather results representative of 98 % of the population, participants were
required to have normal colour vision (Hall, 1997). Under controlled viewing
conditions, using D65 lighting, the 16 participants were firstly tested for normal colour
vision using the Ishihara tests (Ishihara, 1972). Participants were also asked to
complete the Farnsworth-Munsell 100-hue test under the same controlled viewing
conditions in order to ensure that they were able to detect small differences in sample
hue and therefore be able to discriminate accurately between the many blended
samples (Hill, 1997; X-rite, 2007). All 16 participants passed the Farnsworth-Munsell
100-hue test and groups of ten participants were used in each visual assessment
experiment. An indication as to the variety of participants within the visual

assessments can be seen in Figure 2.5 and Figure 2.6

Visual assessment participants: gender

B Female

B Male

Figure 2.5 Pie chart showing the proportion of female to male participants in the

visual assessments
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Visual assessment participants:
country of origin

H China

B Germany
H Korea

M Nigeria
M Pakistan
m Syria

W UK

Figure 2.6 Pie chart showing the country of origin of the participants used in the

visual assessments

2.5.2 Experiment environment
All visual assessment experiments were done under controlled viewing conditions.

Using a Verivide viewing cabinet, D65 lighting was used to illuminate the fibre samples.

2.5.3 Experiment procedure

Participants were shown one sample at a time. The samples were presented in an 8 x 8
cm viewing frame that was coloured grey to match the viewing cabinet. The frame was
placed on an inclined, grey presentation board at a 45° angle. The lighting box and
samples were a distance of 45 cm in front of the participant. The 45 cm viewing
distance and 45° viewing angle was chosen so that samples would be observed by
participants in consistent conditions. The distance of 45 cm represented a comfortable

viewing distance that a garment may be observed in a retail environment.
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Figure 2.7 shows an example of a participant in the laboratory viewing conditions.

Figure 2.7 Participant viewing carded sample

Due to the length of the experiment, participants were able to take regular breaks to
rest their eyes. Participants were asked not to lean forward or touch the samples.
Before the start of each experiment, participants were given written instructions, an

example of which can be seen in Appendix IV.
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Participants were asked to assess the carded samples and respond using the following

options depending on their observation;

a) A solid colour
(the sample appears like one colour)

b) Almost a solid colour
(the sample is very close to appearing like it is one colour, but you can see that
there may be another colour present)

¢) Not asolid colour

(the sample definitely appears to be made up from more than one colour)

For each response above the corresponding number of points was given as show
below;

a) 1 point

a) 0.5 points

b) 0 points

The results were recorded using a data capture form, an example of which can be seen
in Appendix V. On average, participants completed observations of six samples per
minute. The total participant score was calculated by adding up the responses for each
sample from each participant. For example, if 10 participants all perceived sample 1 as
‘a) A solid colour’ then the total participant score for this sample would be 10 (100 %
success). Conversely, a sample that was perceived as ‘c) Not a solid colour’ by all ten
participants would score a total participant score of 0 (0 % success). The participant
score could consequently be compared to the average colour difference (CIELAB AE) of

a blend.
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Chapter 3 Colour difference and sample appearance

3.1 Introduction

In this chapter the relationship between a selection of primaries in a blend and the
resulting visual appearance of the blend as either a mélange or solid colour was
explored. A mélange can be defined as a blend appearing to have clear heterogeneous
primary elements (OED, 2013). Conversely, a blend with a solid colour appearance
would appear homogeneous, despite being composed of more than one primary. The
aim was to determine a method for predicting in advance whether a particular blend
(with known primaries and amounts) would be likely to be judged as being visually
solid. If such a prediction is possible then it could, for example, be used to estimate
how many primaries a colouration system would need in order that most or all of
mixed primary blends would be solid. It is expected that as the number of primaries in
a colouration system increases, so does the likelihood that the primaries within a blend
(if chosen correctly) will appear solid; however, as the number of primaries increases
so does the cost of producing or storing those primaries. Therefore understanding the
expected appearance of a blend based on its composition is integral to a successful
colouration system. It is important to ensure that blends appear solid whilst at the
same time optimising the number of primaries in the system so that it is commercially

viable.

In this chapter, two experiments were conducted, during which a large number of
blended samples were prepared. With each experiment certain variables were altered
including:

e The number of primaries used in each experiment;

e The colour of the primaries used;

e The blend recipes;

e The colour difference between each pair of primaries within a blend;

e The overall average colour difference of a selection of primaries within a blend;

e The number of samples made.
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The first experiment was a preliminary experiment whereby eight primaries were used
to create 325 2-, 3- and 4-colour blends. The blends were evaluated visually and it was
shown that there was a relationship between how similar the primaries used to create
the blend were and the likelihood that the blend would be perceived as solid.
However, all of the 4-colour blends had very high intra-blend colour differences (and
hence most did not appear solid at all). As suggested in the literature review, it is likely
that blends composed of four primaries may be advantageous as they produce three-
dimensional tetrahedral gamuts in colour space. Further analysis of 4-colour blends
was therefore important for this project. Consequently a second experiment was
conducted whereby only 4-colour blends were considered and the primaries were
selected to be much closer than in the first experiment. The colours of the primaries
used were subject to some commercial constraints as they were selected from fibres

made available in small quantities by Lenzing AG.

3.2 Experiment 1: Creating fibre blends with mean colour differences of between
11 and 119 CIELAB AE

In experiment one, one undyed viscose primary and seven spun-dyed viscose primaries
(that is, a white and seven colours) were used to create a range of blended samples. A
total of 325 blended samples were made from these primaries with varying colour
differences between the primaries within each blend. A group of 10 participants with
normal colour vision took part in the visual assessment of the blended samples. The
assessments were used to understand which blended samples appeared solid in colour
and to evaluate methods for predicting whether a set of primary colours will create
solid blends. Three candidate methods were tested to try to predict the results of the
visual assessments; these were the mean colour difference, the maximum colour
difference and the median colour difference between the primaries of each blend. The
coefficient of determination (R?) was calculated for each of the methods in relation to
the participants’ results. This was used as a measure of the ability of the mean,
maximum or median as methods for predicting which colours would successfully blend

together.
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3.2.1 The primaries

The first primary in this experiment was undyed viscose (white), the specifications of
which are described in section 2.1.1. The other primaries were spun-dyed viscose of
different colours. Their appearance could generally be described as being black, pink,
orange, yellow 1, yellow 2, blue and purple. The specifications of the fibres are
described in section 2.1.2. The fibres were provided by Lenzing AG and the primaries

selected were those that were available in small quantities.

Each primary was carded using the method described in section 2.2. The resulting
webs were uniformly blended so that the fibres were aligned and the primaries evenly
distributed throughout the batt of fibre. The webs were then folded until opaque and
measured using a spectrophotometer, as described in section 2.3, to record the
spectral reflectance factors of each primary. The spectral reflectance factors of the
samples were then converted to L*a*b* and sRGB values using the methods described
in section 2.3.2. The position of the primaries in CIELAB colour space, coloured using

their sRGB values for visualisation, can be seen in Figure 3.1.

100 %9
80

L*

40

Figure 3.1 Position of primaries in CIELAB colour space
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Table 3.1 shows the L*a*b* and sRGB values for each primary. A coloured key is also

included which shows the general appearance of the primaries, using the sRGB values,

to give a representation of their colour appearance.

Table 3.1 L*a*b* and sRGB values and appearance of first experiment primaries

Primary L* a* b* R G B General
number appearance (sRGB)
11 95.72 -0.21 1.56 244 243 238
12 | 1387 | -0.03 | -005 | 36 36 36 _
1.3 71.36 35.82 1.06 237 150 173
1.4 74.34 28.66 | 57.84 255 161 74
1.5 82.67 14.42 | 79.38 255 194 35
1.6 87.84 4.50 80.48 255 214 48
1.7 70.52 2.13 -23.88 152 174 214
1.8 42.48 27.89 | -26.90 125 85 144

Using the L*a*b* values of the primaries the Euclidean CIELAB colour difference (AE)

between each pair of primaries was calculated in MATLAB using the method described

in section 2.3.2.1. The largest colour difference between a pair of primaries was 119

CIELAB AE and the lowest colour difference was 11 CIELAB AE.
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The colour difference (in CIELAB AE) between each pair of primaries is shown in Table

3.2.

Table 3.2 The Euclidean CIELAB colour difference (AE) between each pair of primaries

Primary No. 1.1 1.2 13 14 1.5 1.6 1.7 1.8
No. . .
11 0 82 43 67 80 79 36 67
1.2 ' 82 0 68 88 106 109 61 48
13 43 68 0 57 82 87 42 41
14 67 88 57 0 27 36 86 91
15 80 106 82 27 0 11 105 114
1.6 79 109 87 36 11 0 106 119
1.7 36 61 42 86 105 106 0 38
1.8 . 67 48 41 91 114 119 38 0

3.2.2 Preparing the blended samples

To produce blended samples from the eight primary colours, a selection of blend
recipes was required. A total of six generic recipes were used; two containing 2
colours, two containing 3 colours, and two containing 4 colours. These recipes can be

seen in Table 3.3.

Table 3.3 Generic blend recipes

Primary a (%) Primary b (%) Primary c (%) Primary d (%)
Recipe 1 50 50 - -
Recipe 2 25 75 - -
Recipe 3 25 25 50 -
Recipe 4 33 33 33 -
Recipe 5 25 25 25 25
Recipe 6 16.66 16.66 16.66 50
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With six recipes and eight primaries, the total number N of blends that could be
produced if every combination of primary was used for each generic recipe was

calculated to be 658 using Equation 21,

n!

B ri(n—-r)!

Equation 21

where n is the total number of primaries that is being selected from and r is the
number of primaries in a recipe. For example, if we consider Recipe 5 (in Table 3.3)
there are 70 different combinations of 4 primaries from 8 (n = 8; r = 4). However, for
Recipe 6, although there are 70 different combinations of 4 primaries from 8, there are

4 unique permutations for each one giving rise to 280 different recipes.

To provide a substantial data set for the participant visual experiments, 325 recipes
were randomly selected from the possible 658 recipes (generating the full 658 recipes
would have been impractical). This large sample set would also be sufficient to test
and train neural networks as part of further subsequent experimental work as

discussed in chapter 5.

The total sample weight for each of the 325 blends was 6 g and the samples were
prepared and carded in the same way as described in section 2.2. The spectral
reflectance factors of the blends were measured and converted into L*a*b* values as

described in section 2.3.
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The position of all 325 blends and the eight primaries can be seen in Figure 3.2. The

plots of the blends have been coloured using the corresponding sRGB values.

Figure 3.2 CIELAB colour space with the positions of the 325 blends and 8 primaries
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Figure 3.3 also shows these blends in CIELAB colour space, this time from an angle
directly looking down the L* axis to see the a* and b* plane. This figure gives an

indication as to the gamut of the primaries and consequent blends.
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Figure 3.3 Position of the blended samples in CIELAB colour space from directly

above the L* axis, looking down on to the a* and b* axes

Using the L*a*b* values of the primaries, a mean colour difference for each blend was
calculated by taking an average of the colour differences between each pair of
primaries within a blend (so, for example, for a four-component blend there would 6
colour differences to average); the MATLAB code to do this is described in section
2.3.2.1. The maximum colour difference within a blend and the median colour

difference were also calculated.

3.2.3 Visual assessment of blended samples
All 325 blended samples and the 8 primary samples were visually assessed by ten
participants using the procedure described in section 2.5. The samples were

randomised before being presented to the participants and the participants were not
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told how many colours were present within each sample. The results of the participant

observations were collated and scored as outlined in section 2.5.

3.2.3.1 Calculating the mean, max and median values of a blend sample

There are a variety of ways with which to relate the results of the participant
observations with the composition of a blend. Methods include calculating the mean
(or average) of the colour differences of each pair of primaries within a blend, the
maximum (max) colour difference of a pair of primaries within a blend and finally the
median (middle value) of the colour differences of each pair of primaries within a
blend. These three possible methods are explored in this experiment to assess which
of the methods provides the best correlation between blend composition and sample
appearance. The best correlation is determined by plotting, for each sample, the
calculated value (either mean, max or median) against the participant scores in a
scatter graph, applying a linear trend line and calculating the corresponding coefficient

of determination (R?).

When comparing the mean, max and median values for each blend with the total
participant scores, the visual assessment results were analysed separately for 2-, 3-

and 4-colour blends.
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The following figures show the results for each group of blends. The first columns show
the results including all eight colours; the second column shows the results without
white or black. For the 2-colour blends, when recipes that contained white and black
were removed (the right-hand column figures), the correlations between the different
values and participant scores were better. This was trend was not as consistent when
looking at 3- and 4-colour blends, however this is most likely due to the increased

colour differences between the primaries within the blends.
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Figure 3.4 Comparison of the mean, max and median values of the colour differences
within 2-colour blends, both with (left-hand graphs) and without (right-hand graphs)

the white and black primaries included
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Figure 3.5 Comparison of the mean, max and median values of the colour differences
for 3-colour blends, both with (left-hand graphs) and without (right-hand graphs) the

white and black primaries included
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Figure 3.6 Comparison of the mean, max and median values of the colour differences
for 4-colour blends, both with (left-hand graphs) and without (right-hand graphs) the

white and black primaries included
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Table 3.4 summarises the results (in terms of R?) of the comparison of mean, max and
median methods using 2-, 3- and 4-colour blends, both with and without including the
white and black primaries. The highest R? value was seen for 2-colour blends which
excluded the white and black primaries. In this instance, the R? value for the mean,
max and median values were all 0.7148 (this is because when there are only two
primaries there is only one colour difference and therefore the mean, max and median
are all the same). The mean of the colour differences between primaries within a blend
also performed well for the 3- and 4-colour blends, indicating that this gave the best
correlation between blends and participant observations. The mean performed best
for 3- and 4-colour blends using all primaries and also for 3-colour blends excluding the
white and black primaries. The mean colour difference of a blend was therefore
considered to be the best of the three methods and was used subsequently and

compared to the participants’ visual assessments.

Table 3.4 Comparison of mean, max and median values for the blended samples

All primaries Mean (R?) Max Median
2 colour blends 0.5573 0.5573 0.5573
3 colour blends 0.5363 0.3679 0.3572
4 colour blends 0.4187 0.2076 0.2236
Blends with no white or black | Mean (R?) Max Median
2 colour blends 0.7148 0.7148 0.7148
3 colour blends 0.5632 0.512 0.3477
4 colour blends 0.362 0.3783 0.1268

3.2.3.2 Mean colour difference and visual assessment results

The results of the visual assessment were ordered from the highest scoring blends
(total score of 10 and therefore solid in appearance to 100 % of observers) to the
lowest scoring blends (total score of 0 and therefore seen as a solid colour by 0 % of
participants). All 8 primaries were observed to be a solid colour by all participants. The

full list of results can be seen in Appendix VII.
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3.2.3.3 Blends which appeared solid to 100 % of participants

There were 9 blended samples which were scored as a solid colour by 100 % of
participants. Table 3.5 shows the results for these blends including the blend names,
mean colour differences (CIELAB AE) and a representation of the primaries within each
blend using the corresponding sRGB values. The full list of blend names and recipes

can be found in Appendix VI.

Table 3.5 Blends that were judged as a solid colour by 100 % of observers

Sample name Mean CIELAB AE Total score sRGB colours
Blend 1.48 27 100 %
Blend 1.65 80 100 %
Blend 1.76 11 100 %
Blend 1.87 25 100 %
Blend 1.96 11 100 %
Blend 1.121 79 100 %
Blend 1.128 36 100 %
Blend 1.210 50 100 %
Blend 1.240 36 100 %

As Table 3.5 shows, the mean colour difference of the most successful blended
samples ranged from 11 CIELAB AE to 80 CIELAB AE and utilised only five of the eight
primaries. Interestingly, the blends which included the white primary generally had
higher colour differences (36 CIELAB AE to 80 CIELAB AE) than those without the white
(11 CIELAB AE to 36 CIELAB AE).
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This is examined more closely in Table 3.6 where the blends including or excluding the
white primary are separated. The first section of the table looks at the results of the
successful blends which were made using a white primary and the second half of the

table looks at the successful blends made without a white primary. Each section is also

separated into 2-, 3- and 4-colour blends.

Table 3.6 Comparison of blends scored as a solid colour by 100 % of participants

Blend including Lowest mean Highest mean Participant No. of
white CIELAB AE CIELAB AE score blends
2-colour blends 36 80 100 % 3
3-colour blends n/a n/a n/a 0
4-colour blends 50 50 100 % 1
Blends without Lowest mean Highest mean Participant No. of
white CIELAB AE CIELAB AE score blends
2-colour blends 11 36 100 % 4
3-colour blends 25 25 100 % 1
4-colour blends n/a n/a n/a 0

The results show that for blends which include the white primary, the mean colour
difference of the primaries within a blend can be much higher (between 36 CIELAB AE
and 80 CIELAB AE) than the blends which are made from primaries excluding white. For
blends without the white primary, the mean colour difference is much lower (between
11 CIELAB AE and 36 CIELAB AE). It may be that having a white, or undyed, primary
within a blend could have a transparent effect, increasing the mean colour difference
for a blend without compromising its appearance as a solid colour. For 2-colour blends
which are made from a white and one other colour, the colour difference between the
two primaries can be as high as 80 CIELAB AE. However, this is reduced, in this case to
50 CIELAB AE, when the blend is composed of four colours. There were no 3-colour
blends that included white that were perceived as a solid colour by all participants.
However there were two 3-colour blends (Blend 1.38 and Blend 1.108) which

contained the white primary and were perceived as a solid colour by 9 out of 10
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participants. Blend 1.38 had a mean colour difference of 58 CIELAB AE and Blend 1.108
had a mean colour difference of 57 CIELAB AE.

For blends excluding the white primary, the highest mean colour difference for 2- and
3-colour blends that still allowed them to appear as a solid colour to 100 % of
participants was 36 CIELAB AE. There were no 4-colour blends (which excluded the
white primary) that appeared as a solid colour to 100 % of observers. Only one 4-
colour blend, as shown in Table 3.6, was perceived as a solid colour by 100 % of
observers and this blend had a mean colour difference of 50 CIELAB AE. When looking
closely at the results, all 4-colour blends prepared had mean colour difference of
between 45 CIELAB AE and 85 CIELAB AE. In other words, the reason that the 4-colour
blends did not appear solid was because they had large mean colour differences (and
this is a consequence of the limited and arbitrary set of eight primaries that were used

in the study).

The results of this analysis highlight that the mean colour difference of the 4-colour
blended samples produced in this first experiment were not sufficiently wide ranging.
The results suggest that much lower colour differences for 4-colour blends need to be
studied in order to fully understand the relationship between a 4-colour blend and its

appearance as a solid colour (or not).

3.2.3.4 Samples which appeared not solid to 100 % of participants

Table 3.7 shows the 38 blended samples which were all perceived as not a solid colour
by 100 % of participants. Out of these 38 blends, all apart from one blended sample
contained the black primary. The samples were all 3- or 4-colour blends; there were no
2-colour blends. The mean colour difference of the primaries within each blend ranged

from 57 CIELAB AE to 92 CIELAB AE.



When looking at the general appearance of the primaries within each blend (see Table

3.7), it is perhaps intuitive that the primaries would not blend successfully enough to

appear as one colour as the colours within each blend are very chromatically different.

Table 3.7 Blends that were evaluated as not a solid colour by all observers

Sample name Mean CIELAB AE Total score sRGB colour
Blend 1.3 74 0% ‘

Blend 1.7 78 0% ‘

Blend 1.8 76 0% ‘

Blend 1.10 71 0% ‘

Blend 1.12 79 0% ‘

Blend 1.25 71 0% ‘

Blend 1.42 77 0% o 5
Blend 1.50 78 0% ‘

Blend 1.53 85 0% ‘ .
Blend 1.80 90 0% ' .
Blend 1.82 85 0% ‘

Blend 1.85 85 0% ‘ .
Blend 1.93 76 0% ‘ .
Blend 1.104 90 0% ‘ .
Blend 1.105 79 0% ‘

Blend 1.124 79 0% ‘

Blend 1.134 88 0% .
Blend 1.149 70 0% ‘

Blend 1.151 79 0% ‘ .
Blend 1.155 84 0% ‘ .
Blend 1.157 82 0% ' .
Blend 1.160 79 0% ‘ .
Blend 1.174 85 0% o O
Blend 1.191 83 0% o O
Blend 1.213 67 0% ‘
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Blend 1.214 92 0% ' .
Blend 1.222 74 0% C X
Blend 1.235 77 0% ()

Blend 1.237 75 0% '

Blend 1.238 79 0% '

Blend 1.254 77 0% '

Blend 1.270 57 0% '

Blend 1.271 85 0% '

Blend 1.276 78 0% '

Blend 1.284 84 0% ' ‘
Blend 1.293 82 0% ' .
Blend 1.296 77 0% ‘

Blend 1.301 85 0% ' .

As shown previously in Table 3.2 the colour differences between the black primary and
7 other primaries was high, ranging from 48 CIELAB AE to 109 CIELAB AE. This will have
had a significant impact on the mean colour differences of these blends. The 2-colour
blended samples which contained the black primary and one other primary had mean
colour differences ranging from 11 CIELAB AE to 119 CIELAB AE. Whilst none of these
blends were scored being a solid colour to 0 % of participants, four 2-colour blends
were scored as 5 % and these blended samples had mean colour differences ranging

between 68 CIELAB AE and 109 CIELAB AE.

3.2.4 Conclusions

The results of this first experiment strongly indicate that there is a relationship
between the mean of the colour differences between a given number of primaries
within a blend and whether that blend appears to be solid or not. However, the large
colour differences that were between each of the primaries in this experiment did not
allow a thorough-enough exploration of the threshold mean colour difference of a 4-

colour blend in order for it to appear as a solid colour. Despite this, the experiment did
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give some indications as to the colour difference required and these are discussed

below.

For 2-colour blends containing white, even when the mean colour difference between
the two colours was as high as 80 CIELAB AE the blend appeared as a solid colour to all
participants. For 2-colour blends composed of two dyed primaries, the colour
difference between two primaries needed to be much lower (36 CIELAB AE or lower) in

order for the some of the blends to appear solid to 100 % of observers.

For 3-colour blends which contained the white primary, blends appeared as a solid
colour to 90 % of participants even when the mean colour difference of the primaries
was 58 CIELAB AE. For 3-colour blends made from 3 dyed primaries (excluding white)
the mean colour difference of the primaries within a blend needed to be as low as 25

CIELAB AE.

For 4-colour blends containing the white primary, the mean colour difference of the
primaries for a solid blend could be up to 50 CIELAB AE. It is not clear what the mean
colour difference of a 4-colour blend, composed of four dyed primaries, should be
from these results if the blend is to successfully appear as a solid colour to 100 % of
participants. This is because that particular result did not occur in this experiment. This
is most likely due to the absence of any 4-colour blends made from four dyed

primaries with a mean colour difference of less than 50 CIELAB AE.

In order to progress this research further, a more concentrated range of primaries,
with a smaller range of colour differences between them, was required. Experiment 2
used a new set of dyed primaries with the mean colour differences of each blend equal

to 25 CIELAB AE or less.

3.3 Experiment 2: Creating fibre blends with mean colour differences of between
15 and 25 CIELAB AE
Following the results of the first experiment it became clear that new primaries (with

smaller colour differences between them) were required. In addition, only 4-colour
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blends were considered because in most practical applications of this work the recipes
are likely to contain four primaries. For this experiment, 25 blends were prepared
using five groups of four primaries. As already identified, blends prepared using four
primaries will have a total of six colour differences within the blend. The average of
these colour differences gives the mean colour difference of the blend. The primaries
for the blends were selected so that the mean colour difference of the blends would

be 25 CIELAB AE or less.

3.3.1 The primaries

Sixteen new spun-dyed viscose colours were made available by Lenzing AG. The
specification of the fibre is described in section 2.1.2. Each primary (30 g) was carded
using the method described in section 2.2. This created uniform webs of fibre where
the fibres were aligned in one direction. The primary webs were then folded until
opaque and measured using a spectrophotometer, as described in section 2.3, to
record the spectral reflectance factors of each primary. The spectral reflectance factors
of the primaries were converted to L*a*b* and sRGB values using the methods
described in section 2.3.2. The position of the primaries in CIELAB colour space,

coloured using their corresponding sRGB values, can be seen in Figure 3.7.
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Figure 3.7 Experiment 2 primaries in CIELAB colour space
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Table 3.8 details the L*a*b* and sRGB values for each primary. A coloured key is also

included to show the general appearance of the primaries using the sRGB values.

Table 3.8 L*a*b* and sRGB values and appearance of second experiment primaries

General
Primary
L* a* b* R G B appearance
number
(sRGB)

21 36.91 0.57 -4.31 85 87 93
2.2 39.22 6.59 25.61 115 88 51
2.3 61.31 3.98 31.38 173 145 92
2.4 68.13 -31.15 | -17.54 41 183 196
2.5 74.36 -9.05 -24.13 134 190 225
2.6 20.23 3.28 -18.18 37 49 75
2.7 71.76 -23.54 | -26.05 69 191 221
2.8 74.52 -11.25 | -19.71 136 192 218
2.9 39.07 191 -36.39 40 95 151
2.10 40.86 -3.73 -22.30 62 100 132
211 32.00 -1.00 | -15.00 58 78 99
2.12 36.21 28.28 -31.63 105 71 136
2.13 19.42 3.06 -14.58 39 47 68
2.14 50.63 7.11 45.89 152 115 38
2.15 35.37 4.40 -47.05 0 86 158
2.16 50.82 11.15 44.65 158 113 41

Using the L*a*b* values of each primary the colour difference between each pair of
primaries was calc