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This paper presents a method for designing a type one servomechanism for a discrete-time linear systemwith input delay subject to
a previewable desired output and a nonmeasurable constant disturbance.The tracking problemof a delay system is transformed into
a regulation problem of a delay-free system via constructing an augmented error system and a variable substitution. A controller is
obtainedwith delay compensation and preview compensation based on preview control theory and the predictormethod.When the
state vector is not directlymeasurable, a full-dimensional observer is offered.The effectiveness of the designmethod is demonstrated
by numerical simulations.

1. Introduction

Preview control is one of the approaches available for pro-
ducing a good performance by utilizing future information
of the reference signal in the controller. Lots of work on the
preview control problem have already been done. One of the
early contributions was delineated in [1], in which a state-
feedback controller with preview compensation is derived.
Furthermore, Katayama et al. used the linear quadratic
integral method to study preview control in both discrete-
time and continuous-time systems [2, 3]. Servomechanisms
with integral of tracking error and preview compensation
are derived. Liao et al. presented a design method of an
optimal preview servomechanism for discrete-time systems
in multirate sampled systems [4]. Liao et al. studied the
preview control problem of discrete-time descriptor sys-
tems and produced a preview controller for the systems
[5]. Recently, infinite-horizon 𝐻

∞
state-feedback preview

tracking control of retarded state-multiplicative stochastic
systems was investigated [6]. In many practical designs,
preview control draws considerable favor from engineering
researchers, for example, robots walking [7–9], motorcycle
performance [10, 11], and protection against earthquakes [12].

During the past several decades, there have been very
rich research achievements in the area of control systems

with time delay. An early control method for systems with
time delay is the Smith predictor [13], which overcomes the
dead time effectively by adding a predictor and a compensator
in the controller. Furukawa and Shimemura improved the
Smith predictor and offered a new control strategy called
“predictive control” [14]. The control module consists of a
predictor, an observer, and a controller. Thus, the range of
the controller’s application is expanded. Manitius and Olbrot
studied the problems of finite spectrum assignment (FSA) of
delay systems [15]. The resulting controllers involve integral
compensation of the input delay and stabilize the closed-loop
systems successfully. The FSA method has been a popular
tool in dealing with delay systems. Stable conditions and
numerical integral rules were given in [16–18] because the
introduction of integral compensation in the controllermight
lead to closed-loop systems becoming unstable in numerical
calculation [19]. Léonard and Abba studied FSA integral con-
trol robustness with respect to prediction time uncertainty
for an unstable system [20]. The optimal regulation problem
was studied for systems with input delay and designed
optimal feedback controllers by using the duality principle
and the maximum principle [21–23]. The design process was
simplified by introducing a quadratic performance indexwith
corresponding input delay in [24]. A nested predictor was
established to effectively compensate for the time delay for

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 3023915, 10 pages
http://dx.doi.org/10.1155/2016/3023915



2 Mathematical Problems in Engineering

linear systems with both state and input delays [25, 26].
Robust control and function control strategies were given,
respectively, for discrete-time delay systems in [27, 28]. More
recently, the optimal control problemwas studied for systems
with both state and input delays based on the method of
letting the preview length go to zero [29]. Optimal tracking
controllers for the delay systems are obtained.

For discrete-time linear systems, if the input vector has a
time delay, then it is necessary to reconsider the design of the
preview controller. The input delay system was transformed
into a delay-free system by using the discrete lifting technique
in [30, 31].The researchers then obtained a preview controller
based on preview control theory. However, it was pointed out
that the discrete lifting technique may lead to “dimension
disaster,” especially for systems with large delays [23, 32].
Therefore, this paper further studies the preview control
problem of linear systems with input delay. A controller
with delay compensation and preview compensation will be
developed by using the method of predictor feedback.

This paper is organized as follows. An introduction is
given in Section 1. Section 2 is a formulation of the problem
and gives some basic assumptions. Section 3 uses the preview
control method to construct an augmented error system.
Based on Section 3, Section 4 derives a preview controller for
the original system. Section 5 constructs a full-dimensional
observer. And a brief conclusion is drawn in Section 6.

2. Problem Formulation and Basic
Assumptions

Consider a discrete-time system with input delay as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘 − 𝑓) + 𝐸𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑘) ∈ 𝑅𝑟 is the input
vector, 𝑦(𝑘) ∈ 𝑅𝑝 is the output vector, and 𝑤(𝑘) ∈ 𝑅𝑞 is the
nonmeasurable constant disturbance. The positive integer 𝑓
represents a constant input delay of the system. 𝐴 ∈ 𝑅

𝑛×𝑛,
𝐵 ∈ 𝑅

𝑛×𝑟, 𝐶 ∈ 𝑅𝑝×𝑛, and 𝐸 ∈ 𝑅𝑛×𝑞 are constant matrices. The
vectors 𝑢(−𝑓), 𝑢(−𝑓 + 1), . . . , 𝑢(0) are initial inputs, and the
vector 𝑥(0) = 𝑥

0
is the initial state. All the initial vectors are

known.
Let 𝑟(𝑘) ∈ 𝑅𝑝 be the reference signal.
First, we give the following two basic assumptions:

(A1) Let the pairs (𝐴, 𝐵) be stabilizable, let (𝐶, 𝐴) be
detectable, and let the following conditions hold:

rank [
𝐴 𝐵

𝐶 0
] = 𝑛 + 𝑝 (full row rank) . (2)

(A2) Let the reference signal 𝑟(𝑘) be previewable, and its
preview length is 𝑁

𝑟
. Namely, at the present time

𝑘, the present value 𝑟(𝑘) as well as the 𝑁
𝑟
future

values 𝑟(𝑘 + 1), . . . , 𝑟(𝑘 + 𝑁
𝑟
) is available. The future

values of the reference signal beyond time 𝑘 + 𝑁
𝑟
are

approximated by 𝑟(𝑘+𝑁
𝑟
); namely, 𝑟(𝑘+𝑙) = 𝑟(𝑘+𝑁

𝑟
)

(𝑙 ≥ 𝑁
𝑟
+ 1). The reference signal 𝑟(𝑘) satisfies

lim
𝑘→∞

𝑟 (𝑘) = 𝑟, (3)

where 𝑟 is a constant vector. This implies that 𝑟(𝑘)
reaches a steady state.

Furthermore, let 𝑒(𝑘) be the error signal defined as the
subtraction of 𝑦(𝑘) and 𝑟(𝑘); that is,

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑟 (𝑘) . (4)

The purpose of this paper is to design a controller with
preview compensation such that the output 𝑦(𝑘) of the
closed-loop system of (1) tracks the reference signal 𝑟(𝑘)
without any static error in the presence of disturbance 𝑤(𝑘);
namely,

lim
𝑘→∞

𝑒 (𝑘) = 0. (5)

The optimal controlmethod is applied to achieve the goal.
The performance index of (1) can be defined as

𝐽 =

∞

∑

𝑘=1

[𝑒
𝑇

(𝑘) 𝑄
𝑒
𝑒 (𝑘) + Δ𝑢

𝑇

(𝑘 − 𝑓)𝐻Δ𝑢 (𝑘 − 𝑓)] , (6)

where 𝑄
𝑒
∈ 𝑅
𝑝×𝑝 and 𝐻 ∈ 𝑅

𝑟×𝑟 are positive definite weight
matrices. Δ is the first-order backward difference operator;
that is,

Δ𝑢 (𝑘) = 𝑢 (𝑘) − 𝑢 (𝑘 − 1) . (7)

Notice that, as used in [2], the performance index (6) uses
the input vector’s differenceΔ𝑢(𝑘) rather than 𝑢(𝑘). Introduc-
ing the input vector’s difference into the performance index
canmake the closed-loop system contain an integrator, which
may help the system to eliminate static error [2, 33].

3. Derivation of the Augmented Error System

The basic method of designing a preview controller for (1) is
that an augmented error system is constructed firstly, then a
controller is derived for the augmented error system by using
optimal preview theory and predictor feedback, and finally
the controller for the original system is obtained.

Using Δ on both sides of the first equation of (1), the
following will stand:

Δ𝑥 (𝑘 + 1) = 𝐴Δ𝑥 (𝑘) + 𝐵Δ𝑢 (𝑘 − 𝑓) , (8)

where it is obvious that the disturbance vector’s difference
Δ𝑤(𝑘) does not appear because the disturbance is a constant.

Using Δ on 𝑒(𝑘 + 1) and noticing 𝑒(𝑘 + 1) = 𝐶𝑥(𝑘 + 1) −
𝑟(𝑘 + 1), the following will be obtained:

Δ𝑒 (𝑘 + 1) = 𝐶Δ𝑥 (𝑘 + 1) − Δ𝑟 (𝑘 + 1) . (9)

Since Δ𝑒(𝑘 + 1) = 𝑒(𝑘 + 1) − 𝑒(𝑘), it can be seen from (8) and
(9) that the error signal satisfies

𝑒 (𝑘 + 1) = 𝑒 (𝑘) + 𝐶𝐴Δ𝑥 (𝑘) + 𝐶𝐵Δ𝑢 (𝑘 − 𝑓)

− Δ𝑟 (𝑘 + 1) .

(10)



Mathematical Problems in Engineering 3

Combining (8) and (10) yields

𝑋(𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝐵Δ𝑢 (𝑘 − 𝑓) + 𝐷Δ𝑟 (𝑘 + 1) ,

𝑒 (𝑘) = 𝐶𝑋 (𝑘) ,

(11)

where

𝑋 (𝑘) = [

𝑒 (𝑘)

Δ𝑥 (𝑘)
] ,

𝐴 = [

𝐼
𝑝
𝐶𝐴

0 𝐴
] ,

𝐵 = [

𝐶𝐵

𝐵
] ,

𝐶 = [𝐼
𝑝
0] ,

𝐷 = [

−𝐼
𝑝

0
] .

(12)

Equation (11) is called the augmented error system of (1).
It is appropriate to take 𝑒(𝑘) = 𝐶𝑋(𝑘) as the output of (11),
because the output of (1) is 𝑦(𝑘) and the reference signal 𝑟(𝑘)
is previewable.

Correspondingly, in terms of the augmented state vector
𝑋(𝑘), the performance index (6) can be expressed as

𝐽 =

∞

∑

𝑘=1

[𝑋
𝑇

(𝑘) 𝑄𝑋 (𝑘) + Δ𝑢
𝑇

(𝑘 − 𝑓)𝐻Δ𝑢 (𝑘 − 𝑓)] , (13)

where

𝑄 = [

𝑄
𝑒
0

0 0
] . (14)

If a controller Δ𝑢(𝑘) can be derived such that the
performance index (13) minimum is subject to the dynamic
constraint (11), then it is easy to get lim

𝑘→∞
𝑋(𝑘) = 0,

and immediately the conclusion lim
𝑘→∞

𝑒(𝑘) = 0 holds.
Furthermore, the input 𝑢(𝑘) can be solved from Δ𝑢(𝑘). And,
thus, the purpose is achieved. This is a standard optimal
preview control problem.

4. Main Results and Their Proofs

Let us introduce a new input vector

V (𝑘) = Δ𝑢 (𝑘 − 𝑓) . (15)

Substituting (15) into (11) and (13), respectively, the following
stands:

𝑋 (𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝐵V (𝑘) + 𝐷Δ𝑟 (𝑘 + 1) ,

𝑒 (𝑘) = 𝐶𝑋 (𝑘) ,

(16)

𝐽 =

∞

∑

𝑘=1

[𝑋
𝑇

(𝑘) 𝑄𝑋 (𝑘) + V𝑇 (𝑘)𝐻V (𝑘)] . (17)

Obviously, (16) is a delay-free system and the perfor-
mance criterion (17) has a normal form. Furthermore, it is
known from (A2) that the reference signal 𝑟(𝑘) is previewable
in the sense that the future value Δ𝑟(𝑙) (𝑘 ≤ 𝑙 ≤ 𝑘 +

𝑁
𝑟
) is available at each instant of time 𝑘. This is a preview

control problem in which the system is described as (16), the
quadratic performance index is described as (17), and Δ𝑟(𝑘)
is previewable.The following theoremwill stand based on the
results of [2].

Theorem 1. If (A1) and (A2) hold and 𝑄
𝑒
is positive definite,

then the preview controller of (16) that minimizes criterion (17)
is given by

V (𝑘) = −𝐺
𝑋
𝑋 (𝑘) −

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) Δ𝑟 (𝑘 + 𝑙) , (18)

where

𝐺
𝑋
= [𝐻 + 𝐵

𝑇

𝑃𝐵]

−1

𝐵
𝑇

𝑃𝐴,

𝐺
𝑑
(1) = − [𝐻 + 𝐵

𝑇

𝑃𝐵]

−1

𝐵
𝑇

𝑃[

𝐼
𝑝

0
] ,

𝐺
𝑑
(𝑙) = [𝐻 + 𝐵

𝑇

𝑃𝐵]

−1

𝐵
𝑇

𝑋̃ (𝑙 − 1) , 𝑙 = 2, . . . , 𝑁
𝑟
,

(19)

where 𝑃 ∈ 𝑅(𝑝+𝑛)×(𝑝+𝑛) is the positive semidefinite solution of
the algebraic Riccati equation:

𝑃 = 𝐴
𝑇

𝑃𝐴 − 𝐴
𝑇

𝑃𝐵 [𝐻 + 𝐵
𝑇

𝑃𝐵]

−1

𝐵
𝑇

𝑃𝐴 + 𝑄. (20)

Furthermore, the matrices 𝑋̃(𝑙) ∈ 𝑅(𝑛+𝑝)×𝑝 are given by

𝑋̃ (1) = −𝐴
𝑇

𝑐
𝑃[

𝐼
𝑝

0
] ;

𝑋̃ (𝑙) = 𝐴
𝑇

𝑐
𝑋̃ (𝑙 − 1) , 𝑙 = 2, . . . , 𝑁

𝑟
,

(21)

where 𝐴
𝑐
is the closed-loop matrix defined by

𝐴
𝑐
= 𝐴 − 𝐵 [𝐻 + 𝐵

𝑇

𝑃𝐵]

−1

𝐵
𝑇

𝑃𝐴. (22)

Remark 2. The future reference signal value Δ𝑟(𝑘 + 𝑙) (𝑙 =
1, . . . , 𝑁

𝑟
) appearing in ∑𝑁𝑟

𝑙=1
𝐺
𝑑
(𝑙)Δ𝑟(𝑘 + 𝑙) acts as a preview

compensation in the controller.

The preview controller for the augmented error system
(11) can be derived fromTheorem 1 by the following method.

Combining (15) and (18), the following equation will be
obtained:

Δ𝑢 (𝑘 − 𝑓) = −𝐺
𝑋
𝑋 (𝑘) −

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) Δ𝑟 (𝑘 + 𝑙) . (23)

Replacing 𝑘 − 𝑓 with 𝑘 leads to

Δ𝑢 (𝑘) = −𝐺
𝑋
𝑋(𝑘 + 𝑓) −

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) Δ𝑟 (𝑘 + 𝑓 + 𝑙) . (24)
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In (24), the current control input Δ𝑢(𝑘) uses the future
state vector𝑋(𝑘+𝑓). It is necessary to predict the future state
vector to ensure that the controller is executable. Using the
stepwise recurrence technique, we solve the state equation of
(11):

𝑋 (𝑘 + 1) = 𝐴𝑋 (𝑘) + 𝐵Δ𝑢 (𝑘 − 𝑓) + 𝐷Δ𝑟 (𝑘 + 1) , (25)

and obtain the future value of the state vector

𝑋(𝑘 + 𝑓) = 𝐴
𝑓

𝑋 (𝑘) +

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵Δ𝑢 (𝑘 + 𝑙 − 𝑓)

+

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷Δ𝑟 (𝑘 + 1 + 𝑙) .

(26)

The future value𝑋(𝑘+𝑓) is predicted by (26). According
to Assumption (A2), for the preview length 𝑁

𝑟
≥ 𝑓, the

vectors Δ𝑟(𝑘 + 1 + 𝑙) are available at 𝑙 = 0, . . . , 𝑓 − 1; for
the preview length 𝑁

𝑟
< 𝑓, the vectors Δ𝑟(𝑘 + 1 + 𝑙) are

available at 𝑙 = 0, . . . , 𝑁
𝑟
− 1; and Δ𝑟(𝑘 + 1 + 𝑙) = 0 at

𝑙 = 𝑁
𝑟
, . . . , 𝑓−1. Obviously, the values in (26) are all available.

Equation (26) indicates that the future state vector𝑋(𝑘+𝑓) is
determined by the current state vector𝑋(𝑘), the past control
input Δ𝑢(𝑘+ 𝑙−𝑓) (𝑙 = 0, . . . , 𝑓−1), and the future reference
signal’s differenceΔ𝑟(𝑘+1+𝑙) (𝑙 = 0, . . . , 𝑓−1).The predictor
method we used above is a generalization of the predictor
feedback method [14].

Substituting (26) into (24), the feedback control law of the
augmented error system (11) can be obtained as follows:

Δ𝑢 (𝑘) = −𝐺
𝑋
𝐴
𝑓

𝑋 (𝑘)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵Δ𝑢 (𝑘 + 𝑙 − 𝑓)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷Δ𝑟 (𝑘 + 1 + 𝑙)

−

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) Δ𝑟 (𝑘 + 𝑓 + 𝑙) .

(27)

Considering the last term of ∑𝑁𝑟
𝑙=1
𝐺
𝑑
(𝑙)Δ𝑟(𝑘 + 𝑓 + 𝑙) in (27),

if 𝑘 + 𝑓 + 𝑙 > 𝑘 + 𝑁
𝑟
, let Δ𝑟(𝑘 + 𝑓 + 𝑙) = 0. It is obvious that

(27) is an executable controller of (11) since all of the parts in
(27) are known.

Let us derive a preview controller of (1). First, let

𝐺
𝑋
𝐴
𝑓

= [𝐺
𝑒
𝐺
𝑥
] , (28)

where 𝐺
𝑒
∈ 𝑅
𝑟×𝑝 and 𝐺

𝑥
∈ 𝑅
𝑟×𝑛; then, (27) can be rewritten

as

Δ𝑢 (𝑘) = −𝐺
𝑒
𝑒 (𝑘) − 𝐺

𝑥
Δ𝑥 (𝑘)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵Δ𝑢 (𝑘 + 𝑙 − 𝑓)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷Δ𝑟 (𝑘 + 1 + 𝑙)

−

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) Δ𝑟 (𝑘 + 𝑓 + 𝑙) .

(29)

It is assumed that the initial values of system (1) and the
reference signal are zeros; namely, for 𝑘 = −𝑓, −𝑓 + 1, . . . , 0,
the vectors 𝑥(𝑘) = 0, 𝑦(𝑘) = 𝑟(𝑘) = 0, and 𝑢(𝑘) = 0. Then, the
following result from (29) will be obtained:

𝑢 (𝑘) = −𝐺
𝑒

𝑘

∑

𝑗=1

𝑒 (𝑗) − 𝐺
𝑥
𝑥 (𝑘)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵𝑢 (𝑘 + 𝑙 − 𝑓)

− 𝐺
𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷𝑟 (𝑘 + 1 + 𝑙)

−

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) 𝑟 (𝑘 + 𝑓 + 𝑙) .

(30)

Thus, a preview control theory for system (1) will be
obtained as follows.

Theorem 3. Let (A1) and (A2) hold, let𝑄
𝑒
be positive definite,

and let the performance index be defined as (8). Assume that
𝑥(𝑘) = 0, 𝑦(𝑘) = 𝑟(𝑘) = 0, and 𝑢(𝑘) = 0 for 𝑘 = −𝑓, −𝑓 +
1, . . . , 0. Then, the preview controller of (1) is given by

𝑢 (𝑘) = −𝐺
𝑒

𝑘

∑

𝑗=1

𝑒 (𝑗) − 𝐺
𝑥
𝑥 (𝑘) − 𝑓

1
(𝑘) − 𝑓

2
(𝑘) , (31)

where

𝑓
1
(𝑘) = 𝐺

𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵𝑢 (𝑘 + 𝑙 − 𝑓) ,

𝑓
2
(𝑘) = 𝐺

𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷𝑟 (𝑘 + 1 + 𝑙)

+

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) 𝑟 (𝑘 + 𝑓 + 𝑙) ,

(32)

𝐺
𝑒
and 𝐺

𝑥
are determined by (28), and 𝐺

𝑋
and 𝐺

𝑑
are given

by Theorem 1.
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Remark 4. At each time 𝑘, for the general term 𝑟(𝑘 + 𝑓 + 𝑙)

in ∑𝑁𝑟
𝑙=1
𝐺
𝑑
(𝑙)𝑟(𝑘 + 𝑓 + 𝑙), if 𝑓 + 𝑙 ≤ 𝑁

𝑟
, then the real value of

𝑟(𝑘+𝑓+ 𝑙) is taken; if 𝑓+ 𝑙 > 𝑁
𝑟
, then 𝑟(𝑘+𝑓+ 𝑙) = 𝑟(𝑘+𝑁

𝑟
)

is taken. This is determined by Assumption (A2).

Remark 5. It is easy to see that the preview controller (31) is
composed of four terms. The first one −𝐺

𝑒
∑
𝑘

𝑗=1
𝑒(𝑗) is the

accumulation of the tracking error, which ensures that the
output of the closed-loop system tracks the reference signal
without static error. The second one −𝐺

𝑥
𝑥(𝑘) is the state

feedback. The third one −𝑓
1
(𝑘) is the compensation of the

input delay. The last one −𝑓
2
(𝑘) is the preview compensation

of the reference signal.

According to the character of the reference signal con-
sidered here, the abovementioned design method for the
preview controller is applicable to some irregular reference
signals which cannot be modeled by the dynamic system’s
outputs.

Now, let us apply present theory to an air slider linear
motor.

Example 6 (see [34]). The dynamic equation of the motor is
described as follows:

[

𝑥̇
𝑝
(𝑡)

𝑥̇V (𝑡)
] = [

[

0 1

0 −
𝐷

𝑀

]

]

[

𝑥
𝑝
(𝑡)

𝑥V (𝑡)
] + [

[

0

𝐾
𝐹

𝑀

]

]

𝑢 (𝑡 − 𝜏)

+ [

[

0

−
1

𝑀

]

]

𝑑 (𝑡) ,

(33)

where𝑥
𝑝
(𝑡) is place,𝑥V(𝑡) is velocity,𝑢(𝑡) is current input,𝑑(𝑡)

is constant disturbance signal, 𝐷 is friction factor, 𝑀 is the
mass of movable part, 𝐾

𝐹
is propulsive force coefficient, and

𝜏 is input delay. The motor’s parameters are 𝐾
𝐹
= 2.3 (N/A),

𝑀 = 1.82 (kg), and 𝐷 = 3.48 (kg/s), and 𝜏 could be taken as
0.10 (s), 0.20 (s), and 0.30 (s), respectively.

Let

𝑥 (𝑡) = [

𝑥
𝑝
(𝑡)

𝑥V (𝑡)
] ; (34)

then, (33) can be rewritten as

𝑥̇ (𝑡) = 𝐴
0
𝑥 (𝑡) + 𝐵

0
𝑢 (𝑡 − 𝜏) + 𝐸

0
𝑤 (𝑡) . (35)

The place of 𝑥
𝑝
(𝑡) is the output vector, and it can be described

as

𝑦 (𝑡) = 𝐶𝑥 (𝑡) , (36)

where

𝐴
0
= [

[

0 1

0 −
𝐷

𝑀

]

]

,

𝐵
0
= [

[

0

𝐾
𝐹

𝑀

]

]

,

𝐸
0
= [

[

0

−
1

𝑀

]

]

,

𝐶 = [1 0] .

(37)

Taking sampling period 𝑇 = 0.01 (s), a discretization
system is obtained:

𝑥 [(𝑘 + 1) 𝑇] = 𝐴𝑥 (𝑘𝑇) + 𝐵𝑢 [(𝑘 − 𝑓)𝑇] + 𝐸𝑤 (𝑘𝑇) ,

𝑦 (𝑘𝑇) = 𝐶𝑥 (𝑘𝑇) ,

(38)

where

𝐴 = [

1.0 0.009865

0.0 0.913179
] ,

𝐵 = [

0.0

0.017804
] ,

𝐸 = [

0.0

−0.549451
] .

(39)

The delay 𝑓 is determined by 𝜏. According to the value of 𝜏,
we have 𝑓 = 10, 𝑓 = 20, and 𝑓 = 30, respectively.

The reference signal 𝑟(𝑡) is given as the following two
types.

(1) Step Signal. Let the reference signal be

𝑟 (𝑡) =

{

{

{

0, 𝑡 < 0.2,

1, 𝑡 ≥ 0.2

(40)

which can be discretized into

𝑟 (𝑘𝑇) =

{

{

{

0, 𝑘 < 20,

1, 𝑘 ≥ 20.

(41)

(2) Fading Signal. Let the reference signal be

𝑟 (𝑡) =
2

5𝑡 + 0.90
sin (5𝜋 (𝑡 + 0.90)) (42)

which can be discretized into

𝑟 (𝑘) =
2

(5𝑘 + 90) 𝑇
sin (5𝜋 (𝑘 + 90) 𝑇) . (43)
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Figure 1: The output responses to the step signal with different
delays.
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Figure 2: The output responses to the fading signal with different
delays.

Through verification, (𝐴, 𝐵) is stabilizable, (𝐶, 𝐴) is
detectable, and the matrix [

𝐴 𝐵

𝐶 0
] is of full row rank.

Namely, Assumption (A1) is satisfied. We take the weight
matrices 𝑄

𝑒
= 1.0 and𝐻 = 0.005. By Theorem 3, there exists

the preview controller described as (31) for (38).
Let the preview length of the reference signal be 𝑙

𝑟
=

0.30 (s); that is,𝑁
𝑟
= 30. The output responses of the closed-

loop system are given as in Figures 1 and 2.
The output responses of the closed-loop system tracking

to the step signal are shown in Figure 1 and those to the fading
signal are shown in Figure 2. From Figures 1 and 2, it can
be seen that the closed-loop’s output can track the reference
signal asymptotically with the controller (31). Comparing
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Figure 3: The output responses to the step signal with different
preview lengths.
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Figure 4: The output responses to the fading signal with different
preview lengths.

with the output responses with different delays, it can be seen
that under the same preview length the tracking performance
will get worse when the delay is large.

When the preview length is equal to the input delay, the
future value of the reference signal is only used to compensate
the delay. In order to get a better performance, let us take a
larger preview length. When the input delay 𝜏 = 0.30 (s), the
preview lengths 𝑙

𝑟
= 0.30 (s), 𝑙

𝑟
= 0.32 (s), and 𝑙

𝑟
= 0.35 (s)

are taken; that is𝑁
𝑟
= 30,𝑁

𝑟
= 32, and𝑁

𝑟
= 35, respectively.

The output responses of the closed-loop system are given
as in Figures 3 and 4.

It can be seen from Figures 3 and 4 that the track-
ing performance is very good when the preview length is
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𝑁
𝑟
= 35, which indicates using the controller with preview

compensation can reduce the tracking error and improve
the tracking speed efficiently. On the other hand, a proper
preview length can give a better response.

5. Observer-Based Controller

If the state vector 𝑥(𝑘) cannot be measured directly, then it is
necessary to design an observer to obtain the estimate of the
state vector.

Since𝑤(𝑘) is constant but cannot be measured, we take it
as a portion of the desired estimate vector. System (1) can be
rewritten as

[

𝑥 (𝑘 + 1)

𝑤 (𝑘 + 1)
] = [

𝐴 𝐸

0 𝐼
𝑞

][

𝑥 (𝑘)

𝑤 (𝑘)
] + [

𝐵

0
] 𝑢 (𝑘 − 𝑓) ,

𝑦 (𝑘) = [𝐶 0] [

𝑥 (𝑘)

𝑤 (𝑘)
] .

(44)

Let 𝑥̂(𝑘) and 𝑤̂(𝑘) be the estimates of 𝑥(𝑘) and 𝑤(𝑘),
respectively. Let 𝑌𝑘−1 be the output values up to the 𝑘 − 1
step; namely, 𝑌𝑘−1 = {𝑦(0), 𝑦(1), . . . , 𝑦(𝑘 − 1)}; let 𝑈̂𝑘−𝑓

be the input values up to the 𝑘 − 𝑓 step; namely, 𝑈̂𝑘−𝑓 =
{𝑢̂(−𝑓), 𝑢̂(−𝑓 + 1), . . . , 𝑢̂(−𝑓 + 𝑘)}. The input vector 𝑢̂(𝑖) (𝑖 =
−𝑓, −𝑓 + 1, . . . , −𝑓 + 𝑘) here is obtained by replacing 𝑥(𝑘)
by 𝑥̂(𝑘) in (31). Then, based on 𝑌𝑘−1 and 𝑈̂𝑘−𝑓, the full-order
observer for the system of (44) is given by

[

𝑥̂ (𝑘 + 1)

𝑤̂ (𝑘 + 1)
] = [

𝐴 𝐸

0 𝐼
𝑞

][

𝑥̂ (𝑘)

𝑤̂ (𝑘)
] + [

𝐵

0
] 𝑢̂ (𝑘 − 𝑓)

+ [

𝐿
𝑥

𝐿
𝑤

] (𝑦 (𝑘) − 𝑦̂ (𝑘)) ,

𝑦̂ (𝑘) = [𝐶 0] [

𝑥̂ (𝑘)

𝑤̂ (𝑘)
] ,

(45)

where 𝑦̂(𝑘) is the output of the observer and 𝐿
𝑥
∈ 𝑅
𝑛×𝑝 and

𝐿
𝑤
∈ 𝑅
𝑞×𝑝 are constant gain matrices, which are determined

so that the matrix

𝐴
𝐿
= [

𝐴 − 𝐿
𝑥
𝐶 𝐸

−𝐿
𝑤
𝐶 𝐼
𝑞

] (46)

is stable.

Lemma 7. Consider delay system (1). If (𝐶, 𝐴) is detectable
and the matrix [ 𝐶 0

𝐼−𝐴 𝐸
] is of full column rank, then there exist

suitable gains 𝐿
𝑥
∈ 𝑅
𝑛×𝑝 and 𝐿

𝑤
∈ 𝑅
𝑞×𝑝 such that (45) serves

as a full-order observer of (44).

Proof. According to the conclusions in [2], the pair
([𝐶 0] , [

𝐴 𝐸

0 𝐼
𝑞

]) is detectable if and only if (𝐶, 𝐴) is
detectable and the matrix [ 𝐶 0

𝐼−𝐴 𝐸
] is of full column rank.

As a consequence, there exist suitable gains 𝐿
𝑥
∈ 𝑅
𝑛×𝑝 and

𝐿
𝑤
∈ 𝑅
𝑞×𝑝 such that 𝐴

𝐿
is stable under the conditions in

Lemma 7. That is to say, the characteristic values of 𝐴
𝐿
are

less than 1. Substituting the second formula of (45) into the
first one and collecting the like terms, we get

[

𝑥̂ (𝑘 + 1)

𝑤̂ (𝑘 + 1)
] = 𝐴

𝐿
[

𝑥̂ (𝑘)

𝑤̂ (𝑘)
] + [

𝐵

0
] 𝑢̂ (𝑘 − 𝑓)

+ [

𝐿
𝑥

𝐿
𝑤

]𝑦 (𝑘) .

(47)

Let us define the subtraction of the actual state of (44) and the
estimated state of (45)

[

𝑥̃ (𝑘)

𝑤̃ (𝑘)
] = [

𝑥 (𝑘)

𝑤 (𝑘)
] − [

𝑥̂ (𝑘)

𝑤̂ (𝑘)
] (48)

as estimation error.Notice that the input vector of (44) should
be 𝑢̂(𝑘−𝑓).Then, it is easy to get the estimation error dynamic
equation as follows:

[

𝑥̃ (𝑘 + 1)

𝑤̃ (𝑘 + 1)
] = 𝐴

𝐿
[

𝑥̃ (𝑘)

𝑤̃ (𝑘)
] . (49)

Since the matrix 𝐴
𝐿
is stable, it follows that [ 𝑥̃(𝑘)

𝑤̃(𝑘)
]

asymptotically converges to zero; namely,

lim
𝑡→∞

[

𝑥̃ (𝑘)

𝑤̃ (𝑘)
] = 0. (50)

Thus, we have

lim
𝑘→∞

([

𝑥 (𝑘)

𝑤 (𝑘)
] − [

𝑥̂ (𝑘)

𝑤̂ (𝑘)
]) = 0 (51)

which indicates that (45) can serve as a full-order observer of
(44). This completes the proof.

From Lemma 7, it is known that 𝑥̂(𝑘) and 𝑤̂(𝑘) can serve
as the reconstructed states of 𝑥(𝑘) and 𝑤(𝑘), respectively.
Now, a preview control theorem with observer for system (1)
is given as follows.

Theorem 8. If (A1) and (A2) hold, 𝑄
𝑒
is positive definite, the

matrix [ 𝐶 0
𝐼−𝐴 𝐸

] is of full column rank, and, for 𝑘 = −𝑓, −𝑓 +
1, . . . , 0, the vectors 𝑥(𝑘) = 0, 𝑦(𝑘) = 𝑟(𝑘) = 0, and 𝑢(𝑘) = 0,
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Figure 5:Theoutput responseswith state observer to the step signal.

then the closed-loop system of (1) with state observer is given
by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢̂ (𝑘 − 𝑓) + 𝐸𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑟 (𝑘) ,

[

𝑥̂ (𝑘 + 1)

𝑤̂ (𝑘 + 1)
] = 𝐴

𝐿
[

𝑥̂ (𝑘)

𝑤̂ (𝑘)
] + [

𝐵

0
] 𝑢̂ (𝑘 − 𝑓)

+ [

𝐿
𝑥

𝐿
𝑤

]𝑦 (𝑘) ,

𝑢̂ (𝑘) = −𝐺
𝑒

𝑘

∑

𝑗=1

𝑒 (𝑗) − 𝐺
𝑥
[𝐼
𝑛
0] [

𝑥̂ (𝑘)

𝑤̂ (𝑘)
]

− 𝑓
1
(𝑘) − 𝑓

2
(𝑘) .

(52)

The gain matrices 𝐿
𝑥
∈ 𝑅
𝑛×𝑝 and 𝐿

𝑤
∈ 𝑅
𝑞×𝑝 are constant,

which are determined such that the matrix 𝐴
𝐿
is stable. 𝑓

1
(𝑘)

and 𝑓
2
(𝑘) have the following forms:

𝑓
1
(𝑘) = 𝐺

𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐵𝑢̂ (𝑘 + 𝑙 − 𝑓) ,

𝑓
2
(𝑘) = 𝐺

𝑋

𝑓−1

∑

𝑙=0

𝐴
(𝑓−1−𝑙)

𝐷𝑟 (𝑘 + 1 + 𝑙)

+

𝑁
𝑟

∑

𝑙=1

𝐺
𝑑
(𝑙) 𝑟 (𝑘 + 𝑓 + 𝑙) ,

(53)
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Figure 6: The output responses with state observer to the fading
signal.

where 𝐺
𝑒
and 𝐺

𝑥
are determined by (28) and 𝐺

𝑋
and 𝐺

𝑑
are

given by Theorem 1.

Example 9. Consider the control system in Example 6. If the
state vector cannot be measured directly, then the technique
described in Theorem 8 is used to design a controller for the
plant.Thematrix [ 𝐶 0

𝐼−𝐴 𝐸
] is of full column rank and therefore

there exists a full-order observer with the form of (45). Let
𝐿
𝑥
= [−288.14 144.77]

𝑇 and 𝐿
𝑤
= −22.13 serve as the

observer’s gain matrices. The output responses are described
in Figures 5 and 6.

Compared with the responses in Figures 1 and 2, the
output responses in Figures 5 and 6 have a larger error in the
initial phase; the tracking performances later are almost the
same. The simulation results indicate the design methods for
the preview controller with full-order observer are effective.

6. Conclusion

In this paper, a class of preview controller problems of
discrete-time linear systems with input delay has been solved.
A preview controller with delay compensation and preview
compensation is derived. The difficulties of input delay
are successfully overcome by predictor feedback. A design
method of the full state observer is givenwhen the state vector
of the system cannot be measured directly. Numerical results
show that the present methods are effective.

Further studies are needed on selecting a proper preview
length according to the characteristics of the system, which is
a complex problem but a significant one.
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