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ABSTRACT 1 

 2 

Background: The relationship between body composition, energy expenditure and ad libitum 3 

energy intake has rarely been examined under conditions that allow any interplay between 4 

these variables to be disclosed.  5 

Objective: The present study examined the relationships between body composition, energy 6 

expenditure and energy intake under controlled laboratory conditions in which the energy 7 

density and macronutrient content of the diet varied freely as a function of food choice. 8 

Methods: Fifty nine subjects (30 men: mean body mass index = 26.7 ± 4.0 kg/m
2
; 29 9 

women: mean body mass index = 25.4 ± 3.5 kg/m
2
) completed a 14 day stay in a residential 10 

feeding behaviour suite. During days 1 and 2, subjects consumed a fixed diet designed to 11 

maintain energy balance. On days 3-14, food intake was covertly measured in subjects who 12 

had ad libitum access to a wide variety of foods typical of their normal diets. Resting 13 

metabolic rate (respiratory exchange), total daily energy expenditure (doubly labelled water) 14 

and body composition (total body water estimated from deuterium dilution) were measured 15 

on days 3-14.  16 

Results: Hierarchical multiple regression indicated that after controlling for age and sex, both 17 

fat-free mass (p < 0.001) and resting metabolic rate (p < 0.001) predicted daily energy intake. 18 

However, a mediation model using path analysis indicated that the effect of fat-free mass 19 

(and fat mass) on energy intake was fully mediated by resting metabolic rate (p < 0.001). 20 

Conclusions: These data indicate that resting metabolic rate is a strong determinant of energy 21 

intake under controlled laboratory conditions where food choice is allowed to freely vary and 22 

subjects are close to energy balance. Therefore, the conventional adipocentric model of 23 

appetite control should be revised to reflect the influence of resting metabolic rate.  24 
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INTRODUCTION 25 

Over the last 60 years there has been great interest in physiological signals that regulate 26 

appetite and energy balance (1). Numerous models predict that certain components of energy 27 

and nutrient balance act as negative feedback signals in appetite and body weight control (1). 28 

Specific aspects of nutrient balance such as carbohydrate oxidation (2) or stores (3), fat stores 29 

(4) or body weight per se (5) have been proposed as key peripheral signals that exert negative 30 

feedback on energy intake (EI). The discovery of leptin (6) appeared to provide a molecular 31 

basis for Kennedy’s ‘lipostasis’ concept (4, 7), and stimulated intense focus on adipose 32 

derived signals in energy balance regulation. However, while the importance of leptin should 33 

not be underplayed, secular trends in obesity prevalence (8, 9) indicate that adipose tissue 34 

accumulation does not exert strong negative feedback to restore energy balance, at least from 35 

the point of excess EI. Indeed, despite this focus on leptin and other adipose derived feedback 36 

signals (5, 10, 11), there is remarkably little evidence in humans on the extent to which 37 

changes in adipose tissue exert feedback on EI at the whole body level.  38 

 39 

Evidence in humans suggests that the metabolism or storage of specific macronutrients fails 40 

to exert powerful negative feedback on EI (1, 12, 13). However, models that include all 41 

macronutrients explain greater variance in EI. Therefore it is important to examine how 42 

changes in nutrient stores and metabolism collectively influence EI. Despite the critical role 43 

of protein-energy relationships for survival time during under nutrition (14-16), few have 44 

analysed energy expenditure (or its determinants) as major sources of feedback in appetite 45 

control (17, 18). Therefore, while intuitive to speculate that EI is driven by energy needs, it 46 

has not been convincingly demonstrated that energy expenditure influences the control of ad 47 

libitum energy intake. 48 
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Recently it has been shown that fat-free mass (FFM), but not fat mass (FM), predicts ad 49 

libitum meal size and daily EI in overweight and obese individuals (19). These findings are in 50 

agreement with earlier observations (20, 21) and have been independently replicated (22). 51 

Therefore, it has been proposed that FFM, as the main determinant of resting metabolic rate- 52 

(RMR), drives EI at a level proportional to basal energy requirements (23). In support of this, 53 

RMR was found to predict hunger and objectively measured EI in overweight and obese 54 

subjects (24). However, these findings need to be confirmed in the context of total energy 55 

balance, particularly as FFM and RMR co-vary strongly and little is known about their 56 

individual contributions to EI. Therefore, the present study aimed to examine the 57 

relationships between body composition, energy expenditure and ad libitum EI under 58 

controlled laboratory conditions in which food choice was allowed to vary freely.  59 

SUBJECTS AND METHODS 60 

Subjects 61 

Fifty nine volunteers (30 men and 29 women) were recruited from the Aberdeen area (Table 62 

1). Subjects were stratified into three age categories (20-35 years, 36-50 years and 51-65 63 

years) and two BMI categories (BMI 20-25 kg/m
2
 and BMI >25 kg/m

2
). Subjects were non-64 

smokers, free from disease and not taking medication known to effect metabolism or appetite. 65 

Menopausal and physical activity status were not included as part of this exclusion criteria.  66 

Prior to the start of the study written informed consent was obtained and ethical approval was 67 

granted by the Joint Ethical Committee of the Grampian Health Board and the University of 68 

Aberdeen. Subjects were informed that the purpose of the study was to examine the 69 

relationships between diet and lifestyle.  70 

Table 1 here 71 

Study Design 72 
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Daily energy and macronutrient intake was objectively measured during a 14-day residential 73 

stay in the Human Nutrition Unit (HNU) at the Rowett Institute of Nutrition and Health. 74 

During days 1-2, subjects consumed a fixed diet designed to maintain energy balance, with EI 75 

estimated at 1.5 and 1.6 times RMR for women and men, respectively. The proportion of 76 

energy contributed by fat, protein and carbohydrate to daily EI was 35%, 15% and 55%, 77 

respectively. During days 3-14, food intake was covertly measured in subjects who had ad 78 

libitum access to a wide variety of foods typical of their normal diets. Resting metabolic rate 79 

(respiratory exchange) and body composition (total body water estimated from deuterium 80 

dilution) was measured on day 3, while total daily energy expenditure (doubly labelled water) 81 

was measured over days 3-14. During their residence subjects were asked to maintain their 82 

normal behaviour as much as possible. Subjects were able to move freely around the HNU 83 

and associated grounds (under supervision of a member of staff), and had access to an 84 

exercise bike and treadmill during their stay. Subjects were also free to leave the HNU during 85 

the study, but were accompanied and observed by a member of staff at all times. The current 86 

analysis is based on a previous study examining the accuracy of food intake reporting (25), 87 

which had no a priori hypotheses about the relationship between physiological and 88 

behavioural measurements. 89 

 90 

Procedures 91 

Resting Metabolic Rate 92 

Resting metabolic rate was measured by indirect calorimetry over 30–40 minutes using a 93 

ventilated hood system (Deltatrac II, MBM-200, Datex Instrumentarium Corporation, 94 

Finland). Subjects laid on a bed in a thermo-neutral room and were instructed to lie still but 95 

not to fall asleep. Resting energy expenditure was calculated from minute-by-minute data 96 

using the mean of 15 minutes of stable measurements, with the first and last 5 minutes 97 
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excluded. The equations of Elia and Livesey (26) were used to derive RMR. Details of 98 

calibration burns and repeatability testing have been described previously (27). 99 

Body Composition 100 

Stature was measured to the nearest 0.5 cm on day 3 of the study using a portable stadiometer. 101 

Body mass was measured to the nearest 0.01 kg on days 3-14 after voiding using calibrated 102 

digital scales (DIGI DS-410; CMS Weighting Equipment). Total body water was measured 103 

by deuterium dilution (see below) as described by Pullicino, Coward, Stubbs & Elia (28) and 104 

Coward (29). Fat-free mass was then subsequently estimated by assuming a hydration factor 105 

of 0.73 and that total body fat is hydrophobic. Fat mass was estimated as body mass minus 106 

FFM. 107 

Total Daily Energy Expenditure 108 

Total daily energy expenditure was measured on days 3-14 using doubly labelled water. On 109 

the morning of day 3, subjects were woken (07.00 hours), emptied their bladders and 110 

weighed. At 09.00 hours, subjects provided a baseline urine sample, which was used 111 

alongside two background samples collected during days 1 and 2 to provide information on 112 

the pre-dose isotopic enrichment of the subjects’ body water pools. Immediately after the 113 

09.00 hour sample subjects consumed orally a pre-prepared dose of 
2
H2

18
O, and100 ml of tap 114 

water to prevent the isotope being lost from the buccal cavity. The dose levels were 0·15 g/kg 115 

body mass of a 99% 
2
H2O–H2O mixture and 1·5 g/kg body mass of a 10·0% H2

18
O–H2O 116 

mixture for subjects one to 42 and 44. Dose levels of oxygen 18 were reduced to 0·9 g/kg 117 

body mass for the remaining nineteen subjects because of the world shortage in doubly 118 

labelled water at the time of the experiment. Following this dose, subjects collected urine 119 

samples at 4, 5 and 6 hours post administration to enable the plateau to be individually 120 

measured.  121 
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On days 4-14, subjects provided urine samples at 11.00 hours under supervision and these 122 

were frozen (-20°C) until analysis. To calculate energy expenditure, urine samples were used 123 

for a multi-point stable-isotope analysis using gas isotope ratio MS. The log transformed data 124 

of enrichment by time were extrapolated back to time 0, giving a theoretical enrichment at 125 

time 0, which provided information on the individual’s size of the body water pool assuming 126 

the dilution principle. Isotopic enrichment of the post-dose urine samples was analysed 127 

relative to the original background amounts. Pool sizes and flux rates were calculated as 128 

described by Coward (29). Energy expenditure was calculated from CO2 production using the 129 

Weir equation (30): 130 

 EE = 4·63CO2 + 16·49(CO2/ respiratory quotient), 131 

The food quotient was substituted for respiratory quotient as it was assumed to be equivalent 132 

(31). The food quotient was calculated from macronutrient intakes taken from the laboratory 133 

weighed intakes after adjusting for changes in fat stores resulting from energy imbalance over 134 

days 3-14, and assuming an energy value of 29 MJ/kg and that all changes in body stores 135 

were in the form of fat (31). This energy cost was for the purposes of estimating the 136 

respiratory quotient in calculation of energy expenditure from doubly labelled water only and 137 

not for estimating the cost of weight gain or loss.   138 

Energy and Macronutrient Intake 139 

On days 3-14, food intake was covertly and objectively measured in subjects who had ad 140 

libitum access to a wide variety of foods from their normal diet. Food intake was measured 141 

overtly by subjects for two, 3-day periods during days 3-14 (with the order randomized). 142 

Based on 7-day diet histories and shopping list records collected prior to the start of the study, 143 

an inventory of foods and beverages typically consumed by each subject in their normal diet 144 

was purchased. If subjects reported an item usually consumed in their habitual diet was 145 

missing, this was subsequently purchased and made available.  146 
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 147 

During days 3-14, each subject had access to their own individual kitchen, which consisted of 148 

a fridge, freezer and a cupboard containing their pre-selected foods and beverages. Subjects 149 

only had access to their own kitchen. Subjects were able to freely select what and when they 150 

wanted to eat (based on their own foods and beverage items), and meals were cooked by 151 

subjects in their own kitchens. Subjects were instructed to leave all food waste, peelings and 152 

packaging in special bins in their kitchens. Dishes/cooking utensils used were placed in a 153 

specific section of their kitchen and subjects were instructed not to wash these.  154 

 155 

Each morning a researcher entered the kitchens before the subjects woke and re-weighed all 156 

the food items and any left-overs, peelings and packaging to the nearest 0.1 g (Soehnle model 157 

820; Soehnle-Waagen GmbH or Ravencourt model 333; Ravencourt). These weighed intakes 158 

were used to calculated 24 hour EI, with energy and nutrient content calculated using dietary 159 

analysis software (Diet 5, Robert Gorden University, Aberdeen).  160 

 161 

Statistical Analysis  162 

Data are reported as mean ± SD unless otherwise stated. Statistical analyses were performed 163 

using IBM SPSS for windows (Chicago, Illinois, Version 21). A paired t-test was used to 164 

examine for differences between mean daily EI and mean daily energy expenditure. 165 

Furthermore, a Bland and Altman plot was used to compare the deviations between the 166 

methods used for the assessment of energy balance. To examine the relationships between 167 

body composition, energy expenditure and daily EI, hierarchical multiple regression was 168 

used. Three separate models were tested for the prediction of EI. In model 1, RMR was 169 

examined after adjusting for energy density. In model two, RMR was tested as an 170 

independent predictor of EI after FFM and FM were included. In model three, RMR was 171 
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examined with total daily energy expenditure. Given their known effect on EI, sex and age 172 

were included as covariates in all models.  173 

 174 

A path analysis was conducted to further examine the associations between FFM, FM, RMR 175 

and EI. A model was tested examining whether the associations between body composition 176 

(FFM and FM – independent, exogenous variables) and EI (dependent, endogenous variable) 177 

would be mediated by RMR (endogenous mediator variable). The significance of the 178 

regression coefficients and fit statistics were calculated using the Maximum Likelihood 179 

estimation method. The following recommended goodness of fit indices were analysed to test 180 

for the adequacy of the mediation model: Chi-square (χ
2
), Tucker Lewis Index (TLI), 181 

Comparative Fit Index (CFI), and Root-Mean Square Error of Approximation (RMSEA), 182 

with 95% confidence interval (32, 33).   183 

 184 

The assumptions of uni and multivariate normality of errors were assessed by skewness and 185 

kurtosis coefficients. There was no severe violation of the normal distribution (33), with 186 

skewness values ranging from 0.35 (FM) to 1.07 (EI), and with kurtosis values ranging from 187 

0.67 (FFM) to 2.49 (EI). The significance of the direct, indirect and total effects was assessed 188 

using Chi-Square tests (33). The Bootstrap resampling method was further used to test the 189 

significance of the mediational paths, using 2000 Bootstrap samples and 95% bias-corrected 190 

confidence intervals (CI) around the standardized estimates of the effects. Effects were 191 

regarded as significantly different from zero (p < 0.05) if zero was not included in the interval 192 

between the lower and the upper bound of the 95% bias-corrected CI (33). The software 193 

AMOS (Analysis of Momentary Structure, software version 18, SPSS Inc. Chicago, IL) was 194 

used to estimate the path analysis. 195 

 196 
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RESULTS 197 

Validation of the Laboratory-Weighed Intakes 198 

Table 2 here 199 

 200 

Mean daily EI, energy expenditure, energy balance and the rate of body mass change can be 201 

seen in Table 2. In order to examine the validity of the laboratory weighed intakes, daily EI 202 

was compared to daily energy expenditure. This validation is based on the principle that:  203 

 EI = total energy expenditure ± ∆ body stores. 204 

No significant differences existed between mean daily EI and the mean daily energy 205 

expenditure (t = 0.731, df = 58, p = 0.468). Furthermore, the relationship between EI and 206 

energy expenditure was expressed using a Bland-Altman plot in order to illustrate the spread 207 

of the differences (EI - energy expenditure) against the mean of the two methods. As can 208 

been seen in Figure 1, there was a good spread in the data and there were no systematic 209 

trends. Further details of the relationships between EI - energy expenditure and energy 210 

balance estimated from change in body mass are given in a previous publication and online 211 

supplementary materials (25). These data indicate that the procedures used in the present 212 

study provided a valid measure of daily ad libitum EI. 213 

 214 

Predictors of Daily Energy Intake 215 

In order to examine the relationships between body composition, energy expenditure and EI, 216 

three separate hierarchical multiple regression models were used (Table 3). In Model 1, 217 

energy density was added in the first step (F(1, 57) = 20.045, p < 0.001), and accounted for 218 

26.0% of the variance in daily EI. The addition of RMR (step 2) significantly improved the 219 

model (F(2, 56) = 45.140, p < 0.001; R
2
 = 0.617), accounting for a further 35.7% of unique 220 

variance in EI. During this final step, both energy density (ß = 0.390; p < 0.001) and RMR (ß 221 

= 0.610; p < 0.001) independently predicted EI (Figure 2). 222 



12 
 

 223 

In Model 2, step 1 accounted for 29.9% of the variance in daily EI (F(2, 56) = 11.947, p < 224 

0.001), with FFM (ß = 0.514; p < 0.001), but not FM (ß = 0.096; p = 0.410), independently 225 

predicting EI. Again, the addition of RMR further improved the model (Step 2; F(3, 55) = 226 

16.769, p < 0.001; R
2
 = 0.478), accounting for an additional 17.9% of unique variance in EI. 227 

During this final step, only RMR independently predicted EI (ß = 0.675; p < 0.001). 228 

Table 3 here 229 

In Model 3, RMR was added in the first step and accounted for 47.4% of the variance in EI 230 

(F(1, 57) = 51.358, p < 0.001). In step 2 (F(2, 56) = 28.661, p < 0.001; R
2
 = 0.506), the addition 231 

of total daily energy expenditure failed to further improve the model (∆R
2
 = 0.032; p = 232 

0.063), with RMR the only independent predictor of EI  (ß = 0.536; p < 0.001). For each 233 

model, age, BMI and sex were also entered in a final Step. However, the addition of these 234 

variables failed to influence the reported outcomes, and therefore, these variables were not 235 

included for analysis in the reported models. 236 

Figure 2 here 237 

Path Analysis 238 

The hypothesised model was tested through a fully saturated model that included 14 239 

parameters. Results indicated that the paths regarding the direct effects of FM on EI (bFM = -240 

0.018; SEb = 0.034; Z = -0.529; p = 0.597; β = -0.055), and FFM on EI (bFFM = 0.013; SEb = 241 

0.041; Z = 0.331; p = 0.740; β = 0.05), exceeded the critical value for two-tailed statistical 242 

significance at the 0.05 level (Figure 3). These non-significant paths were removed and the 243 

model was recalculated.  244 

 245 

Results showed that the adjusted model presented an excellent model fit, with a non-246 

significant chi-square [χ
2

(2) = 0.415 p = 0.813], and as supported by the other selected fit 247 
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indices: TLI = 1.053; CFI = 1.000; RMSEA = 0.000 (p = 0.835). All path coefficients were 248 

statistically significant (p < 0.05), and the model accounted for 47% of EI variance. Fat mass 249 

and FFM were significantly correlated and accounted for 61% of RMR, with a direct effect of 250 

0.224 (bFM = 32.942; SEb = 12.526; Z = 2.630; p = 0.009) and 0.691 (bFFM = 88.123; SEb = 251 

10.849; Z = 8.123; p < 0.001), respectively. Only RMR presented a significant direct effect (β 252 

= 0.688) on EI (bRMR = 0.002; SEb = 0.000; Z = 7.229; p < 0.001). 253 

 254 

Regarding the mediational tests, results indicated that FM presented an indirect effect of 255 

0.154 on EI mediated by increased RMR. Also, FFM predicted increased EI with an indirect 256 

effect of 0.476, again through increased RMR. According to the Bootstrap resampling 257 

method, the estimates of the indirect effects of FM (CI = 0.045 to 0.278, p = 0.006) and FFM 258 

(CI = 0.312 to 0.610, p = 0.001) on EI, framed by a CI of 0.95%, were significantly different 259 

from zero. 260 

 261 

Figure 3 here 262 

DISCUSSION 263 

This study examined the relationship between body composition, energy expenditure and EI 264 

in subjects at or close to energy balance under ad libitum feeding conditions. Resting 265 

metabolic rate was found to be a strong independent predictor of EI when the energy density 266 

and macronutrient composition of the diet varied freely as a function of food choice. These 267 

data suggest a fundamental (and robust) associations between RMR and the energy acquired 268 

through food, and add to previous research indicating that the energy needs of the body may 269 

well play an important role in day-to-day food intake (19-22, 24).  270 

 271 
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Some theories of appetite control embody the view that episodic and tonic inhibitory signals 272 

arising from adipose tissue and gastrointestinal peptides modulate a constant excitatory drive 273 

to eat (34). However, the source of this excitatory drive has been poorly defined, with current 274 

models of appetite control better able to account for the inhibition rather than initiation of 275 

feeding (35). Furthermore, such models do not incorporate energy expenditure as putative 276 

signals of food intake. Importantly, the present findings indicate that the energy expenditure 277 

arising from RMR stimulates food intake, and helps account for this excitatory drive. This 278 

tonic signal of energy demand would help ‘tune’ EI to energy expenditure and ensure the 279 

execution of key biological processes (23).  280 

 281 

While lean tissue acts as an orexigenic feedback signal following semi-starvation (36, 37), 282 

there has been less attention on the role that skeletal or lean mass plays in day-to-day food 283 

intake. Previous studies have reported that FFM, the main determinant of RMR (38), predicts 284 

food intake in obese individuals (19, 20, 22). In agreement with these studies, FFM (but not 285 

FM) predicted daily EI in the present study. However, once RMR was included in the 286 

regression model, FFM failed to independently predict EI. As such, the effect of FFM on EI 287 

appeared to be mediated by, rather than independent of, RMR. These effects were confirmed 288 

by a mediation model using path analysis in which the effect of FM and FFM on EI was fully 289 

mediated by RMR. While path analysis is a robust statistical procedure that allows tests for 290 

hypothesized causal relationships to be conducted, caution must be taken when using 291 

relatively small samples (33). Nonetheless, the model complexity and data used followed 292 

required assumptions to conduct the analysis, and the estimation technique applied has been 293 

found to provide valid and stable results in simulation studies with samples with similar 294 

dimensions (32). 295 

 296 
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Resting metabolic rate has previously been shown to a determinant of ad libitum meal size 297 

and daily EI (24), although food choice was restricted in this study. In contrast, subjects in 298 

the present study had ad libitum access to a wide range of foods typical of their normal diet, 299 

and dietary energy density and macronutrient composition varied as a function of food choice. 300 

This is of importance as energy density is a potent determinant of EI (39). Indeed, a positive 301 

association was seen between energy density and EI-energy expenditure (r = 0.491; p < 302 

0.001). When energy density and RMR were included in the same regression module (Table 303 

3), both variables were found to independently predict mean daily EI. However, under the 304 

conditions of the current study RMR was found to be a stronger predictor of EI than energy 305 

density. 306 

 307 

In the present data and that of others (19, 20), no direct relationship was found between FM 308 

and EI. These findings are not consistent with the traditional adipocentric view of appetite 309 

control. However, they should not be taken to imply that FM does not play a role in appetite 310 

regulation. Indeed, a negative association between the FM index and daily EI has been 311 

reported (22), which is consistent with an inhibitory role for FM in appetite control. 312 

Furthermore, in the path analysis used in the present study indicated that FM indirectly 313 

influenced EI via its effect on RMR. Therefore, future research should look to further define 314 

how FM, FFM and RMR operate in concert under varying conditions of energy balance. 315 

Furthermore, the present findings reflect appetite regulation under conditions close to energy 316 

balance in moderately active individuals (1.69 x RMR). They do not therefore provide insight 317 

into the mechanisms controlling EI during dynamic periods of energy change. Such 318 

distinctions are important as rate and extent of energy deficit and weight loss can alter 319 

physical structure and function (e.g. body composition), which in turn may influence EI and 320 
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expenditure. Therefore, it is possible that other regulatory signals (such as leptin) may feature 321 

more predominantly in appetite control during sustained energy deficit (40).  322 

 323 

It has previously been suggested that the energy demand of tissues (such as the liver) might 324 

be expressed through tonic hunger signals (35). While not measured in the present study, 325 

FFM (21) and RMR (24) have been found to be associated with daily hunger. Interestingly, 326 

no such associations were found in obese individuals (41), with the authors suggesting that 327 

elevated levels of FM could blunted the orexigenic drive arising from FFM. However, 328 

appetite and body weight regulation appears asymmetrical (42), with the inhibitory action of 329 

FM weaker at higher levels of adiposity (potentially due to leptin and insulin resistance). 330 

Indeed, this attenuation in tonic inhibition with increased FM could contribute to 331 

overconsumption in obese individuals, as the drive to eat arising from energy needs, elevated 332 

due to a higher RMR, would remain unabated (23). However, the cross-sectional nature of 333 

the present study means that inferences cannot be made regarding how systematic changes in 334 

body composition or RMR influence EI. 335 

 336 

A strength of the present study was the level of precision used to measure EI, energy 337 

expenditure and body composition. There was good agreement between the independently 338 

assessed components of energy balance, indicating that the procedures used provided a valid 339 

measure of EI. As can be seen in figure 1, variability existed in mean daily energy balance. 340 

However, while there is a paucity of data on day-to-day variability in energy balance, studies 341 

covertly manipulating food or energy expenditure show that such imbalances are not 342 

uncommon (39, 43-51).  Interestingly, after accounting for RMR, total daily energy 343 

expenditure did not explain any further variance in EI. However, total daily energy 344 

expenditure was measured during a 14-day residential stay, and therefore is unlikely to reflect 345 
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‘free-living’ expenditures (although the mean daily PAL in the present study was 1.69 x 346 

RMR). Under conditions where energy expenditure is more variable, the influence of total 347 

daily energy expenditure on EI may be stronger (but this effect would not likely be mediated 348 

by FFM as individuals exhibit a range of total energy expenditures for a given level of body 349 

composition or RMR). 350 

 351 

CONCLUSIONS 352 

These data indicate that RMR is a strong determinant of EI under conditions where food 353 

choice varied freely, and suggests that the energy expenditure associated with RMR may act 354 

as a feedback signal that drives habitual food intake at a level proportional to basal energy 355 

requirements. In contrast, no such relationship existed between FM and EI, suggesting that 356 

the conventional adipocentric model of appetite control should be revised to reflect the 357 

infuence of RMR on EI. The influence of RMR, in addition to signals stemming from adipose 358 

tissue and gastrointestinal peptides, provides a stronger account of the role of whole-body 359 

peripheral signals in human appetite control. 360 
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Figure Legends 

 

Figure 1: Bland and Altman plot illustrating the difference between mean daily energy intake 

(laboratory weighed food intakes) and energy expenditure (doubly labelled water) against the 

mean of the two measures (n = 59).  

 

Figure 2: Scatter plots and standardised beta coefficients to illustrate the relationship 

between energy density on daily energy intake and resting metabolic rate on daily energy 

intake. Hierarchical multiple regression indicated that together, energy density and resting 

metabolic rate accounted for 61.7% of the variance in energy intake (F(2, 56) = 45.140, p < 

0.001). 

 

Figure 3: Path diagram for the mediation model with the standardized parameter coefficients 

for the direct effects of fat mass and fat-free mass on resting metabolic rate and resting 

metabolic rate on energy intake, the indirect effect of fat mass and fat-free mass on energy 

intake mediated by resting metabolic rate, and the squared multiple correlations (R
2
) for 

resting metabolic rate and energy intake. The mediation model indicates that the effect of fat 

mass and fat-free mass on energy intake was fully mediated by resting metabolic rate.  

 


