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Abstract 
The Extra Load Index (ELI) has been proposed as a suitable method of assessing the relative economy of 
load carriage systems.  The purpose of this study was to determine, based on empirical evidence, that the 
ELI can accommodate variations in both body composition and added load.  Thirty women walked carrying 
loads of up to 70% BM at self selected walking speeds whilst expired air was collected.  In addition each of 
the women had body composition assessed via DXA.  Results show that the ELI is independent of body 
composition variables, the magnitude of additional loads and the speed of progression.  Consequently it is 
suggested that it represents an appropriate method of comparing load carriage systems in both scientific and 
commercial arena. 
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50 word statement 
 
We demonstrate that the Extra Load Index (ELI) is independent of body composition, added load and speed 
and is therefore an appropriate method to generalise comparisons of load carriage systems.  It has the 
advantage of being easily understood by manufacturers and consumers whilst retaining appropriate scientific 
precision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.0 Introduction 
 
A number of approaches have previously been taken when investigating the economy of load carriage.  All 

of the methods are based on measurement of expired air and calculation of oxygen consumption.  Some 

studies have reported what might be considered first order data, reporting oxygen consumption either in: 

absolute terms (e.g. Chung et al, 2005); relative to body mass (e.g. Lloyd and Cooke 2000a); relative to total 

mass (e.g. Balogun et al, 1986) or as energy expenditure calculated from oxygen consumption using 

standard conversion factors (e.g. Marsh et al, 2006).  Others have reported second order data such as the 

energy cost of walking, Cw (e.g. Abe et al, 2004) or the net metabolic power Pnet (e.g. Bastien  et al, 2005).  

In these latter cases the energy expenditure is reported net of resting energy expenditure, i.e. the energy 

expenditure required to walk minus the energy expenditure required to stand.  Methods that consider net 

energy consumption have been found useful in studying the energetic cost of unloaded walking as they 

provide a better measure of the energy cost attributable to the action of walking (Browning  et al, 2006). 

We argue that this logic can be extended to load carriage and that the cost of transporting a load is best 

represented by factoring out the energy cost of unloaded walking.  This is an approach based on the seminal 

work of Taylor et al (1980).  We have re-expressed their original equations in a simpler form to produce a 

single, dimensionless index, the Extra Load Index (ELI) (equation 1) that allows for direct comparison of the 

relative economy of different load carriage systems (LCS). An ELI of 1 indicates that the additional energy 

cost of carrying a load is the same as carrying ‘live mass’ whilst values greater than 1 identifies a relatively 

greater cost and values less than 1 a relatively lower cost. 

 

Equation 1: 
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where ml02U and ml02L refer to unloaded and loaded oxygen consumption respectively. 

 

From a theoretical perspective, the ELI has a distinct advantage over other methods as it accounts for 

individual variability in walking gait.  Given that most of the available literature indicates that the cost of 

carrying extra load is similar to, but slightly greater than, the cost of carrying live mass (e.g. Taylor et al, 



1980) then it is likely that the additional element of energy expenditure, above that required simply to 

support and move the load, is associated with biomechanical changes that represent acute perturbations from 

an individual’s normal gait pattern (Martin and Morgan, 1992; Cavanagh and Williams, 1982).  Furthermore 

it has been suggested that these normal gait patterns represent the most economical solution for an individual 

(Martin and Morgan, 1992).  Thus a measure of loaded economy that accounts for unloaded movement 

economy has significant utility and merit since the energetic cost of carrying a load can be conceptualised 

as:  energy cost of unloaded movement at a given speed + energy cost of supporting and moving a given 

load ± net changes in energetic cost of movement as a consequence of changes in the kinetics and 

kinematics of movement resulting from the interaction of load, speed and LCS.  When the final term is 0 the 

ELI will be 1 and any deviation from unity represents the relative economy of a particular load/speed/LCS 

interaction.  The value of the ELI will reflect the changes in energetic cost of movement associated with 

additional load making it sensitive to changes in economy associated with additional loads for any given 

load-speed combination for any load carriage system. Lloyd and Cooke (under review) have reported 

significant relations ships between the ELI and various kinematic and kinetic parameters in two different 

LCS.  For example the relationship between the increase in forward lean from heel strike to mid support and 

ELI was significant for a double pack (r=-0.867, P=0.005) but not for a backpack (r=0.454, P=0.258). 

 

From a practical perspective the use of a simple, dimensionless, index of loaded economy would be 

of value to manufacturers and developers as it is likely to be easier to understand for a non-scientific 

audience than the more traditional approaches.   

 

The utility of the ELI depends to some degree on its use as a comparative tool.  The ELI has 

previously been used to compare relative economy across a range of studies where measures of unloaded 

oxygen consumption were available.  A summary is presented in Table 1. 

 
 
 
 
 
 
 



 
Table 1. Calculated ELI values for published data relating to different forms of load carriage.  Adapted from 
Lloyd et al (2010). 
 
Load Position ELI Comments 

Feet  
Soule and 
Goldman (1969) 

1.45 – 1.73 Increasing ELI with Speed for 4-5.6 km.h.-1 

Hands   
Kamon and 
Belding (1971) 
 
Francis and 
Hoobler (1986) 

1.07 – 1.32  
 
 
1.02 – 1.08  

Increasing ELI with Load from 10-20 kg 
 
 
Light loads – 1.82 and 3.64 kg, increasing  
ELI with speed and load 

Back  
Quesada et al 
(2000) 
 
Lloyd and Cooke 
(2000b)  
 
Bilzon et al 
(2001) 
 
Rorke (1990) 
 
 
Gordon et al 
(1983) 
 
Taylor et al 
(1980) 
 
Legg and 
Mahanty (1985) 
 
Lloyd et al 
(2010) 

1.04 – 1.05 

 
 
1.12 – 1.27 
 
 
0.99 
 
 
0.93 – 1.05 
 

 
0.97 – 1.01  
 
 
1.01 

 
 
1.19 
 
 
0.93 – 1.09 

15% and 30% BW 6.0 km.h.-1 
 
 
35% BM, 3.0 km.h.-1, various gradients (-27% to 20%) 
 
 
18 kg load, 9.5 km.h-1  
 
 
20% and 40% BM, 4.8 and 6.1 km.h.-1, increasing ELI with Speed and 
Load 
 
20% -50% BM, decreasing ELI with load 
 
 
10.78 kg load, 10.5 km.h.-1, demonstrated ELI’s within 0.02 if  unity across 
a range of species for loads between 30 and 40% BM 
 
35% BM, 3.0 km.h.-1 
 
 
Self selected walking speed, loads 10-70%BM 

Back and Front   
Lloyd and Cooke 
(2000b)  
 
Legg and 
Mahanty (1985) 

1.04 – 1.24 
 
 
0.96  

35% BM, 3.0 km.h.-1, various gradients (-27% to 20%) 
 

 
35% BM, 24.9 kg, 4.5 km.h.-1 

Trunk  
Legg and 
Mahanty (1985) 
 
Myo Thein et al 
(1985) 
 
Thorstensson 
(1986) 

0.99 
 
 
0.97 
 
 
0.97 – 1.00 

35% BM, 24.9 kg, 4.5 km.h.-1 

 

 
10% BM, 4.5 km.h.-1, 1.5% gradient 
 
 
10% BM, 8-11 km.h.-1, decreasing ELI with increasing speed 

Head  
Nag and Sen 
(1978) 
 
Soule and 
Goldman (1969) 
 
Lloyd et al 
(2010) 

0.87 – 1.06   

0.96 – 1.22  
 
0.99 – 1.04  
 
 
0.95 – 1.11 

Head strap method, 60 – 100 kg 3.2 km.h.-1 

Head strap method, 60 – 100 kg 3.7 km.h.-1 
 
14 kg,  speeds of 4 -5.6 km.h.-1 

 

 

Direct head-loading, self selected walking speed, loads 10-70%BM 

 



The data in Table 1 indicates that the ELI is sensitive enough to differentiate between load carriage 

systems. In order for the ELI to be a universal index of load carriage economy suitable for comparing across 

load carriage systems it needs to accommodate variations in the external load carried, the walking speed 

employed and differences in body composition of study participants. Based on its definition this should be 

the case. The purpose of this study, therefore, was to establish, based on empirical data, if the ELI can 

appropriately accommodate variations in body composition factors, magnitude of external load and walking 

speed. 

 
 
2.0 Methods 
 
 
2.1 Participants 
 

Thirty women were recruited to take part in the study.  All participants gave informed consent for 

their participation in the study which had received ethical approval through standard institutional review 

procedures at both the University of Abertay Dundee and Cape Peninsula University of Technology.  

 

2.2 Load Carriage Performance 

All performance data was collected at the Human Performance Laboratory of Cape Peninsula 

University of Technology.  Participants visited the laboratory on two occasions.  On the first visit 

participants were screened for any potential contraindications to exercise before stature and mass were 

assessed. The women were then habituated to the experimental protocol. A typical habituation session lasted 

between twenty and thirty minutes and involved the women walking on the treadmill at various speeds both 

with and without a face mask.  In addition they also tried out the load carrying device, a standard 45l 

backpack (Karrimor, SA) with and without loads.  At the end of the session the women were asked to walk 

on the treadmill at a speed that they felt would be comfortable when carrying a heavy load.  The chosen 

walking speed (mean 3.01 ± 0.44 km.h-1) of each participant was noted and used for the subsequent 

experimental trials.   

 



On arrival at the laboratory at the next visit each participant walked, at the previously determined 

speed, for four minutes unloaded and then, after a one minute rest, a load of 10% body mass was added  

which was carried for a further four minutes.  After a further rest of one minute the load was increased to 

15% and carried for four minutes.  This pattern was repeated with loads of 20%, 25%, 30%, 40%, 50%, 60% 

and 70% of body mass or until pain and discomfort led to voluntary cessation of the session.  The load was 

calculated based on the body mass at the habituation session and was made up of the mass of the backpack 

plus appropriate weightlifting plates, (between 2.5kg and 10kg), and 100g sandbags,  which allowed the load 

to be adjusted to within 50g of the required load.   

 

All participants were fitted with a face mask and expired air was collected throughout the protocol by 

means of an on-line gas analysis system (Quark b2, Cosmed, Rome).   The system was calibrated prior to 

each test in accordance with manufacturer’s instructions using gases of known concentration and room air.   

 

2.3 Body Composition Assessment 

 

Physical measurements were made with subjects wearing a hospital gown and all metal artefacts 

removed. Total body, anteroposterior lumbar spine (L2 to L4) and total hip BMD were measured using dual 

energy X-ray absorptiometry (DXA) (Discovery W, Hologic Inc. US), at the University of Cape Town/MRC 

Research Unit for Exercise and Sports Medicine, South Africa. Machine calibration checks were carried out 

on a daily basis. All scanning and analyses were made by a trained operator and intra-observer variation was 

0.87% at the hip and 0.98% at the lumbar spine.  

 

2.4  Data Analysis 

 
 Oxygen consumption was averaged over the final minute of each workload and the associated ELI 

values calculated (Equation 1).  Percent body fat (%BF), fat mass (FM), bone mineral content (kg) (BMC) 

and fat-free soft tissue mass (kg) (LBM) were derived using DXA of the total body. Stature was assessed 

and recorded to the nearest millimetre (Scales 2000, South Africa). Body mass (BM) was measured and 



recorded in kg to the nearest 0.1 kg (Scales 2000, South Africa). Body mass index (BMI) was calculated as 

body mass / (height) 2 (kg.m-2). External load (EL) was defined as the actual load carried in each trial whilst 

total mass (TM) was defined as BM+EL.  Dead mass (DM) was defined as external load + fat mass (Lyons 

et al, 2005).  The LBM:DM ratio (Lyons  et al, 2005) was calculated by dividing LBM by DM. 

 

The number of participants able to carry prescribed loads diminished beyond the 30% load, consequently 

the analysis is restricted to loads of 10-30% BM. Pearson Product Moment Correlation Coefficients were 

calculated to assess the strength of relationships of both body composition variables and external load with 

ELI  values for each load and for pooled data for load 10-30%BM (SPSS v17.0, SPSS Inc.). 

 
3. 0 Results 
 
Details of participant characteristics and body composition variables are shown in table 2.  ELI values for 

each load were as follows: 0.96 ± 0.11, 0.98 ± 0.12, 1.02 ± 0.14, 1.01 ± 0.18 and 1.00 ± 0.17 for loads of 

10%, 15%, 20%, 25% and 30% BM respectively.   

 
Table 2. Participant characteristics 

Age (years) 22.3 ± 2.9 

Body Mass (kg) 65.9 ± 13.1 

Stature (cm) 159.1 ± 5.1 

Lean Mass (kg) 37.2 ± 4.8 

BMC (kg) 2.0 ± 0.25 

Fat Mass (kg) 25.1 ± 9.1 

% Body Fat 38.0 ± 6.7 

BMI (kg.m-2) 26.0 ± 5.2 
 
Pearson Product Moment Correlation Coefficients for relationships between ELI values and body 

composition and loading variables are shown in table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Relationship (Pearson Product Moment Correlation Coefficient, r) between ELI and selected body 
composition, external load and speed variables 

 10% 

(n=30) 

15% 

(n=30) 

20% 

(n=30) 

25% 

(n=28) 

30% 

(n=27) 

Pooled Data 

(n=145) 

BMC  0.176 -0.059 -0.085 -0.228 -0.035  

FM 0.136 0.246 0.245 0.046 0.139  

LBM 0.111 0.137 0.284 0.255 0.267  

BM 0.157 0.224 0.284 0.126 0.195  

%BF 0.084 0.260 0.203 0.059 0.046  

BMI 0.130 0.216 0.212 0.055 0.132  

EL 0.157 0.224 0.284 0.126 0.195 0.155 

TM 0.157 0.224 0.284 0.126 0.195 0.169 

DM 0.142 0.240 0.252 0.063 0.156 0.152 

LBM:DM -0.055 -0.249 -.192 0.083 -0.033 -0.119 

Speed 0.173 0.173 0.173 0.190 0.179 0.173 

 
 
4.0 Discussion 
 
 Although ELI values have not been reported elsewhere, other than Taylor et al (1980) and Lloyd and 

Cooke (2000b), they can be calculated, based on mean data, for those  studies that have reported oxygen 

consumption for unloaded walking (see Table 1). The ELI values reported here are consistent with these 

calculated values, being in general just greater than unity.  For example ELI values of 1.04-1.05 can be 

derived from the data of Quesada et al (2000) relating to loads of 15%-30% BM carried at 6.0 km.h-1, whilst 

those for the data of Gordon  et al (1983) range between 0.97 and 1.01 for loads of 20-50%BM, with the 

lower scores being associated with the higher loads, and the data for Rorke (1990) providing a range of 0.93 

– 1.05 for loads of 20 and 40% BM and speeds of 4.8 and 6.1 km.h-1, lower speed/load combinations being 

associated with lower ELI values.  Lloyd and Cooke (2000b), examining a backpack and a front-back 

loading system, showed that the ELI varied differentially with gradient.  It is worthy of note that very few 

papers considering load carriage economy report unloaded oxygen consumption or energy expenditure.  We 

would argue that this is a serious omission and that comparisons to unloaded walking should be standard 

practice in all assessments of loaded walking, whether they be metabolic, kinematic, kinetic, 

electromyographic or subjective-perceptual.  

 



 The correlations in table 2 confirm that the ELI is independent of body composition variables, the 

magnitude of external load and walking speed.  The first of these is important as it has been argued that 

individual load carriage performance may be influenced by body composition (e.g. Jones et al, 1987; 

Haisman, 1988, Lyons et al, 2005), whilst the latter are important as they allow for comparison across 

different experimental protocols. It should be noted that the range of speeds employed here were limited, 

range 1.9 – 4.0 km.h-1, and further work may be warranted in this area, comparing across a greater range of 

speeds.  It is, however, the case that calculated ELI values from previous studies employing a greater range 

of speeds exhibit consistency (Table 1). This independence from body composition, external load and speed  

supports the theoretical strength of the ELI as a dimensionless index for comparing load carriage economy 

across different load carriage systems. 

 
 
Conclusion 
 

Based on the evidence provided here, the Extra Load Index (ELI) represents a useful tool for 

comparing the metabolic costs of load carriage systems. We would suggest that it should become the 

standard method for assessment of the economy of load carriage systems and that, in line with this approach, 

kinematic, kinetic, electromyographic and subjective perceptual assessments should also be referenced to 

unloaded walking. 
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