
Citation:
Marino, MD and Weng, TH and Li, KC (2017) Exploiting Dynamic Transaction Queue Size in Scalable
Memory Systems. Soft Computing. ISSN 1432-7643 DOI: https://doi.org/10.1007/s00500-016-2470-
x

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/3375/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/3375/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Exploiting Dynamic Transaction Queue Size in Scalable Memory Systems

Mario Donato Marino 1, Tien-Hsiung Weng2, Kuan-Ching Li3

Abstract

In order to increase parallelism via memory width in scalable memory systems, a straightforward approach

is to employ larger number of memory controllers (MCs). Nevertheless, a number of researches have pointed

out that, even executing bandwidth-bound applications in systems with larger number of MCs, the number

of transaction queue entries is under-utilized - namely as shallower transaction queues, which provides an

opportunity to power saving. In order to address this challenge, we propose the use of transaction queues

with dynamic size that employs the most adequate size, taking into consideration the number of entries

utilized while presenting adequate levels of bandwidth and minimizing power. Experimental results show

that, while saving up to 75% number of entries, the introduction of dynamic transaction queue mechanism

can present savings up to 75% of bandwidth and 20% of rank energy-per-bit reduction compared to systems

with 1-2ntries. With such promising results, it can be aimed and incorporated in modelling methodologies

directed to the design and evaluation of new generation embedded systems.

Keywords: memory, controller, dynamic, transaction, queue, scalable.

1. Introduction

The increasing number of cores in current embed-

ded and traditional multicore chip design has put an

imprecendented high pressure on memory systems.

As efforts to approach the I/O pin scalability - deter-

minant factor of memory controller (MC) scalability,

scalable memory systems utilize memory interfaces

that allow I/O pin reduction and large-magnitude

data rates to achieve MC scalability.

Double-data rate (DDR) memory is the most em-

ployed dynamic memory system (DRAM) organi-

zation in current multicore systems, where mem-

ory DRAM chips share and enable address, decode,

and I/O pins, and a memory rank, or simply rank -

commercially called as dual inline memory module

(DIMM). It is formed by several bank chips enabled

in parallel, so that the total width is obtained when

aggregating the width of each one of them. e.g., a

64-bit width is achieved by aggregating 8 banks of 8

bits. This context is illustrated in Figure 1.

Traditional Double-data rate (DDR) memory de-

sign has been focused on memory frequency. That is,

Email address: m.d.marino@leedsbeckett.ac.uk,

thweng@pu.edu.tw, kuancli@pu.edu.tw

(Kuan-Ching Li)
1Leeds Beckett University (UK)
2Providence University (Taiwan)
3Corresponding Author, Providence University (Taiwan)

the application of higher clock frequencies to mem-

ory formed by set of memory banks with data output

aggregated and sharing addresses. Clock frequency

scaling (FS) applied on these traditional systems

have permitted DDR family generations been re-

sponsible to bandwidth improvement. For instance,

a factor of 10x larger clock frequencies has been

applied along DDR family generations [1]. Since

memory power usage is proportional to frequency,

scalable memory systems also present the advantage

of power, by shifting the traditional focus on FS to

memory width, represented by MC and rank scala-

bility, by assuming one rank for each MC or memory

channel [2].

Comparatively to traditional solutions, advanced

memory interfaces explore significant larger number

of MCs, or MC counts. These advanced interfaces

rely on optical- and radio-frequency (RF) technolo-

gies that permit them to be implemented with fewer

I/O pins, bringing out higher and optimized degrees

of MC scalability. For instance, Corona is able to

scale up to 64 optical-MCs [3] while DIMM Tree up

to 64 RF-based memory controllers (RFMCs) [4].

[Figure 1 about here.]

Since MCs are scaled to the number of transaction

queue in scalable solutions, entries in each MC are

also scaled. As per discussions in [2], memory traffic

along each MC is reduced as MCs are scaled, i.e.,

1

transaction queue usage is reduced.

A number of researches present evaluations of

most adequate size for transaction queues in terms of

bandwidth and power [5]. Their evaluations are static

ones, which do not take into consideration different

transaction queue utilization rates along with the exe-

cution of applications. Conditions for dynamic sizes

are discussed in [5]; however, no algorithm, imple-

mentation or evaluation of these dynamic sizes were

analyzed. Therefore, a proper dynamic evaluation of

the most appropriate transaction size is necessary to

find the best power saving configuration that matches

to the bandwidth utilization.

To advance the state-of-the art in scalable memory

systems, we investigate in this paper the trade-offs of

a dynamic transaction queue size to match the band-

width utilization and minimize power comsumption,

with the following contributions:

1. Design a dynamic transaction queue mecha-

nism that matches to the number of entries uti-

lized and memory load,

2. Create a model based on scalable memory sys-

tems that has an inherent algorithm which dy-

namically changes all transaction queue size to

match the load. This proposed model is eval-

uated using detailed and accurate simulation

tools combined with memory bandwidth-bound

benchmarks,

3. Perform evaluations on the proposed mecha-

nism in terms of bandwidth impact under sev-

eral workload conditions,

4. Evaluate rank power when utilizing dynamic

transaction queues.

The remaining of this paper is organized as fol-

lows. Section 2.2 and 3 presents the background and

the related work respectively, and dynamic transac-

tion queues are depicted in Section 4. Section 5

presents experimental results achieved, and finally,

the concluding remarks and future directions are

given in Section 6.

2. Background and Motivation

In this section, a bottom-up description of scalable

memory systems by starting with the components of

a memory rank and its operations/modes is provided.

Following next, with the purpose of improving band-

width and reducing latency as mentioned in previous

section, we discuss scalable memory systems inter-

faces that are able to scale ranks. Facts about how

shallower transaction queues incur in the context of

scalable memory system interfaces will also be de-

picted.

Before we discuss how a rank is interfaced to RF

circuits, we highlight that RFMCs are used instead of

typical MCs. As reported in [2], RFMC is defined as

a MC coupled to RF TX/elements that perform mod-

ulation and demodulation of commands, data, clock,

and addresses when performing memory operations

(e.g., read and write). Signals are transmitted over

the RF-interconnection between the RFMC and rank.

Command, clock (CK), and address signals are de-

modulated at the ranks, which also modulate data to

be returned to the RFMC as a read operation per-

formed. It is illustrated in Figure 2 the context where

these previous memory path elements are employed.

According to report [6], a typical MC is composed

of elements, listed as: (a) front engine (FE), which

processes L2 cache requests; (b) transaction engine

(TE) that transforms these requests into control and

data commands to be sent to the ranks, and (c) phys-

ical transmission (PHY), composed by control / data

physical channels. Particularly, along with its optical

or RF memory interfaces, modulation and demodu-

lation of commands, data, clock, and addresses are

performed while executing typical read/write mem-

ory operations. Along with these interfaces, signals

are transmitted over the optical/RF interconnection

between the optical-MC/RFMC and rank. Addition-

ally, command, clock (CK) and address signals are

demodulated at the ranks, as also modulate data to

be returned to the MC when a read operation is per-

formed. Figure 2 illustrates the context where the

rank element is utilized together with an MC.

[Figure 2 about here.]

2.1. Scaling Memory Width - MC/rank scaling

In this subsection, we illustrate the performance

and power motivations mentioned in previous sec-

tions when scaling memory width and rank fre-

quency as memory design techniques in scalable

memory systems.

Memory width, represented by the total rank count

width, it concurrently scales as rank count width are

scaled. Despite that, memory width scalability is re-

stricted by pin scalability, as indicated in [7][2].

Typical memory interface elements employed in

scalable systems are exemplified in Figure 2, such

as DIMM Tree [4] and RFiof [2]. In these sys-

tems, RFMCs perform modulation of digital cache

requests and demodulation of rank read opera-

tions. Similarly, ranks perform requests of write

data demodulation and read data modulation. Be-

tween RFMCs and ranks, there are RFpins and RF-

interconnection implemented via transmission lines,

such as the ones at FR4 boards used in DIMM Tree

2

[4] or the set formed by microstrips, microstrip-to-

coaxial interface, and coaxial cable in RFiof [2].

When an interposer is used in the motherboard im-

plementation, RF elements can be placed.

By showing that RFpins are able to carry larger

data rates, RFpin scalability is comparable to optical-

pin one as depicted in [7][2], thus enabling RFMC

scalability that support scalable systems and their

scalable bandwidth.

As result, bandwidth achieved by scaling RFMCs

is significantly higher than a typical 2-MC or 4-

MC system employed in typical microprocessors

[7][2][4]. For example, bandwidth achieved with 32

RFMCs in RFiof [2] is up to 7.2x higher than a 5-MC

DDR-based system, assumed as a baseline in a 32-

core processor configuration. Since bandwidth and

latency are related based on Little’s law [8], latency

is likely to decrease: a notable latency reduction of

69% is obtained in RFiof [2].

Another important advantage of these scalable

systems is power consumption. For example,

rank power consumption of RF-interface elements

(TX/RX and RF-memory channel) correspond to 3-

4% of a traditional DDR3 rank in DIMM Tree [4].

That is, at the same order of magnitude of a tra-

ditional DDR3 rank. Furthermore, RFMCs can ar-

chitecturally replace MCs, given their advantage in

terms of power, as depicted in [7]. Given that larger

bandwidths are achieved via employing larger num-

ber of MCs, energy-per-bit is likely to decrease [2].

To illustrate the need for more MCs, the behavior

of rank bandwidth along with different low power

memory generations is shown in Figure 4 [1]. We

could observe that total rank bandwidth is still re-

stricted in terms of magnitude, a fact that motivates

the need of approaching bandwidth via MC scalabil-

ity.

[Figure 3 about here.]

Recently developed and commercially available

memory solutions still employ larger number of pins

that can still restrict MC scalability, i.e., memory

width. For instance, Hybrid Memory Cube employs

55 pins and can utilize up to 8 MCs [9]. In ad-

dition, the maximum aggregated bandwidth is 320

GB/s while each I/O-link presents individually 10

Gbit/s. Furthermore, Wide I/O 2 employs 128 bits

per rank and 8 MCs, thus still MC-count restricted

(total width 1024 bits) [10].

Another example of scalable solution is RFiof [2],

illustrated in Figure 4b. RFiof is designed to scale to

32 RFMCs and 345.6 GB/s, using 10.8GB/s ranks.

Given its lower number of pins and adoption of a

conventional RF-interface (FR-board as in DIMM

Tree [4]), this technology has the potential to be

scaled to make use of 64 RFMCs and ranks of 17.2

GB/s, to achieve the bandwidth of 1024GB/s (and

total width of 4096 bits). The bandwidth magnitude

achieved is similar by optical technologies [11][3].

2.2. Motivation

Each MC has a transaction queue, which is com-

posed by certain number of entries utilized to store

cache requests. As applications are executed, trans-

action queue entries are filled depending on their

memory-bound behavior. Applications with intense

memory-bound behavior are likely to have more en-

tries filled, and less entries filled otherwise.

In scalable memory systems, sets of MCs and

ranks are scaled to improve bandwidth and decrease

power, whereas simultaneous memory transactions

happens concurrently [3][7][2]. As one of motiva-

tions mentioned in section , this increase in paral-

lelism improves throughput and decrease latencies

[7][2], yet shallowing transaction queue utilization,

that signifies that less entries are utilized while faster

processed when compared to typical systems (with

low number of MCs available).

Going further, even in the scenario where intense

memory-bound applications are executed, transac-

tion memory queues are not completely utilized

[7][2]. An example for intense memory-bound ap-

plications are STREAM[12] and pChase[13], where

the number of memory transactions entries occupied

is reduced up to 5 times when scaling the number of

MCs/ranks in RFiop [7] scalable memory system. In

addition, the reports [14] [15] illustrate that intense

memory-bound behavior can appear in other appli-

cations such as in genetic algorithms where the ap-

proach is via measuring the performance. The for-

mer explores the conflicting input metrics, such as

cost and power consumption, and produce a guide of

an effective optimization to the multimedia embed-

ded system designers. Another example of the ap-

plications of these memory systems is likely to im-

prove the performance of graphic processing units

such as reported in [16] where a tree-based Genetic

Programming could be utilized as a benchmark due

to its bandwidth-bound behavior.

As conclusion from previous analysis, transaction

queue entries are not completely occupied upon with

memory requests, leading to its sub-utilization.

3. Related Work

Initial evaluation of transaction queue reduction

in terms of power and performance impact was pre-

sented in [5]. In this paper, we advanced and im-

3

proved performance and power implications of shal-

lower transaction queues presented [5], by proposing

a dynamic hardware approach that matches the trans-

action queue size to behavior of applications.

Optical- [3] or RF-based solutions [7][2] utilize

memory interface solutions to address the men-

tioned I/O pin restrictions that permit MC scalabil-

ity [11][2]. This approach can be applied to previ-

ous scalable systems, matching the size of transac-

tion queues to the size of the transaction tuned to the

application executed.

With the challenges induced by growing num-

ber of cores in the multicore era, Udipi [11] pro-

posed a number of hardware and software mech-

anisms to approach higher memory bandwidth de-

mands via utilization of optical-based interfaces, ap-

propriate memory organization for taking advantage

of optical transmission, and MC optimizations to im-

prove power and performance. Notwithstanding, this

study focused on proposing a dynamic technique that

allows to explore the lower utilization of transaction

queues in scalable optical and RF memory interfaces.

In the report by Jeong et al. [17] a Quality of

Service (QoS) mechanism to track progress of GPU

workload is proposed in order to dynamically adapt

the priority of CPU and GPU utilization. The re-

port by Usui et al.[18] extends Jeong’s approach [17]

to general hardware accelerators trading off not only

QoS bandwidth but also latency of applications. Dif-

ferently of the GPU or CPU priority - focus of these

QoS reports - in this study, we approach to dynam-

ically adapt the transaction queue size to match the

application.

Janz et al. [19] report employs a software schedul-

ing software framework where through the interac-

tion of the operating system with the application,

memory address space dynamic footprint utilization

is determined. Our technique is a hardware technique

that could be orthogonally coupled to Janz’technique

and also collaborate to determine the memory foot-

print utilization of the system in terms of transaction

queue size.

Since the adopted approach is focused on transac-

tion queues, it is orthogonal to optical or RF-based

solutions, and therefore, applicable to these systems.

The strategy here proposed is also suitable to com-

mercial systems such as HMC [9] with medium de-

gree of MC scalability. Additionally, transaction

queue occupation is decreased in RFiop [7] as MCs

are scaled. This observation is a motivation to further

explore the behavior of shallower transaction queues

in this research.

Memscale [20] is a set of software (operating sys-

tem policies) and specific hardware power mecha-

nisms that enable the trade-off between memory en-

ergy and performance in typical memory systems.

It dynamically changes voltage and frequency scal-

ing (DVFS) in terms of memory ranks and mem-

ory channels. Moreover, it is guided by OS per-

formance counters that periodically monitor mem-

ory bandwidth usage, energy utilization, and the de-

gree of performance degradation in the case of trade-

off. The proposed approach is orthogonal to Mem-

scale, since the impact on the reduction of transaction

queues in terms of power and bandwidth is dynami-

cally explored, which can be triggered by Memscale

techniques. What we propose is also orthogonal to

the report by Marino [21] since we do not explore

transaction queue FS, instead the focus is on saving

energy by having dynamic number of buffers adapt-

able to the memory demand.

Multiscale [22] technique relies on the approach

that estimates the bandwidth of each MC indepen-

dently and selects an appropriate frequency/voltage

to maximize energy savings while individually max-

imize the performance of each application. In this

proposed research, we aim to employ the lower uti-

lization of transaction queues through the use of a dy-

namic strategy that automatically fits the number of

entries to the application bandwidth demands. Simi-

lar to Memscale, this proposed technique can be cou-

pled to Multiscale due to their orthogonality.

Howard et al. [23] proposed memory DVFS to ad-

dress memory power at data centers using bandwidth

as a restricting factor. Although the proposed ap-

proach is orthogonal to this study, given that we fo-

cus on evaluating the benefits of shallower transac-

tion queues, a combined approach DVFS applied to

the transaction queue is an issue for further investi-

gation.

In [24], it was proposed an architecture of servers

with mobile memory systems for lower energy-per-

bit consumption and efficient idle modes to ap-

proach different energy utilization under different

bandwidth demands, which can be applied in servers

with mobile systems that present larger number of

MCs. As part of this research, it is shown the use of

mobile memories with new circuitry to reduce power.

In addition, orthogonal to the study presented in [24],

we focused on the effects of using shallower transac-

tion queues.

Scale-Out Non Uniform Memory Access

(NUMA) is an architecture, programming model,

and communication protocol that implements a

remote direct memory access (RDMA) via using a

remote memory controller (RMC) in a traditional

NUMA memory [25]. In this proposed approach,

we use RF-technology that enables low latencies

4

even for MCs located in remote positions from the

processor whilst have significant lower levels of

latency. It can potentially explore remote locations

that shows higher latencies and a strategy is pro-

posed in this research that will further lower their

utilization.

Zhang et al. [26] proposes the utilization of a

variation-aware MC scheme that explores the utiliza-

tion of memory chunks within different access times.

The approach proposed in this work is similar, since

it explores lower bandwidth utilization of transaction

queue. Nevertheless, frequency scaling is one of the

main techniques explored in [26], and lowering the

number of transaction queues is explored to match

the demands on the bandwidth.

ArchShield [27] is an architectural framework that

employs runtime testing to identify faulty DRAM

cells. Similar to ArchShield that exposes errors at ar-

chitecture level, our region-based approach can po-

tentially tolerate regions with faulty DRAM cells.

Rather than focusing on banks and internal cell lev-

els to approach error-tolerance, the approach pro-

posed in this work is focused on the rank and MC

levels, where the performance and energy implica-

tions of regions formed by sets of cores and differ-

ent number of MCs/ranks, given that latter one rep-

resent different degrees of memory parallelism. Sim-

ilar to ArchShield [27], Taassori et al. [28] proposed

an adaptive MC that retains information of each in-

dividual bank, in which DVFS is gradually applied

and seeks to find the point of failure (clock synchro-

nization) in these banks. Intersecting with Taassori

et al. is the granularity at the memory element level,

where differences in fabrication variation are utilized

to exploit FS independently at each different memory

element. Lower utilization of transaction queues of

MCs is explored to satisfy different bandwidth de-

mands in this investigation.

Bandwidth effects of increasing the number of

MCs in traditional digital-based embedded systems

is presented in [16], restricted due to high I/O pin

usage. One of the effects observed was the lower

utilization of transaction queues, where the proposed

approach focuses using transaction queues with dy-

namic sizes that match the bandwidth demands.

The effects of shallower transaction queues is dis-

cussed in [5], where the number of MCs is increased,

concurrently the occupation of the queues is lowered.

As consequence, many entries are not utilized. To

further approach the utilization of these queues, the

proposed research matches the current bandwidth via

a dynamic approach.

4. Dynamic Transaction Queues Size Mechanism

Before we describe the dynamic transaction queue

mechanism, we illustrate first the general operation

of transaction queues.

while (there are incoming memory transactions

) do

if (check MTQS) then
activate entry(tqc); increment tqc;

end

end

while (there are memory transactions to be

removed) do

if (tqc >= 0) then
de-activate entry(tqc); decrement tqc;

end

end

Algorithm 1: Dynamic transaction queue size

mechanism algorithm: tqc is assumed starting with

0

4.1. Transaction Queue operation

The transaction queue is typically involved when

one cache request is received from the cache system

and transformed next into a memory request in the

TE (MC), as previously described. In scalable mem-

ory systems, typical transaction queue sizes are in

the range of 16-32 entries [5], and one memory re-

quest occupies one entry in the transaction queue.

While the memory is still processing this request,

this entry is kept occupied. Transaction queues store

cache requests and transform into memory requests

are queued due to speed difference between caches

and DRAMs.

After processing the request, the entry correspon-

dent to the stored memory request is freed from the

transaction queue. Given that transaction queue en-

tries correspond to the maximum transaction queue

size, all queue entries are free, since no memory re-

quests are on the way nor requests being processed.

The description of boundaries follow next, and

given that the transaction queue size has a maximum

limit size, transactions are stored in as long as there

are entries available. In case not, all cache requests

to that transaction queue are stalled, observing that

if these caches can request from other transaction

queues other than the latter where the cache request

is stored, this request is saved to it/their miss status

handling register (MSHR). In this case, all entries

are filled with memory requests waiting to be pro-

cessed. After the current transaction processing is

5

completed, the correspondent transaction queue en-

try is released and the number of available entries is

further incremented by one.

4.2. Mechanism

In order to improve the sub-utilization of trans-

action queues [5], a dynamic transaction queue size

mechanism is proposed. Since this algorithm 1 being

proposed is aimed to be implemented in hardware, it

should be of smallest complexity overhead, mainly

consisted of simple operations such as activation/de-

activation of entries that indirectly control transac-

tion queue size. To implement this mechanism, it is

proposed:

• add a counter (transaction queue counter or

tqc), to represent the number of entries utilized

in the transaction;

• novel design of a queue that has several entries

is considered instead of using a traditional trans-

action queue: it will control the activation/de-

activation of each of active entries, due to power

saving issues.

[Figure 4 about here.]

The hardware kernel of the proposed mechanism

should control the number of entries available, de-

pending on the current number of transactions stored

in the TE transaction queue. As one new transaction

incomes to the transaction queue and there are en-

tries available, the transaction is stored in the queue

and concurrently the transaction entry is occupied

with this respective memory request. Once checked

the availability of entries, whether maximum trans-

action queue size or MTQS has achieved or not,

the dynamic transaction queue mechanism performs

the correspondent hardware adjustment: tqc is in-

cremented by one and one more entry is activated

(activate entry) next. In comparison to the tradi-

tional queue mechanism where all entries are acti-

vated even not used, only used entries are activated

and no idle entries in this case.

In similar way, the correspondent entry is removed

from the transaction queue after the transaction is

processed. Dynamic transaction queue mechanism

performs the adjustment of the transaction queue

size: the correspondent entry is de-activated (de −

activate entry) and tqc is decremented by one. Dif-

ferent than the traditional queue mechanism where

all entries are activated even if not used, only used

entries are active and no idle entries in this case.

The operations of checking the transaction queue

size (check MTQS) and verification of entries to be

processed both can be implemented using circuits.

The circuits needed to implement the dynamic trans-

action queue mechanism are straightforward com-

parator circuits and counters. The complexity of

the circuits involved in this mechanism is not high

in terms of overall processor/memory circuits com-

plexity. Yet, not likely to impact power utilization.

Therefore, if these circuits need to be scaled to 32 or

even 64 entries, the area and power utilized are still

neglectable.

The transaction queue implementation itself can

be done through a shift-register element. That is, as a

new entry is stored, the shift-register and transaction

counter are properly clocked to respectively store

the entry and then count it. The activation and de-

activation of entries are assumed to be implemented

through coupling power-gating inputs to the entries,

which allows them to be enabled or disabled when-

ever a number or no entries are necessary.

Since the number of active entries is significant

lower than the maximum [5], power benefits can be

noticed as further described in Section 5.

[Table 1 about here.]

5. Experimental Results

In this section, experiments were executed to

demonstrate the power and performance effects, with

different transaction queue sizes in scalable memory

systems.

5.1. Methodology

To have a global picture of the methodology ap-

plied in this research, we list simulators considered

and corresponding description of their characteris-

tics, available in Table 1. The methodology em-

ployed to obtain bandwidth is adopted based on [29].

That is, by using bandwidth-bound benchmarks to

stress the memory system, M5 [30] and DRAMsim

[31] simulators were combined.

To evaluate the scalable memory system as de-

signed, data from detailed accurate simulators fol-

lowing the methodology developed in [29] were

combined, as described in Table 1. As to explore

the scalability of future multicore generations, a 32-

multicore processor (larger than current server pro-

cessors (e.g. [32]) with 32 MCs was selected to rep-

resent scalable memory systems (significant larger

number of MCs than current processors (e.g. [32]).

A 32-multicore model was created in M5 [30], based

upon benchmark execution generates memory trans-

actions that are then captured by DRAMsim [31]

properly configured with 32 RFMCs, so that core:

6

MC ratio is homogeneous, i.e., 32:32. DRAMsim

responds to M5 with the result of each memory trans-

action concurrently in the sequence. In this way, each

RFMC is assumed to be connected to one single rank

to extract its maximum bandwidth.

To evaluate the dynamic behavior, its behavior is

compared to the behavior of other transaction queue

sizes (from 1 to 16 entries) obtained via static design

space exploration, taking into consideration band-

width and rank-energy-per-bit utilization. The base-

line configuration presents 32 RFMCs and 16 trans-

action queue elements.

[Table 2 about here.]

We employ a 4.0GHz (Alpha ISA) and 4-wide

out-of-order (OOO) core, with RFMCs at 2.0GHz

(typically at half of microprocessor clock frequency

[32]). Cacti [33] is chosen to acquire cache laten-

cies and adopt MSHR counts of typical microproces-

sors [34]. L2 caches at 1 MB/core are interconnected

via an 80GB/s-RF-crossbar with 1-cycle latency are

adopted. This magnitude was designed so that when

ranks and MCs are scaled, it does not restrict the total

throughput. Same timing settings adopted as those

presented in [35][36]. RF-crossbar was set with a

single cycle latency, adopted the same timing set-

tings as in [4]. That is, 200ps for TX-RX delays plus

the rest of the burst cycle used to transfer 64 Bytes

(memory word) using high speed and modulation.

Observing the RF-crossbar upper constraint, we

have selected a medium data-rate DDR3-rank em-

ployed in typical PCs (64 data bits, based on the

DDR3 model Micron MT41K128M8 of 1GB [37],

and listed in Table 2a). All architectural parameters

are summarized in Table 2a.

To model RF communication, RF-circuitry mod-

eling and scaling took into consideration those pro-

posed in [35][38][36][39]. In these models, crosstalk

effects, modulation, interference, and noise margin

reduction are employed aiming at low bit error rate

(BER). Moreover, these models are validated with

prototypes for different transmission lines [40][38],

following ITRS [41]. RF-interconnection power is

derived as in [2]; that is, using McPAT [6] tool at dif-

ferent frequencies to determine FE/TE power com-

ponents and RF-interconnection power modeling as

in [4].

To determine the total energy-per-bit spent,

DRAMsim power infrastructure is employed and

then combine it to the memory throughput, as ex-

tracted from M5 statistics (ratio of the number of

memory transactions and execution time).

[Figure 5 about here.]

By adopting methodology similar to the one

proposed to evaluate the memory system [34],

bandwidth-bound benchmarks with a medium-to-

significant number of misses per kilo-instructions

(MPKI) were selected, taking into consideration the

following aspects:

• Guarantee proper calibration by having each

rank bandwidth saturated. In all benchmarks,

more than one entry is present at each trans-

action queue of each MC, what guarantees that

bandwidth in each rank is saturated.

• The selected input sizes are a trade-off between

simulation times and memory traffic generated.

• In high scalable memory systems, typically at

least 16 entries per transaction queue are uti-

lized [4][7][2]. Thus, the baseline reference of

the results presented is the 16-entry one (trans-

action queue with 16 entries).

In order to evaluate this scalable memory system,

we have selected seven bandwidth-bound bench-

marks: (i) STREAM suite [12], composed of ADD,

COPY, SCALE and TRIAD benchmarks, (ii) pChase

[13] with pointer chase sequences randomly ac-

cessed, (iii) Multigrid (MG), Scalar Pentadiago-

nal (SP), Fast Fourier Transform (FFT) from NPB

benchmarks [42], and SOR method (black and red

matrices) [43]. All benchmarks are set to make use

32 threads, since we are employing a 32-core pro-

cessor. No special thread-to-core mapping is applied

when executing these benchmarks. Table 2b lists the

benchmarks experimented, input sizes, read-to-write

rate, and L2 MPKI obtained from experiments. In all

benchmarks, parallel regions of interest are executed

until completion, and input sizes guarantee that all

memory space used is evaluated. Average results are

calculated based on harmonic average.

5.2. Experimental Results

In this section, we present the results regarding to

the aspects of memory bandwidth and rank energy-

per-bit magnitude. Since all STREAM benchmarks

belong to the same STREAM suite, instead of pre-

senting four benchmarks they are presented alto-

gether as STREAM.

The dynamic transaction queue size resultant on

all the experiments (bandwidth, instructions per cy-

cle - IPC, and energy) are marked. The algorithm

resultant size is between 2 to 4 entries for MG and

SP whilst it goes from 4 to 8 entries for STREAM

and pChase. Different dynamic size obtained is due

to different bandwidth demands of the benchmarks

7

evaluated. As result, the algorithm allows the uti-

lization of lower number of entries when compared

to 16 entries, which corresponds to the baseline - as

previously described and used in scalable memory

systems [7][2].

Figure 5a illustrates experimental results on band-

width. The dynamic version presents an expected

bandwidth magnitude, i.e., with magnitude levels

within the 16-1 range entry, the latter ones obtained

with experiments of individual sizes. As expected,

since the dynamic transaction queue tries to optimize

the utilization of the transaction queue and employs

less elements than the total size (16 elements, set

as baseline as discussed previously), bandwidth lev-

els are lower than the baseline yet better than small

sizes, e.g., 2-4 or 4-8 entries. For STREAM and

FFT, dynamic version present higher bandwith than

the 4-entry version. For the remaining benchmarks

it presents 2 to 8% less bandwidth, which is a yet

open trade-off for having lower transaction queue

size (and power reduction at the MC).

The point where bandwidth starts to be signif-

icantly reduced happens with 4 transaction queue

sizes [5]. Indeed, this point corresponds to the

dynamic approach matching the bandwidth needs,

given the number of entries available, memory be-

havior of the benchmark, cache L2 MSHRs, and/or

number of outstanding memory transactions.

Before the discussing rank energy-per-bit levels,

processor performance impact (in terms of IPC) is

shown in Figure 5b. IPCs generally follow the be-

havior of bandwidth as previously described. Most

interestingly, it is noted that the IPC magnitude level

for the obtained through dynamic transaction queue

algorithm is less than the one obtained when band-

width is comparatively measured. Therefore, in spite

of using bandwidth, IPC/bandwidth trade-off could

be considered to trigger the algorithm.

It is illustrated the related rank energy-per-bit re-

sults in Figure 6. The dynamic version present simi-

lar rank energy-per-bit levels to the 4-entry system,

except for STREAM where levels are larger than

4- and 8-entry. Similar to the 4-entry version, the

dynamic transaction queue version presents lower

energy-per-bit levels than for 1-2 entries. Analyzing

the simulator output statistics, it is believed that such

event happens due to random behavior settings of

pChase. We observe different energy-per-bit magni-

tudes from [5], since we believe the latter calculated

and compared The general behavior which is energy-

per-bit levels to proportionally increase with lower

transaction-queue size is expected since lower trans-

action queues are likely to present lower bandwidth,

and higher latency, i.e., longer times and therefore

higher energy utilization.

By combining energy and bandwidth aspects, if

such a trade-off bandwidth drop of about 25% is ac-

ceptable, this implies that 50% to 75% of transaction

queue entries are not be used, what lead to signifi-

cant transaction queue power savings. In this case,

as observed in the sequence, rank energy-per-bit can

be saved of about 20% whilst using less amount of

transaction queue positions and saving power.

[Figure 6 about here.]

To summarize, it is shown interesting trade-

offs of dynamic configurations in terms of band-

width/performance and energy while employing less

amount of elements, by comparing Figures 5a, 5b

and 6. It is able to observe that is possible to have

equivalent performance to 16 entries while present-

ing potential energy-per-bit saving with 4 and 8 en-

tries, less than 50% of the total number of entries.

Importantly, we do not show the dynamic transac-

tion queue energy utilization. However, as a result

of the target technique, given that the bandwidth and

IPC results of the dynamic queue are similar to the

4-entry system, the energy utilization is likely to fol-

low this behavior: if compared to the 16-entry base-

line is likely to use 4x more energy. So a trade-off

memory energy utilization versus transaction queue

utilization should be explored to clarify this behav-

ior, which We leave as a further investigation. aspect

as a future investigation.

6. Conclusions and Future Plans

One of consequences on employing scalable mem-

ory interfaces that has larger number of MCs is the

decrease on the number of entries utilized in trans-

action queues. In this paper, we have proposed a

mechanism that dynamically matches the number of

entries utilized to the number of entries demanded

by programs. Evaluations on the bandwidth and im-

pact of power when performing dynamic transaction

queue size implementation in the context of scalable

memory systems are done.

Experimental results obtained show that, by adopt-

ing a transaction queue with dynamic size that

matches the number of transactions to the behavior

of applications. A trade-off of saving up to 75% of

the transaction queue entries causes bandwidth drop

and rank energy-per-bit increase. The utilization of

a lower amount of entries is likely to save area at

the MCs, with the expense of a lower bandwidth and

higher utilization of memory energy. The combi-

nation of lower number of MCs to lower entries or

8

higher number of MCs to higher number of entries

are likely solutions to be further investigated.

Moreover, the dynamic solution trade-off perfor-

mance and energy losses are small if compared to

4-to-16 entries. A further investigation is required to

expand the boundaries of the trade-off.

As future directions, we aim to investigate vari-

ations of the dynamic approach that includes pro-

cessor utilization and others [20][21] that take into

consideration factors as bandwidth solely. Methods

that combine DVFS [23], temperature, processor to

memory locality (important to distributed memory

systems) and other memory traffic patterns are listed

as directions to be considered.

Similar investigation would be interesting to be

applied on the context of BD clusters with embedded

systems’ features [44] with detailed design choices

and optimizations are performed by decomposing the

global system into a set of simple [45] and well-

described components. Modelling methodologies

based on data analysis that characterizes the perfor-

mance of embedded applications are applied to sup-

port system-level designers to predict the number of

execution cycles on a embedded processor [46]. As

basis of a high-level characterisation on the software

functionality and hardware architecture, we aim fur-

ther to include the findings of this methodology in

system research studies.

7. Compliance with Ethical Standards:

(In case of Funding) Funding: This study was

funded by X (grant number X).

Conflict of Interest: Author A has received re-

search grants from Company A. Author B has re-

ceived a speaker honorarium from Company X and

owns stock in Company Y. Author C is a member of

committee Z. OR if no conflict exists: Author A de-

clares that he/she has no conflict of interest. Author

B declares that he/she has no conflict of interest.

(In case animals were involved) Ethical approval :

All applicable international, national, and/or institu-

tional guidelines for the care and use of animals were

followed.

(And/or in case humans were involved) Ethical ap-

proval: All procedures performed in studies involv-

ing human participants were in accordance with the

ethical standards of the institutional and/or national

research committee and with the 1964 Helsinki dec-

laration and its later amendments or comparable eth-

ical standards.

(If articles do not contain studies with human par-

ticipants or animals by any of the authors, please

select one of the following statements) Ethical ap-

proval: This article does not contain any studies with

human participants performed by any of the authors.

(Or) Ethical approval: This article does not contain

any studies with animals performed by any of the au-

thors. (Or) Ethical approval: This article does not

contain any studies with human participants or ani-

mals performed by any of the authors.

(In case humans are involved) Informed consent:

Informed consent was obtained from all individual

participants included in the study.

8. Bibliography

[1] LPDDR4 Moves Mobile, mobile Forum

2013, presented by Daniel Skinner, Ac-

cessed date: 01/27/2016; http://www.

jedec.org/sites/.../D Skinner Mobile Forum

May 2013 0.pdf.

[2] Marino, M. D., RFiof: An RF approach to the

I/O-pin and Memory Controller Scalability for

Off-chip Memories, in: CF, May 14-16 , Ischia,

Italy, ACM, 2013, pp. 100–110.

[3] D. Vantrease et al, Corona: System Implica-

tions of Emerging Nanophotonic Technology,

in: ISCA, IEEE, DC, USA, 2008, pp. 153–164.

[4] Therdsteerasukdi, Kanit et al., The DIMM tree

architecture: A high bandwidth and scalable

memory system, in: ICCD, IEEE, 2011, pp.

388–395.

[5] Marino, M.D; Li K.C., Implications of Shal-

lower Memory Controller Transaction Queues

in Scalable Memory Systems, Journal of Super-

computing.

[6] Sheng Li et al, McPAT: an integrated power,

area, and timing modeling framework for mul-

ticore and manycore architectures, in: MI-

CRO’09, ACM, New York, USA, 2009, pp.

469–480.

[7] Marino, M. D., RFiop: RF-Memory Path To

Address On-package I/O Pad And Memory

Controller Scalability, in: ICCD, 2012, Mon-

treal, Quebec, Canada, IEEE, 2012, pp. 183–

188.

[8] Little, J. D. C. (1961). ”A Proof for the

Queuing Formula: L = W”. Operations

Research 9 (3): 383387., accessed date:

11/08/2016 ; http://dx.doi.org/10.

1287/opre.9.3.383.

9

[9] Hybrid Memory Cube Specification

1.0, accessed date: 09/12/2016 ;

http://www.hybridmemorycube.org/.

[10] JEDEC Publishes Breakthrough Standard for

Wide I/O Mobile DRAM, accessed date:

11/03/2016 ; http://www.jedec.org/.

[11] Aniruddha N. Udip, Designing Efficient Mem-

ory for Future Computing Systems , in: PhD

Thesis, University of Utah, School of Comput-

ing, Utah, USA, 2012, pp. 1–126.

[12] McCalpin, J. D., Memory Bandwidth and Ma-

chine Balance in Current High Performance

Computers, IEEE TCCA Newsletter (1995)

19–25.

[13] The pChase Memory Benchmark Page, ac-

cessed date: 10/05/2016 ; http://pchase.org/.

[14] Bruno Nogueira et al., Multi-objective opti-

mization of multimedia embedded systems us-

ing genetic algorithms and stochastic simula-

tion, Soft Computing.

[15] Darren M. Chitty, Improving the performance

GPU-based genetic programming through ex-

ploitation of on-chip memory, Soft Computing

20 (2) (2016) 661–680.

[16] Marino, M. D., Li, K.C., Insights on Mem-

ory Controller Scaling in Multi-core Embedded

Systems , International Journal of Embedded

Systems 6 (4).

[17] M. K. e. a. Jeong, A qos-aware memory con-

troller for dynamically balancing gpu and cpu

bandwidth use in an mpsoc, in: DAC, ACM,

New YorkUSA, 2012, pp. 850–855.

[18] SQUASH: Simple QoS-Aware High-

Performance Memory Scheduler for Het-

erogeneous Systems with Hardware Ac-

celerators, accessed date: 10/02/2016 ;

http://http://arxiv.org/abs/1505.07502.

[19] J. M. R. et al., A framework for application

guidance in virtual memory systems, in: VEE,

ACM, 2013, pp. 344–355.

[20] Deng, Q. et al., Memscale: active low-power

modes for main memory, in: Proceedings of

the Sixteenth ASPLOS, ACM, New York, NY,

USA, 2011, pp. 225–238.

[21] Marino, M.D., ABaT-FS: Towards adjustable

bandwidth and temperature via frequency scal-

ing in scalable memory systems, Microproces-

sors and Microsystems.

[22] Deng, Q. et al., Multiscale: Memory system

dvfs with multiple memory controllers, in: Pro-

ceedings of the 2012 ACM/IEEE International

Symposium on Low Power Electronics and De-

sign, ISLPED ’12, ACM, New York, NY, USA,

2012, pp. 297–302.

[23] David et al., Memory Power Management via

Dynamic Voltage/Frequency Scaling, in: Pro-

ceedings of the 8th ACM International Con-

ference on Autonomic Computing, ICAC ’11,

ACM, New York, NY, USA, 2011, pp. 31–40.

[24] Malladi et al, Towards Energy-proportional

Datacenter Memory with Mobile DRAM, in:

Proceedings of the 39th Annual International

Symposium on Computer Architecture, ISCA

’12, IEEE Computer Society, Washington, DC,

USA, 2012, pp. 37–48.

[25] Novakovic, Stanko et al., Scale-out NUMA,

in: Proceedings of the 19th International Con-

ference on Architectural Support for Program-

ming Languages and Operating Systems, AS-

PLOS ’14, ACM, New York, NY, USA, 2014,

pp. 3–18.

[26] Zhang, Xianwei et al., Exploiting dram restore

time variations in deep sub-micron scaling, in:

Proceedings of the 2015 Design, Automation

& Test in Europe Conference & Exhibition,

DATE ’15, San Jose, CA, USA, 2015, pp. 477–

482.

[27] Nair, Prashant J. et al., ArchShield: Architec-

tural Framework for Assisting DRAM Scal-

ing by Tolerating High Error Rates, in: Pro-

ceedings of the 40th Annual International Sym-

posium on Computer Architecture, ISCA ’13,

ACM, New York, NY, USA, 2013, pp. 72–83.

[28] Taassori M. et al., Exploring a Brink-of-Failure

Memory Controller to Design an Approximate

Memory System, in: 1st Workshop on Ap-

proximate Computing Across the System Stack

(WACAS), ACM, Salt Lake City, 2014, pp. –.

[29] Marino, M. D., On-Package Scalability of RF

and Inductive Memory Controllers, in: Euromi-

cro DSD, IEEE, 2012, pp. 923–930.

[30] Nathan L. Binkert et al, The M5 Simulator:

Modeling Networked Systems, IEEE Micro

26 (4) (2006) 52–60.

[31] David Wang et al, DRAMsim: a memory

system simulator, SIGARCH Comput. Archit.

News 33 (4) (2005) 100–107.

10

[32] AMD Reveals Details About Bulldozer Mi-

croprocessors, accessed date: 09/06/2016 -

http://www.xbitlabs.com/news/cpu/display/

20100824154814 AMD Unveils Details About

Bulldozer Microprocessors.html (2011).

[33] CACTI 5.1, accessed Date: 10/22/2016;

http://www.hpl.hp.com/techreports/2008/HPL-

200820.html.

[34] Loh, Gabriel H., 3D-Stacked Memory Archi-

tectures for Multi-core Processors, in: ISCA,

IEEE, DC, USA, 2008, pp. 453–464.

[35] M. Frank Chang et al, CMP Network-on-Chip

Overlaid With Multi-Band RF-interconnect, in:

HPCA, 2008, pp. 191–202.

[36] M.C.F. Chang et al., Power reduction of CMP

communication networks via RF-interconnects,

in: MICRO, IEEE, Washington, USA, 2008,

pp. 376–387.

[37] Micron manufactures DRAM components and

modules and NAND Flash, accessed date:

01/08/2016 ; http://www.micron.com/.

[38] M.C.F. Chang et al, Advanced RF/Baseband In-

terconnect Schemes for Inter- and Intra-ULSI

Communications, IEEE Transactions of Elec-

tron Devices 52 (2005) 1271–1285.

[39] Sai-Wang Tam et al, RF-Interconnect for Fu-

ture Network-on-Chip, Low Power Network-

on-Chip (2011) 255–280.

[40] G. Byun et al, An 8.4Gb/s 2.5pJ/b Mobile

Memory I/O Interface Using Bi-directional and

Simultaneous Dual (Base+RF)-Band Signal-

ing, in: ISSCC, IEEE, 2011, pp. 488,490.

[41] ITRS HOME, accessed date: 08/18/2016 ;

http://www.itrs.net/.

[42] NAS Parallel Benchmarks, ac-

cessed date: 08/09/2016;

http://www.nas.nasa.gov/Resources/Software

/npb.html/.

[43] R. G. Rauber T., Parallel programming: for

multicore and cluster systems, 2nd Edition,

Springer, 2013.

[44] Marino, M.D; Li K.C., Last level cache size

heterogeneity in embedded systems, Journal of

Supercomputing 72 (2) (2016) 503–544.

[45] Marino, M.D, L2-Cache Hierarchical Organi-

zations for Multi-core Architectures, in: Fron-

tiers of High Performance Computing and Net-

working – ISPA 2006 Workshops: ISPA 2006

International Workshops, FHPCN, XHPC, S-

GRACE, GridGIS, HPC-GTP, PDCE, ParDM-

Com, WOMP, ISDF, and UPWN, Proceedings,

Springer, 2006, pp. 74–83.

[46] G. Bontempi , W. Kruijtzer, The use of intelli-

gent data analysis techniques for system-level

design: a software estimation example, Soft

Computing 8 (7) (2004) 477–490.

[47] Calculating Memory System Power for DDR3

Introduction, accessed date: 12/06/2015 ;

http://www.micron.com/.

11

List of Figures

1 memory system general overview . 13

2 (16384 rows, 128 columns, 64 data bits) rank interfaced to a RF-based MC; based on [2][47] 14

3 left to right: (a) frequency versus bandwidth, repeated from [1]; (b) RFiof, repeated from [2] 15

4 transaction queue circuits . 16

5 a and b: top to bottom, bandwidth and instructions-per-cycle (IPC) for STREAM, pChase,

MG, SP, FFT and SOR . 17

6 energy versus transaction queue size for STREAM, pChase, MG and SP 18

12

...

rank

rank

... ..
.

...ro
w

 d
ec

o
d
er

mux

sense amplifiers

column mux

bank

rank
DRAM chip

memory array

MC

MC

MC

multicore

processor

optical or RF interconnection

data/address/command modulated signals

Figure 1: memory system general overview

13

CKE

clock

demodulate register

address

refresh

counter

sense
amplifiers

bank0

memory

array

(16384 x 128 x 64)

16384

I/O gating

column

decoder

read

latch

MUX

64

receiver

8

A0−A13

BA0−BA2

command

.

8192

input

registers

write

drivers

control

logic

.
drivers

.

counter
address

latch

column

control
bank

logic

MUX

address
row

demodulate

demodulate

modulate/

DM

DQS−DQS#

DQ0−DQ7

RF−interconnection

RF−interconnection

Rank interfaced to RF TX/RX

RFMC

Delay
locked
loop
(DLL)

64

demodulate

modulate/

128

bank0

row−
address

latch &

decoder

Figure 2: (16384 rows, 128 columns, 64 data bits) rank interfaced to a RF-based MC; based on [2][47]

14

.

...
trench

...
L1

microstrip and trench
other than I/O pad connected to MCs
solder ball
top surface mettalurgy
power and ground planes
coaxial cable
DRAM RX/TX

substrate package trace
not connected to MCs

RFpin

substrate

coaxial
cable

RFMC

microstrip and trench

L2L1core

processor package

RX/TX

mshr core die

memory package

DRAM rank
die

memory

substrate contPCBPCB

core/L1

core/L1

L2

L2

RFMC

floorplan
processor package

RFMC

RX/TX

RX/TX

DRAM rank

memory
package

DRAM rank

package
memory

coaxial

cable
coaxial

cable

trench

trenchmicrostrip

microstrip

RFpin

RFpin

Figure 3: left to right: (a) frequency versus bandwidth, repeated from [1]; (b) RFiof, repeated from [2]

15

entries

transaction queue (tq):

shift register

enable and /enable
control

unit

counter

clock

Figure 4: transaction queue circuits

16

0

0.5

1

1.5

2

1
6

8 4 d
siz

e

2 1 1
6

8 d
siz

e

4 2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1

B
an

dw
id

th
 n

or
m

al
iz

ed
 to

 th
e

ba
se

li
ne

 (
x

ti
m

es
)

transaction queue size (#entries)

Bandwidth versus Transaction Queue Size

transaction queue size = 1
transaction queue size = 2
transaction queue size = 4

transaction dynamic size
transaction queue size = 8

transaction queue size = 16
baseline bandwidth - transaction queue size = 16

pChase STREAM MG SP FFT SOR

0

0.5

1

1.5

2

1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1

IP
C

 n
or

m
al

iz
ed

 to
 th

e
ba

se
li

ne
 (

x
ti

m
es

)

transaction queue size (#entries)

IPC versus Transaction Queue Size

transaction queue size = 1
transaction queue size = 2
transaction queue size = 4

transaction dynamic size
transaction queue size = 8

transaction queue size = 16
baseline IPC - transaction queue size = 16

pChase STREAM MG SP FFT SOR

Figure 5: a and b: top to bottom, bandwidth and instructions-per-cycle (IPC) for STREAM, pChase, MG,

SP, FFT and SOR

17

0

2

4

6

8

10

1
6

8 d
siz

e

4 2 1 1
6

8 d
siz

e

4 2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1 1
6

8 4 d
siz

e

2 1

E
ne

rg
y-

pe
r-

bi
t n

or
m

al
iz

ed
 to

 th
e

ba
se

li
ne

 (
x

ti
m

es
)

transaction queue size (#entries)

Energy-per-bit versus Transaction Queue Size

transaction queue size = 1
transaction queue size = 2
transaction queue size = 4

transaction dynamic size
transaction queue size = 8

transaction queue size = 16
baseline energy - transaction queue size = 16

pChase

STREAM

MG SP FFT SOR

Figure 6: energy versus transaction queue size for STREAM, pChase, MG and SP

18

List of Tables

1 methodology: tools and description . 20

2 a and b: methodology tools description; benchmarks description 21

19

tool description

Cacti [33] cache latencies configured with

McPAT [6] determine power of individual

path elements: TE and FE

DRAMsim [31] Capture memory transactions from M5 configured with 32 RFMCs. Respond

to M5 with the result of the memory transaction.

Determine power spent and the number of memory accesses and[31][37].

transaction queue size.

M5 [30] Configured as 32-core OOO processor and not L2 shared

cluster (avoid sharing). Generates memory transactions which are

passed to DRAMsim [31]. Miss-status handling register

(MSHR) counts from typical microprocessors [34].

RF-crossbar Implemented in M5 [30] with RF settings from [35][36].

RF-communication delays RF-circuitry modeling and scaling [35][38].

Table 1: methodology: tools and description

20

Core 4.0 GHz, OOO, multicore,

32 cores, 4-wide issue,

turnament branch predictor

Technology 22 nm

L1 cache 32kB dcache + 32 kB icache;

associativity = 2

MSHR = 8, latency = 0.25 ns

L2 cache 1MB/per core ; associativity = 8

MSHR = 16; latency = 2.5 ns

RF-crossbar latency = 1 cycle, 80GB/s

RFMC 32 RFMCs; 1 RFMC/core,

2.0GHz, on-chip

trans. queue entries = 16/MC,

close page mode

Memory rank DDR3 1333MT/s,

1 rank/MC, 1GB, 8 banks,

16384 rows, 1024 columns, 64 bits,

Micron MT41K128M8 [37],

tras=26.7cycles,

tcas=trcd=8cycles

RF

interconnection

length size 2.5 cm

delay 0.185ns

Benchmark Input Size read : write MPKI

Copy, Add, 4Mdoubles per 2.54:1 54.3

Scale, core

Triad 2 interations

(STREAM)

pChase 64MB/thread, 158:1 116.7

3 iterations,

random

Multigrid:MG Class B 76:1 16.9

(NPB) 2 iterations

Scalar Class B 1.9:1 11.1

Pentadiagonal:

SP (NPB) 2 iterations 1.9:1 11.1

FFT: Fast Class B, 1.3:1 6.8

Fourier 3 iterations

Transform (NPB)

(NPB)

SOR 6000 x 6000, 3 iter. 2.5:1 12.5

Table 2: a and b: methodology tools description; benchmarks description

21

