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Abstract

Background An understanding of differences in expert

and novice neural behavior can inform surgical skills

training. Outside the surgical domain, electroencephalo-

graphic (EEG) coherence analyses have shown that during

motor performance, experts display less coactivation

between the verbal-analytic and motor planning regions

than their less skilled counterparts. Reduced involvement

of verbal-analytic processes suggests greater neural effi-

ciency. The authors tested the utility of an implicit motor

learning intervention specifically devised to promote neural

efficiency by reducing verbal-analytic involvement in

laparoscopic performance.

Methods In this study, 18 novices practiced a movement

pattern on a laparoscopic trainer with either conscious

awareness of the movement pattern (explicit motor learn-

ing) or suppressed awareness of the movement pattern

(implicit motor learning). In a retention test, movement

accuracy was compared between the conditions, and

coactivation (EEG coherence) was assessed between the

motor planning (Fz) region and both the verbal-analytic

(T3) and the visuospatial (T4) cortical regions (T3-Fz and

T4-Fz, respectively).

Results Movement accuracy in the conditions was not

different in a retention test (P = 0.231). Findings showed

that the EEG coherence scores for the T3-Fz regions were

lower for the implicit learners than for the explicit learners

(P = 0.027), but no differences were apparent for the

T4-Fz regions (P = 0.882).

Conclusions Implicit motor learning reduced EEG coac-

tivation between verbal-analytic and motor planning

regions, suggesting that verbal-analytic processes were less

involved in laparoscopic performance. The findings imply

that training techniques that discourage nonessential co-

activation during motor performance may provide surgeons

with more neural resources with which to manage other

aspects of surgery.

Keywords EEG coherence � Implicit motor learning �
Surgery skills � Verbal-analytic processing

Recently, study investigating the neural substrate that

underpins how trainees and experts produce surgical skills

at a cortical level has begun to provide a foundation upon
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which to base the development and refinement of surgical

training strategies [1–5]. Trainee surgeons, for example,

have been shown to display significant activation of the

prefrontal cortex early in learning when their skills are

error-prone but not later in learning when their skills have

automated [4, 6]. However, a greater understanding of how

cortical regions interact in response to surgical training is

needed [7].

Outside the surgical domain, electroencephalographic

(EEG) measurement has shaped much of our current

understanding concerning the neurocognitive aspects of

skilled motor performance [8–10]. Experts display ‘‘neural

efficiency,’’ in which cortical activity is refined and non-

essential interaction between the motor planning regions

and other regions of the brain is attenuated [11–16]. Neu-

roplasticity of the cortical architecture is thought to reflect

lowered demands on attention and reduced cognitive

interference in motor planning and execution [8].

A specific neural measure with potential to discriminate

between expert and novice motor performance is EEG

cortical coherence between the verbal-analytic (T3) and

motor planning (Fz) regions [17, 18]. High coherence

suggests extensive coactivation (communication) between

the two regions, whereas low coherence implies trivial

coactivation (regional independence). Elite marksmen, for

example, exhibit lower T3-Fz alpha band coherence than

their subelite counterparts [17]. Interestingly, coherence

between the visuospatial processing (T4) and motor plan-

ning (Fz) regions (T4-Fz) does not differ, suggesting that

neural efficiency is not represented by a uniform decrease

in cerebral activity, but rather by an appropriate ‘‘fit’’ of

neural resources to specific task demands and a consequent

reduction in irrelevant processing [8]. By withdrawing

verbal-analytic engagement from motor performance,

experts reduce neuromotor ‘‘noise’’ and limit potential

interference from nonessential processes.

The need for verbal-analytic involvement in motor

performance at any stage of learning has been questioned

[19–21]. Verbal-analytic processes can interfere with

motor performance and have been implicated in skill

breakdown under psychological stress [19, 20, 22, 23] and

physiologic fatigue [24, 25]. Additionally, inexperienced

performers who depend on verbal-analytic processes tend

to be disrupted by multitasking conditions [26–28].

Implicit motor learning techniques are designed to cir-

cumvent verbal-analytic interference during training. They

result in low conscious awareness of what is learned and

subsequently limited verbal-analytic involvement in motor

performance [19, 29], as reflected by low T3-Fz alpha band

co-activation [30]. Implicit motor learning has potential,

therefore, to promote neural efficiency in surgical training.

We examined this possibility in a laparoscopic surgery

task.

Materials and methods

For this study, 18 volunteers with no prior laparoscopy

experience were recruited from the University of Hong

Kong student community. All the participants were right-

handed, with normal or corrected-to-normal vision.

A continuous tracking task [31–33] was modified to be

highly relevant to laparoscopy training. In continuous

tracking paradigms, a learner tracks a target moving in a

sinusoidal waveform across a monitor by manipulating a

handheld device in the horizontal plane. The waveform

contains a prescribed movement pattern that is repeated in

every trial but embedded between two random movement

patterns that differ in every trial (Fig. 1). With training,

participants become very skilled at tracking the repeated

segment of the pattern. They can be informed that the

pattern repeats and asked to search consciously for it

(explicit motor learning), or they can be completely una-

ware that the pattern repeats (implicit motor learning).

To modify the tracking task for laparoscopy, the hand-

held device was replaced by laparoscopic graspers inserted

through a trocar in a simulated skin pad. The graspers were

used bimanually to maneuver a tracker across an Intuos3

tablet (Wacom, JP, Saitama, Japan). The position of the

tracker on the tablet (horizontal plane) corresponded to the

position of a cursor on a 17-in. liquid crystal display (LCD)

monitor adjusted to the height of the operator.

To simulate scaling of sensorimotor mappings in lapa-

roscopy due to magnification of the operating area by the

endoscope, the movement of the cursor was scaled to

match the movement of the tracker (98). The study par-

ticipants were required to track as accurately as possible a

red target dot that moved in a sinusoidal waveform across

the computer screen. The task was designed in response to

recent criticism of the overemphasis on completion time

measures in surgical training curricula [34].

The participants were assigned to an explicit motor

learning condition (n = 9) or an implicit motor learning

condition (n = 9).1 All the participants were informed that

they would see a red dot on the screen for 36 s and that the

dot would display a waveform pattern of movement.

The participants in the explicit motor learning condition

were told that the middle 12-s segment of the pattern would

be the same for every trial and that they would need to

learn the pattern to improve the accuracy of their move-

ments. Additionally, they were shown a pictorial repre-

sentation of the repeating segment at the beginning of

training and after every three practice trials (Fig. 1, middle

1 The novelty of the research question made it difficult to determine

appropriate power for the sample; however, the sample sizes of the

two learning conditions were in accord with contemporary EEG and

implicit motor learning research [12, 17, 19, 32].
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segment). This information was designed explicitly to

encourage verbal-analytic involvement in performance of

the laparoscopy task. The participants in the implicit motor

learning condition were not informed that the middle seg-

ment of the waveform pattern repeated, nor did they see a

pictorial representation of the repeated segment.2

Training consisted of eight blocks of three trials (n = 24

trials). A 1-min rest interval was provided between blocks.

At 5 min after the final training block, all the participants

completed a retention test (n = 3 trials). Retention tests

typically are used to assess ‘‘true’’ learning once partici-

pants have recovered from fatigue or boredom that accu-

mulates during training [35].

A custom Java program (Sun Microsystems, Santa

Clara, CA, USA) generated the movement patterns and

recorded both the target and cursor locations at a sampling

rate of 32 Hz. Tracking accuracy, indexed by root mean

square error (RMSE), was calculated for the repeated

pattern of movement in each trial. The mean RMSE was

computed for each block of learning and the retention test.

Electroencephalographic activity was recorded through-

out the retention test and in a 1-min standing baseline that

immediately preceded the test. Activity was recorded from

seven scalp locations (Fp1, Fp2, T3, T4, Fz, Cz, Pz) refer-

enced to linked earlobes using a stretchable electrode cap

(ElectroCap Inc., Eaton, OH, USA) in accordance with the

standard international 10–20 system [36]. The ground

electrode was located at the mid forehead. The EEG was

recorded and stored (bandpass filter, 1–45 Hz; notch filter,

50 Hz; sample rate, 1,000 Hz) using a NeuroTop EEG

system (Symtop Instruments, Beijing, People’s Republic of

China). Before each measurement, an impedance test

ensured a sufficient signal-to-noise ratio. The EEG data for

the 12 s of the repeated movement pattern were extracted

for processing and analysis.

Electroencephalographic artifacts caused by eye blinks

were removed by independent component analysis (ICA

[37]). An experienced EEG technician visually inspected the

recordings and removed any other potential biologic arti-

facts (e.g., muscle activation or glosso-kinetic artifacts).

Artifacts were distinguished from cortical activity according

to the duration, morphology, and rate of firing. A Hamming

window (1,024 sample and 50% overlap) then was applied to

the data in preparation for coherence analysis.

Neural efficiency in visuomotor tasks is characterized by

reduced T3-Fz but not T4-Fz alpha band coherence [14, 17].

Therefore, T3-Fz and T4-Fz coherences were calculated in

0.49-Hz frequency bins and averaged across the alpha fre-

quency bandwidth (8–12 Hz) [14, 17]. Both coherence

estimates were subjected to a Fisher’s z transformation

Fig. 1 A visual representation

of waveform patterns from two

exemplar trials. The middle 12-s

segment was repeated in every

trial and embedded between two

12-s segments that differed in

every trial

Fig. 2 The cortical locations of interest for the current study. Fz:

frontal midline premotor region (motor planning). T3: left hemisphere

temporal lobe (verbal-analytic processing). T4: right hemisphere

temporal lobe (visuospatial processing)

2 Manipulation checks at the end of the experiment showed that no

participant in the implicit condition was aware of the repeating

segment.
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before analysis to ensure normal distribution. The process-

ing and analysis steps described earlier were implemented

with the EEGLAB toolbox [37] and custom scripts in

MATLAB (MathWorks, Natick, MA, USA). Figure 2 pro-

vides a schematic of the cortical sites subjected to coherence

analysis.

Results

Laparoscopic task performance

To determine whether the implicit and explicit training

interventions resulted in improved movement accuracy

(RMSE), a group 9 block (2 9 8) analysis of variance

(ANOVA) with repeated measures on the latter factor was

performed. A main effect of block was evident (F = 14.156,

df = 7.112; P \ 0.001; g2 = 0.469), with mean RMSE

decreasing for both conditions during training. No group 9

block interaction was evident (F = 0.459; df = 7.112;

P = 0.862; g2 = 0.028), but there was a main effect of group

(F = 5.180; df = 1.16; P = 0.037; g2 = 0.245).

The mean RMSE tended to be lower for the explicit

motor learning condition than for the implicit motor

learning condition during training. However, this differ-

ence was not present during the retention test (t = 1.245;

df = 16; P = 0.231) (Fig. 3).

EEG coherence

To determine whether implicit and explicit training resulted

in different levels of neural coactivation between the ver-

bal-analytic (T3) and motor planning (Fz) regions (T3-Fz

coherence) and between the visuospatial (T4) and motor

planning (Fz) regions (T4-Fz coherence), separate one-way

analyses of covariance (ANCOVA) were computed using

standing baseline coherence as the covariate. The analyses

showed a significant difference in T3-Fz coherence scores

during the retention test (F = 5.984; df = 1.15; P = 0.027;

g2 = 0.285) but no difference in T4-Fz coherence scores

(F = 0.023; df = 1.15; P = 0.882; g2 = 0.002). As illus-

trated in Fig. 4, T3-Fz coherence was lower for the partic-

ipants in the implicit condition than for the participants in

the explicit condition, suggesting that verbal-analytic

involvement in performance of the repeated movement

pattern was reduced by implicit motor learning.

Discussion

This study aimed to further our understanding of how

different motor learning paradigms have an impact on the

neural architecture, underpinning laparoscopic perfor-

mance. Specifically, we examined whether implicit motor

learning promotes more efficient deployment of neural

resources, as quantified by EEG coherence. We predicted

that implicit motor learning would limit verbal-analytic

involvement in performance of the laparoscopy task,

thereby reducing nonessential alpha bandwidth coactiva-

tion of the left temporal region responsible for verbal-

cognitive processing (T3) and the frontal midline premotor

region of the cortex involved in movement planning (Fz)

[14, 38].

Movement accuracy improved in both training condi-

tions, although accuracy in the implicit motor learning

condition was generally lower than in the explicit motor

learning condition during training. This difference was not

present in the retention test (Fig. 3), suggesting that with

respect to movement accuracy at least, the training inter-

ventions were equally effective for the laparoscopy task.

Informing participants that there was a repeating segment

(explicit condition) appears to have benefited performance

but not learning. This phenomenon is not uncommon in the

motor learning literature, in which benefits of one form of
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practice over another are seen in training but not in

retention tests (e.g., see guided learning vs trial-and-error

learning [39]; blocked practice vs random practice [40]).

Regardless, our analysis of the neural activity under-

pinning performance suggests that the training interven-

tions culminated in different levels of neural efficiency.

Consistent with our predictions, EEG alpha bandwidth

T3-Fz coherence was lower for the implicit motor learning

condition than for the explicit motor learning condition

during the retention test, implying that implicit motor

learners used less verbal-analytic control to support motor

performance than explicit motor learners. No differences

were evident for EEG T4-Fz coherence, however, sug-

gesting that visuospatial processing was essential for per-

formance of the task and thus was little reduced by

training. The same argument has been made for other

visuomotor tasks [16–18].

Taken together, our data suggest that implicit motor

learning allowed learners to achieve the same level of

technical proficiency as explicit motor learning but with

greater neural efficiency. Our findings are consistent with

functional Magnetic Resonance Imaging (fMRI) studies

showing that repetition of a motor task (practice) results in

adaptations of neural activation that do not match accom-

panying improvements in the speed or accuracy of motor

performance [41].

Proficiency levels for standardized laparoscopy tasks are

extrapolated from the performance of highly experienced

surgeons. Trainees generally reach proficiency levels on

the standardized tasks within as few as 6–80 repetitions

[42, 43] but fall short of the ‘‘true’’ expertise of the master

surgeon. For example, contemporary research has identi-

fied multitasking as a key surgical stressor, demonstrating

that the technical proficiency of inexperienced surgeons

(let alone trainees [28]) is disrupted when verbal-analytic

resources are demanded by concurrent tasks [44–46]. The

main advantage of implicit motor learning, therefore, is not

that novices will be quicker to attain movement profi-

ciency, but rather that greater neural efficiency (i.e., more

expert-like mapping of neural resources to task demands)

allows them to deploy resources more easily to other

nontechnical aspects of surgical performance. Indeed,

preliminary research has shown that implicit motor learn-

ing interventions facilitate effective multitasking during the

completion of a surgical knot-tying procedure [47].

The EEG technique clearly offers many benefits for

researchers seeking to examine the neural substrate

underpinning surgical performance and learning. It has

excellent temporal resolution; it is relatively cheap and

unobtrusive (compared with fMRI or positron emission

topography); and its utility is supported by decades of

research in other dynamic visuomotor task environments

[8–10, 14]. However, research adopting a variety of

methods and protocols (e.g., functional near-infrared

spectroscopy [2]) is needed if we are to support surgical

training fully with objective data based on changes in

cortical activation. Nevertheless, our findings provide

support for the efficacy of implicit motor learning in lap-

aroscopy training. Reduced verbal-analytic involvement in

movement seems likely to promote neural efficiency during

performance, freeing up resources to deal with other non-

technical aspects of surgical performance when they arise.
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