
Citation:
Schreuders, ZC and Shaw, T and Shan-A-Khuda, M and Ravichandran, G and Keighley, J and
Ordean, M (2017) Security Scenario Generator (SecGen): A Framework for Generating Randomly
Vulnerable Rich-scenario VMs for Learning Computer Security and Hosting CTF Events. USENIX.

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/3955/

Document Version:
Article (Published Version)

Creative Commons: Attribution-Noncommercial-Share Alike 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/3955/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Security Scenario Generator (SecGen): A Framework for Generating

Randomly Vulnerable Rich-scenario VMs for Learning Computer Security

and Hosting CTF Events

Z. Cliffe Schreuders, Thomas Shaw, Mohammad Shan-A-Khuda, Gajendra Ravichandran, and

Jason Keighley, Leeds Beckett University

Mihai Ordean, University of Birmingham

Abstract

Computer security students benefit from hands-on

experience applying security tools and techniques to
attack and defend vulnerable systems. Virtual machines

(VMs) provide an effective way of sharing targets for
hacking. However, developing these hacking challenges

is time consuming, and once created, essentially static.
That is, once the challenge has been "solved" there is

no remaining challenge for the student, and if the
challenge is created for a competition or assessment,

the challenge cannot be reused without risking
plagiarism, and collusion.

Security Scenario Generator (SecGen) can build

complex VMs based on randomised scenarios, with a
number of diverse use-cases, including: building

networks of VMs with randomised services and in-the-
wild vulnerabilities and with themed content, which can

form the basis of penetration testing activities; VMs for
educational lab use; and VMs with randomised CTF

challenges. SecGen has a modular architecture which
can dynamically generate challenges by nesting

modules, and a hints generation system, which is
designed to provide scaffolding for novice security

students to make progress on complex challenges.
SecGen has been used for teaching at universities, and

hosting a recent UK-wide CTF event.

1. Introduction

Computer security students benefit from hands-on

experience applying security tools and techniques to
attack and defend vulnerable systems. Practical lab

work and pre-configured hacking challenges are
common practice both in security education and also as

a pastime for security-minded individuals. Competitive
hacking challenges, such as Capture the Flag (CTF)

competitions have become a mainstay at industry
conferences and are the focus of large online

communities. CTF activities have been used in
education as an effective way of providing and

assessing engaging hands-on security challenges, and is
often the focus of student hacking society activity (see

e.g. [1]–[3]). Virtual machines (VMs) provide an

effective way of sharing targets for hacking, and can be
designed in order to test the skills of the attacker.

Websites such as Vulnhub [4] host pre-configured
hacking challenge VMs and are a valuable resource for

those learning and advancing their skills in computer
security. However, developing these hacking challenges

is time consuming, and once created, essentially static.
That is, once the challenge has been "solved" there is

no remaining challenge for the student, and if the
challenge is created for a competition or assessment,

the challenge cannot be reused without risking
plagiarism, and collusion.

Delivering hacking scenarios to students involves a

number of existing challenges, which we aim to
overcome: existing pre-configured hacking challenges

(such as Metasploitable and those on VulnHub) are
typically static and therefore they suffer from limited

re-play and reuse, since they only need to be solved
once before a solution/write-up is available; and, as a

consequence, academic or competitive assessment via
pre-developed scenarios is fraught with the risk of hard

to detect or prevent plagiarism and collusion.

The typical attempted solution to these issues is the
time-consuming process of manually configuring

hacking scenarios as vulnerable learning scenarios are
required, typically on an event-by-event basis,

accepting that each student has the same challenge and
the same CTF flags to find.

This is not practical at scale: the network infrastructure

and staff costs of running a single two day event is
large (see e.g. [5]) and it can be argued that providing a

whole cohort of students with appropriate and
randomised assessment tasks, across a 12 week course

is not practical using traditional methods.

Recently, there has been some related work to
randomise security challenges or flags (such as [2], [6],

[7]); however, these approaches are focussed on adding
randomness to specific challenges or generating random

flags that are inserted into static challenges.

We have created Security Scenario Generator
(SecGen)1 which provides a robust framework that can

build complex VMs based on randomised scenarios,
with a number of diverse use-cases, including: building

networks of complex VMs with randomised services
and in-the-wild vulnerabilities and with themed content

such as business names, employees, and so on, which
can form the basis of penetration testing activities; VMs

for educational lab use; and VMs with randomised CTF
challenges, with randomised (yet meaningful)

challenges including real-word vulnerabilities. SecGen
has a number of unique features, including a modular

architecture which can dynamically generate challenges
by nesting modules, and a hints generation system,

which is designed to provide scaffolding for novice
security students to make progress on complex

challenges.

In this paper we describe our aims, present the SecGen
framework, including its architecture, configuration

language, and use cases, and present evaluation based
on using the system for teaching at universities, and

hosting a recent UK-wide CTF event.

2. Related Literature

Capture The Flag (CTF) competitions have been

popular in the computer security community since the
90s, including the first DEFCON CTF [8]. Other

popular annual CTF competitions include those that
target university students, such as CSAW CTF [9], [10]

and RuCTF [11], those that target high schools, such as
PicoCTF [7], [12], others include Ghost in the

Shellcode [13], Codegate [14], and UCSB iCTF [15].
The website ctftime.org [16] tracks these CTF events

and many more, and lists thousands of teams that take
part in competitions on an almost weekly basis. Many

CTF events are conducted entirely online, such as
DEFCON CTF Qualifiers, and online CTFs often

feature a write-up submission, while others are
conducted in-person, such as DEFCON CTF, and

typically include a live leaderboard.

The most common style of CTF is based on jeopardy

challenges, where competitors are typically presented

with a board of independant challenges, typically with
downloads of files for each challenge. Other styles of

CTF include attack-defence, where the focus is on
attacking or defending systems from attack while

keeping services available [17]. In some cases, such as
CCDC [18], competing student teams focus entirely on

defence, while in other cases, such as RuCTFE [11],
teams both patch and defend their systems while

attacking others. Attack-defence CTFs often distribute
vulnerable systems in the form of VMs. Various forms

of games-based learning and gamification (such as

1 SecGen is free and open source software (FOSS)
available at http://github.com/cliffe/SecGen

leveling-up and leaderboards) have been applied to
security education [19], [20]. Gondree et. al [21]

emphasise diversity of the variety of approaches taken
and describe security games as being on a continuum

based on task variety and adversarial dynamicity (such
as whether teams interact with each other); while

acknowledging that this is an over-simplification and
that many other game attributes are important.

Capture The Flag (CTF) competitions are a popular

means of engaging students with cyber security. The
pedagogical benefits of CTF competitions have been

widely reported. Efforts to incorporate CTF in higher
education (HE) include engaging students in out-of-

class CTF activity to cultivate “informal learning
spaces” [1], [22], delivering the lab work exercises in

the form of CTF-style challenges [2], where flags are
revealed where tasks are completed or challenges are

solved, and Class Capture-the-Flag Exercises (CCTFs)
[23], where teams play-off against each other in regular

in-class competitions.

Challenges in running CTF events include the effort
required to design and test challenges for quality and

appropriate difficulty level, especially where the aim is
to ensure accessibility for beginners [9]. The effort

required to create challenges and attack scenarios
(whether CTF-style or other vulnerable scenarios such

as Metasploitable or VMs posted to Vulnhub) is
substantial, and time consuming, and as stated earlier,

essentially static, making reuse problematic.

Various frameworks for hosting CTFs have been
published, such as Facebook CTF (FBCTF) [24], CTFd

[25], HackTheArch [26], Mellivora [27], NightShade
[28], and picoCTF-Platform 2 [29]. These frameworks

typically present jeopardy challenges and scoreboards,
and provide administrators a web interface for

managing challenges. The iCTF Framework [15] can be
used to host attack-defence CTFs, and can generate

VirtualBox VMs for each team using setup scripts and
vulnerable services that are manually created for each

event. The InCTF Framework [17] builds on iCTF
Framework to deploy CTFs and teams’ exploits on

Docker containers. While these various frameworks
lower the barrier for hosting CTF events, the challenges

are typically static, and as a result challenges are often
not publicly published, and as such each new CTF

event involves manually creating new challenges.
Furthermore, most frameworks are geared towards

jeopardy-style CTFs with either one or no hints, and no
existing framework mets our aims, as discussed in the

following section.

CyTrONE is a framework that aims to automate
environment setup tasks for security education [30].

CyTrONE has a management UI, integrates with LVEs,
and YAML specifications state software to install and

run, and can include questions and answers to present to

http://github.com/cliffe/SecGen

users.

Previous work to provide randomisation to security
challenges includes PicoCTF-Platform 2, which

includes automatic problem generation (APG), where
permutations of challenges can be generated on a per-

team basis (or allocated from polls of instances for
improved scalability), and served to teams via the web

interface [7]. This approach could be used to generate
dynamic challenge content (as APG been applied in

other disciplines [31]); however, PicoCTF 2014 solely
used APG to detect and prevent cheating by generating

different flags per-team [7]. Attempts to share flags
were detected 1081 times (0.84%). Chothia et. al [2]

devised a CTF system to prevent flag sharing by
automatically generating separate flags (based on

public key cryptography) per-student in a single VM
that is distributed to students. Feng developed

MetaCTF [6], which provides polymorphic and
metamorphic reverse engineering challenges so that

students are given unique challenges, and which is
designed around jeopardy-style CTF challenges for a

HE curriculum, with a scaffolded progression of
exercises. Other randomisation of reverse engineering

security challenges includes Tigress, which provides
dynamic obfuscation of C code [32].

The authors are not aware of any other projects that

provide randomisation at the system/VM level for
generating randomly vulnerable systems.

3. Aims and Methods

3.1. Overall Aim

The overall aim for for this work was to provide a
randomizable, flexible, and general purpose method for

specifying and generating VMs for security education
and training purposes.

3.2. Use Cases

The educational use-cases include:

● simulations of organisations with a mix of

secure and insecure services; with desktop and

servers; for simulated security audits;

● security lab exercises; and,

● challenges for CTF events or CTF-style lab

work.

3.3. Rich-Scenarios

To achieve these ambitious use-cases, rather than focus
on generating standalone jeopardy challenges in the

form of individual files, the aim of this work is to
output a set of VMs, representing rich-scenarios. Each

rich-scenario can include:

● One or more systems (VMs)

● Complete operating systems, including server

and desktop systems

● Networked configuration, including multiple

network segments

● Network services (such as FTP, IRC, HTTP,

NFS)

● System configuration (such as users and

accounts, and software installed)

● Files representing thematic content, such as

themed websites

● Software vulnerabilities (including in-the-wild

software vulnerabilities, and randomly

generated vulnerabilities in protocols or

software/websites)

● Configuration vulnerabilities (including

misconfigured access controls and services,

weak passwords, and so on)

● Data interpretation challenges including

steganography, encryption and encoding

● “Loot”, such as flags or simulated sensitive

data

● CTF-style challenges (where solving

challenges or compromising vulnerabilities

such as any of the above leads leads directly to

the discovery of flags)

3.4. Randomisation

Randomisation and modular reuse of the above
elements is a primary goal. Our aim is to randomise the

following:

● Selection: randomised selection of the above

elements. For example, randomly choosing

operating system(s), network configuration(s),

service(s), system configuration(s), including

user accounts and passwords, with random

selection of in-the-wild vulnerabilities or

security challenges.

● Parameterisation: all of the elements should

be able to be configured (for example, the

ports services should use, strength of

passwords, theme of the scenario), and this

configuration will be randomizable.

● Nesting: data generation (such as the

generation of random flags) and interpretation

challenges (such as encoding) should be able

to be combined/nested in randomised ways.

For example, a flag can be randomly

generated, and then encoded in some random

way before being leaked via a random

software vulnerability.

3.5. Specification Language and Constrained

Randomisation

A further aim is to design and implement a scenario

specification language, that will randomly generate
rich-scenarios for these use cases. Given the significant

diversity in potential randomisation implied by our

randomisation aims, it is important that the
specification language can specify the inclusion of

elements and constrain randomisation to meaningful
and context appropriate selection, parameterisation, and

nesting.

The specification language will be capable of
representing the generation of unique security scenarios

based on a configurable set of optional constraints: for
example, a network of servers, with specific kinds of

services (such as a Web server and a file server) with
specific kinds of software or misconfiguration

vulnerabilities (such as remote code execution and local
privilege escalation vulnerabilities). Vulnerabilities and

services will be randomly selected and installed on
VMs, as specified.

3.6. Student Engagement

The project aimed to engage students, both in

development, and in using and evaluating the VMs and
learning environments that were generated. We aimed

to use our framework to provide rich-scenarios for
penetration testing exercises, and to introduce new

university student hacking teams to CTFs and as a
stepping-stone to taking part in international

competitions.

3.7. Development Methodology

Software design and development was led by the
primary-author, with a cross-institutional software

development team that over time included 10
undergraduate students (6 employed, others working on

sub-projects), 1 postgraduate MRes student, and 1
postdoctoral researcher. Additionally, a team of

students were employed to develop a range of CTF-
style challenges, and adapt CTF challenges from

existing security labs (such as [2]).

The software was developed open source using a
relaxed Scrum methodology, with a backlog, regular

sprint meetings, and task assignment. The current
version was always available via Github, and typically

members of the team tested each other’s code before
committing to the master branch.

This approach was designed to engage our students in

developing their skills beyond their taught courses,
giving them experience in software development, and

developing learning materials.

4. Security Scenario Generator (SecGen)

4.1. Introducing SecGen

Here we present Security Scenario Generator (SecGen),

which is designed to achieve all of the aims described
in Section 3.

SecGen is a Ruby application, with an XML

configuration language. SecGen reads its configuration,
including the available vulnerabilities, services,

networks, users, and content, reads the definition of the

requested scenario, applies logic for randomising the
scenario, and leverages Puppet and Vagrant to

provision the required VMs.

SecGen generates randomised vulnerable VMs that are
created based on a scenario specification, which

describes the constraints and properties of the VMs to
be created. For example, a scenario could specify the

creation of a system with a remotely exploitable
vulnerability that would result in user-level

compromise, and a locally exploitable flaw that would
result in root-level compromise. This would require the

attacker to discover and exploit both randomly selected
vulnerabilities in order to obtain root access to the

system. Alternatively, the scenario that is defined can
be more specific, specifying certain kinds of services

(such as FTP or SMB) or even exact vulnerabilities (by
CVE).

This work builds on an early prototype implementation

that demonstrated the feasibility of the combination of
technologies [33]. The system was re-architected and

advanced features were implemented to achieve our
ambitious set of aims, and which are described in the

following sections.

4.2. Architecture and Modularity

SecGen leverages a number of virtualisation and
automation technologies, including Vagrant and

Puppet. Vagrant, which is typically used by developers
to manage development environments [34], is used to

provision VMs, Puppet, which is typically used to
manage large scale deployments of servers [35], is used

to configure the VMs, and Librarian-puppet is used to
manage the deployment of the selected puppet modules.

The final output currently includes VirtualBox VMs.

SecGen is designed to be highly modular, with a
directory structure and general design philosophy

loosely inspired by Metasploit’s modular structure. For
example, the modules/vulnerabilities/ directory

includes modules representing various vulnerabilities,
sometimes directly relating to Metasploit Framework’s

corresponding modules/exploits/ modules.

The underlying structure of SecGen is that of a number
of “system” objects, which represent VMs (with a

Vagrant basebox that is selected based on specified
attributes), and each is associated with a list of SecGen

“module” objects which are primarily selected based on
specified attributes.

Each module has a type (such as vulnerability, service,

utility, generator, or encoder), module path, and a
associative array of attributes (such as CVE number,

difficulty level, CVSS, and so on). Modules can receive
data into named parameters (such as port_number or

strings_to_leak), either from the output from another
module or from data stored in a datastore (variable).

Modules can output data, which can be directed at the

input of another module’s parameters or into a
datastore. Modules can include Puppet code which is

deployed to and executed on the VMs (as in the case for
vulnerability, service, and utility modules), or local

code which provides randomisation or transformation
of data (as with encoder and generator modules).

Furthermore, modules can have default inputs, and
dependencies on or conflicts with other modules.

Note that this modular structure is further explained

with examples in the following sections.

There are two stages to running SecGen:

Stage 1) building the project output.

Stage 2) building VMs based on the project

output.

At Stage 1, all available modules are read, and the

scenario definition is also read. The scenario definition
is used to select the modules to include for each system.

In some cases modules will automatically add other
modules to the scenario: either due to a dependency or

as a default input to a parameter.

All randomisation happens at Stage 1. Modules that
have local code are run to produce output, which is then

fed into other modules’ parameters.

Librarian-puppet is then used to deploy all of the
puppet modules corresponding to the SecGen modules

that have been selected into the project output directory.
A Vagrantfile is created, which makes reference to all

the generated data and puppet modules. Other outputs
include files describing the generated scenario,

including an XML file listing flags with corresponding
hints.

Stage 2 simply involves invoking “vagrant up”, which

leverages Vagrant to generate and provision the VMs.

4.3. SecGen Modules

The types of SecGen modules are:

● base: a SecGen module that defines the OS

platform (VM template) used to build the VM

● vulnerability: a SecGen module that adds an

insecure, hackable, state (including realistic

software vulnerabilities known to be in the

wild or fabricated hacking challenges)

● service: a SecGen module that adds a

(relatively secure) network service

● utility: a SecGen module that adds (relatively

secure) software or configuration changes

● network: a virtual network card

● generator: generates output, such as random

text

● encoder: receives input, such as text, performs

operations on that to produce output (such as,

encoding/encryption/selection)

The root of a module’s directory always contains a
secgen_metadata.xml file (illustrated in Figure 1),

which defines the attributes of the module. In the case
of vulnerability modules, this file contains information

about the vulnerability, including CVE, privilege level
the successful attacker gains, access level required in

order to attack (remote vs local), any metasploit module
that can be used to exploit the vulnerability, CVSS

score and vector string, difficulty level, and description.
This information can be used to filter module selection

for scenarios, and also used to specify modules that
conflict with each other or to satisfy dependencies

between modules.

<?xml version="1.0"?>

<vulnerability [snip]>

 <name>DistCC Daemon Command Execution</name>

 <author>Lewis Ardern</author>

 <module_license>MIT</module_license>

 <description>Distcc has a documented security weakness

 that enables remote code execution.</description>

 <type>distcc</type>

 <privilege>user_rwx</privilege>

 <access>remote</access>

 <platform>unix</platform>

 <!--module inputs-->

 <read_fact>strings_to_leak</read_fact>

 <read_fact>leaked_filenames</read_fact>

 <default_input into="strings_to_leak">

 <generator type="message_generator"/>

 </default_input>

 <default_input into="leaked_filenames">

 <generator type="filename_generator"/>

 </default_input>

 <!--optional vulnerability details-->

 <difficulty>medium</difficulty>

 <cve>CVE-2004-2687</cve>

 <cvss_base_score>9.3</cvss_base_score>

 <cvss_vector>AV:N/AC:M/Au:N/C:C/I:C/A:C

 </cvss_vector>

 <reference>https://www.rapid7.com/db/modules/

 exploit/unix/misc/distcc_exec</reference>

 <reference>OSVDB-13378</reference>

 <software_name>distcc</software_name>

 <software_license>GPLv2</software_license>

 <!--optional hints-->

 <msf_module>exploit/unix/misc/distcc_exec

 </msf_module>

 <hint>On a non-standard port</hint>

 <solution>Distcc is vulnerable, and on a high port

 number.</solution>

 <!--Cannot co-exist with other installations-->

 <conflict>

 <software_name>distcc</software_name>

 </conflict>

</vulnerability>

Figure 1: secgen_metadata.xml

4.4. Scenario Specification

The selection logic for choosing the modules to fulfill
the specified constraints can filter on any of the

attributes in each module's secgen_metadata.xml file
(for example, difficulty level and/or CVE), and any

ambiguity results in a random selection from the
remaining matching options (for example, any

vulnerability matching a specified difficulty level). The
filters specified are regular expression (regexp)

matches.

As illustrated in Figure 2, the default scenario defines a
scenario with a remotely exploitable vulnerability that

grants access to a user account, and a locally
exploitable root-level privilege escalation vulnerability.

<?xml version="1.0"?>

<scenario [snip]>

 <!-- an example remote storage system, with a

 remotely exploitable vulnerability that can then

 be escalated to root -->

 <system>

 <system_name>storage_server</system_name>

 <base platform="linux"/>

 <vulnerability privilege="user_rwx"

 access="remote"/>

 <vulnerability privilege="root_rwx"

 access="local"/>

 <service/>

 <network type="private_network" range="dhcp"/>

 </system>

</scenario>

Figure 2: default_scenario.xml

<?xml version="1.0"?>

<scenario [snip]>

 <system>

 <system_name>file_server</system_name>

 <base platform="linux"/>

 <vulnerability module_path=".*nfs.*">

 <input into="strings_to_leak">

 <value>Leak this text and a flag</value>

 <generator type="flag_generator"/>

 </input>

 </vulnerability>

 <network range="dhcp"/>

 </system>

</scenario>

Figure 3: Module parameterisation

Parameterisation enables modules to be fed input. For

example, a vulnerability can be fed information to leak
as output. And modules can be nested, so that the

output from nested modules are passed into the input
for the parent modules. SecGen module parameters are

analogous to named and (always) optional parameters.
For example, Figure 3 shows a system with a NFS

share that will host a publicly exported file containing
leaked text, including a generated flag.

Figure 4 illustrates how the flag generator can be nested

within an encoder to first encode the flag before it is
leaked.

Generators and encoders will always produce/return an

(unnamed) array of strings, which can be directed to
input parameters for other modules (by parameter name

into modules they are nested under, as illustrated in
Figure 4). All string encoders will accept and process

the "strings_to_encode" parameter, so it's safe to pass
input into any randomly selected encoder. It is also

possible to direct the output from multiple modules to
input to the same module parameter, by nesting

multiple modules under an <input> element. In which
case each of the nested inputs to that same parameter

are concatenated into the same array of strings.

 [snip]

<vulnerability module_path=".*nfs.*">

 <input into="strings_to_leak">

 <encoder name="BASE64 Encoder">

 <input into="strings_to_encode">

 <value>Leak this text</value>

 <generator type="flag_generator"/>

 </input>

 </encoder>

 </input>

</vulnerability>

 [snip]

Figure 4: Nesting encoders

Note that module definitions can specify a set of

(potentially nested) modules that should be selected for
input to a parameter, if an input is not specified in the

scenario. This is illustrated in Figure 1, where
strings_to_leak has a generated message as it’s default

value.

Other advanced features include methods for ensuring
modules selected are unique, and using datastores

(variables) to hold values for reuse. Datastores are
similar to variables in other languages. However, a

datastore always holds an array of strings, and writing
to the datastore concatenates to the array of strings.

Datastores can be used to store generated information
for complex scenarios, such as the organisation's name,

employees, etc, which can then be fed through to
websites, and services, user accounts, and so on.

This specification language has proven to be a powerful

method for generating meaningful challenges and
systems. However, through our experience with

collaborative software development we concede it has a
steep learning curve to development.

Access to existing scenarios makes SecGen's barrier for

entry low. This removes the requirement for end users
of the framework to understand SecGen's configuration

specification. Scenarios can be found in the
scenarios/ directory. Developed scenarios include a

set of VMs for a randomly generated fictional
organisation, with a desktop system, webserver, and

intranet server, ready for a security audit; and a set of
VMs for hosting a CTF competition; and many other

example scenarios.

4.5. Implemented Functionality

Over 100 modules have been implemented to date,
which provides functionality that makes the SecGen

framework practically useful. 11 service modules
provide a range of secure services including NFS, IRC,

NTP, SMB, FTP, database, and web servers. 11 utility
modules provide various system configurations such as

user accounts, firewalls, and desktop environment
configuration. 24 vulnerability modules provide a range

of vulnerable services, such as vulnerable NFS, IRC,
SMB, FTP, SSH, web servers and web apps, vulnerable

desktop configurations, access control and system
configurations, the majority of which can be deployed

either as CTF challenges or to provide open-ended
simulations. 45 generator modules can provide content,

such as business and user names, addresses and email
addresses, messages, filenames and directories, images,

ssh keys, passwords, and CTF flags. 13 encoder
modules provide various forms of encryption,

conversion between data formats, and encoding
methods. Network modules provide network cards for

scenarios with multiple network segments. The focus
has been on deploying Linux systems; however, we

have had success testing Windows functionality, which
is in development.

4.6. Front End: CTF Website and Hints

A website has been developed to provide a front end to

SecGen generated VMs for CTF events. The website
provides a scoreboard, timer, flag submission, progress

indication, and hints.

SecGen automatically generates a marker.xml file,
listing all the flags, and for each flag a list of

corresponding hints, based on the metadata for the
module. Hints range from general hints, such as trying

port scans, to progressively more specific hints all the
way through to the description of a solution. The

approach taken for hints was to penalise points for each
hint taken, although the penalties for hints will never

exceed the reward for submitting the flag. Where
multiple flags are behind the same challenge (for

example, differently encoded flags behind the same
vulnerability), submitting any of those flags unlocks

repeated hints (such as how to exploit the
vulnerability).

5. Evaluation

5.1. Rich-scenarios and randomisation

SecGen provides a platform that uniquely and

demonstrably achieves the aims described in Sections
3.1 to 3.5. The framework can demonstrably generate

highly-randomised VMs based on rich-scenarios.

5.2. Experience Teaching Using SecGen

SecGen has been applied in HE to provide security
exercises, from small-scale exploitation exercises

through to open-ended audits of a complex set of VMs.
Recently a rich-scenario was developed which was used

to create targets for team-based security audit projects.
The scenario includes a web server, intranet server, and

desktop system. The attacker (Kali Linux) VM was
placed on the same network segment as the webserver

(ie. sharing the same virtual network card), which in
turn was connected to the intranet and desktop systems.

The students were required to breach the webserver
before pivoting attacks through to the other systems.

The scenario includes a generated business name,
manager, and employees, and involves a random

selection of secure and vulnerable services and
configurations. A security audit remit was also

generated for each team. Student teams followed a
security audit methodology and completed a writeup.

The output from SecGen was used to assist marking.

5.3. CTF Using SecGen

SecGen was used to generate a set of VMs for use in
hosting a UK-wide full-day in-person CTF event. 59

students from 10 universities competed. 3 VMs were
generated for the event using SecGen, including one

with random decoding challenges, one with a random
set of vulnerabilities and image steganography, and

another with a root-level privilege escalation. At the
end of the event SecGen was presented to participants.

An evaluation survey was run to gauge success of the

framework and the event. The response rate was 21 of
the 59 participants from 8 of the 10 universities that

took part. 52% were postgraduate students, 43%
undergraduate (1 reported “N/A”). Many were

completing the first year of their degree (38%).

Satisfaction of the event was good, with only one
participant responding negatively on the scale of

satisfaction. A multiple linear regression analysis was
conducted to understand whether the level of

satisfaction with the event was impacted by the level of
study (not applicable/undergraduate/postgraduate), year

of current course (not applicable/first year/mid-
course/final year), whether they had taken part in a

Capture The Flag (CTF) or other hacking challenge
before (yes/no), level of knowledge and understanding

of cybersecurity, and sex of the participants
(male/female/prefer not to say). All assumptions such

as independence of residuals, evidence of
multicollinearity, and assumptions of normality were

met. Examining all of the independent variables, the
overall model that was found to have best fit of the data

has F (3,17) = 3.313, p < 0.05, R2 = 0.369, two of the
independent variables (stage of study and whether they

had taken part CTF before) have statistically significant

contribution in explaining variation (nearly 37%) of the
dependent variable (satisfaction with the event) with p

< 0.05. Table 1 (below) represents regression
coefficients with standard errors. The model suggests

that in general the participants who are at a later year of
study were less satisfied with the event compared to

participants at earlier stages of study. The result might
support the view expressed in previous research that

there is a need to preserve balance between difficulty
and ease for designing security competitions with

respect to the target audience [5]. The higher
satisfaction amongst those that had participated in CTF

previously perhaps supports the findings from
qualitative data that indicated an appreciation for the

uniqueness of the event such as the “attack-format” and
use of attack tools, which could be appreciated more by

the participants with past hacking challenge experience.

Table 1: Summary of Multiple Regression Analysis on

Satisfaction

Variable B
SEB

β

Intercept 5.432 0.656

Level of study -0.322 0.302 -0.213

Year of study -0.425 0.169 -0.503*

CTF experience -0.825 0.355 -0.460*

Note: *p<.05; B=unstandardized regression coefficient;

SEB=Standard error of the coefficient; =standardized coefficientβ

81% (n=18) reported that their level of knowledge and

understanding of cyber security increased as a result of
participating in the event. 81% also expressed an

interest in competing in similar events in the future (on
a 1-5 Likert scale M=4.43, SD=1.12), with positive but

slightly lower interest in online team competitions
(M=4.14, SD=1.10), online individual (M=4.10,

SD=1.13), and offline (M=3.67, SD=1.35).

The difficulty level was good. During the one day event
no team completed every SecGen flag (min=1, max=18,

out of 21 possible flags). On a 5 point Likert scale of
too easy to too hard, 67% (n=14) selected ‘3’ (not too

easy or too hard) (M=3.10, SD=0.7).

The hints system received a mixed response, with
participants largely divided over how hints should be

implemented in a CTF event. 19% thought the best
approach to hints was to have multiple hints per flag -

at a penalty (as with the SecGen VMs), another 19%
prefered having one hint per flag with no penalty, 19%

prefer to have free hints from organisers directly, 14%
to have one hint per flag at a penalty, and 29% “Other”

with various comments, including an indication that
teams avoiding making use of the hints, or that they

found the hints unhelpful or too helpful.

Significantly, a large number of those who participated
responded that they were interested in making use of

the SecGen framework in the future. 86% (n=19) would
compete in similar CTF events using SecGen (1

answered “No”, 1 other “Not sure”), 72% responded
they were interested in browsing the source code to

understand the challenges, 63% would use SecGen to
generate VMs as personal challenges, 59% were

interested in hosting their own CTF events using the
framework, and 55% were interested in contributing to

SecGen development.

Qualitative data also indicates a positive experience.
Multiple participants noted the uniqueness of the

“attack-format”, and use of attack tools, which was
compared to the usual jeopardy format.

Negative comments were focussed on the networking

issues that some teams faced, when configuring the
VMs that were distributed to teams’ own laptops.

Following the event the authors received significant

interest in using SecGen to run further CTF events for
universities and schools.

6. Future Work

SecGen benefits from the development of further

modules to add functionality, such as more
vulnerabilities, generated content, encoding methods,

and CTF challenges. The authors are developing further
SecGen modules and still in the process of converting

CTF challenges that have been developed.

Work is in progress to incorporate further digital
forensics challenges, and output to forensic disk

images, such as E01 files. Related work includes
incorporating Microsoft Windows baseboxes and

vulnerabilities into SecGen. Work is also ongoing to
add cloud deployment of SecGen VMs, specifically to

an oVirt-based lab infrastructure. Work is also ongoing
to further integrate lab sheet based lab exercises, with

randomised worksheets. The platform will be extended
with further gamification and immersive scenarios.

7. Conclusion

SecGen provides a flexible and highly modular

framework that generates VMs based on scenario
definitions that can include randomisation of

vulnerabilities (from in-the-wild software
vulnerabilities and misconfiguration, to randomised

CTF-style challenges), secure services and
configuration, and content that can be generated and

encoded to provide meaningful rich-scenario style
challenges. SecGen has been successfully used to

enhance security education, by providing randomised
targets for lab exercises, large team project security

audits, and for generating CTF competition VMs.
SecGen can be used to overcome the challenges of

generating unique security challenges (and the issues
inherent when not randomising tasks given to students),

and is free and open source software (FOSS), ready for
use in security education. The authors have clear plans

for continued development and future work.

Acknowledgements

This project is supported by a Higher Education
Academy (HEA) learning and teaching in cyber

security grant (2015-2017). Tom Chothia managed
University of Birmingham’s contributions to the

project.

References

[1] A. Mansurov, “A CTF-Based Approach in

Information Security Education: An

Extracurricular Activity in Teaching Students at

Altai State University, Russia,” Modern Applied

Science, vol. 10, no. 11, p. 159, Aug. 2016.

[2] T. Chothia and C. Novakovic, “An Offline Capture

The Flag-Style Virtual Machine and an

Assessment of Its Value for Cybersecurity

Education,” in 2015 USENIX Summit on Gaming,

Games, and Gamification in Security Education

(3GSE 15), Washington, D.C., 2015.

[3] C. Eagle and J. L. Clark, “Capture-the-Flag:

Learning Computer Security Under Fire,” Jul.

2004.

[4] “Vulnerable By Design ~ VulnHub.” [Online].

Available: https://www.vulnhub.com/. [Accessed:

05-May-2017].

[5] N. Childers et al., “Organizing Large Scale

Hacking Competitions,” in Proceedings of the 7th

International Conference on Detection of

Intrusions and Malware, and Vulnerability

Assessment, Berlin, Heidelberg, 2010, pp. 132–

152.

[6] W. Feng, “A Scaffolded, Metamorphic CTF for

Reverse Engineering,” in 2015 USENIX Summit

on Gaming, Games, and Gamification in Security

Education (3GSE 15), Washington, D.C., 2015.

[7] J. Burket, P. Chapman, T. Becker, C. Ganas, and

D. Brumley, “Automatic Problem Generation for

Capture-the-Flag Competitions,” in 2015 USENIX

Summit on Gaming, Games, and Gamification in

Security Education (3GSE 15), Washington, D.C.,

2015.

[8] DEF CON Communications, Inc., “DEF CON

Hacking Conference - Capture the Flag Archive,”

https://www.defcon.org/html/links/dc-ctf.html,

2013. [Online]. Available:

https://www.defcon.org/html/links/dc-ctf.html.

[Accessed: 17-Dec-2013].

[9] K. Chung and J. Cohen, “Learning Obstacles in the

Capture The Flag Model,” in 2014 USENIX

Summit on Gaming, Games, and Gamification in

Security Education (3GSE 14), San Diego, CA,

2014.

[10] E. Gavas, N. Memon, and D. Britton, “Winning

Cybersecurity One Challenge at a Time,” IEEE

Security Privacy, vol. 10, no. 4, pp. 75–79, Jul.

2012.

[11] “RuCTF.” [Online]. Available:

https://ructf.org/index.en.html. [Accessed: 05-

May-2017].

[12] P. Chapman, J. Burket, and D. Brumley,

“PicoCTF: A Game-Based Computer Security

Competition for High School Students,” in 2014

USENIX Summit on Gaming, Games, and

Gamification in Security Education (3GSE 14),

San Diego, CA, 2014.

[13] “Ghost in the Shellcode.” [Online]. Available:

http://ghostintheshellcode.com/. [Accessed: 05-

May-2017].

[14] “Codegate CTF.” [Online]. Available:

http://ctf.codegate.org. [Accessed: 05-May-2017].

[15] G. Vigna et al., “Ten Years of iCTF: The Good,

The Bad, and The Ugly,” in 2014 USENIX Summit

on Gaming, Games, and Gamification in Security

Education (3GSE 14), San Diego, CA, 2014.

[16] “CTFtime.org / All about CTF (Capture The

Flag).” [Online]. Available: https://ctftime.org/.

[Accessed: 05-May-2017].

[17] A. S. Raj, B. Alangot, S. Prabhu, and K. Achuthan,

“Scalable and Lightweight CTF Infrastructures

Using Application Containers (Pre-recorded

Presentation),” in 2016 USENIX Workshop on

Advances in Security Education (ASE 16), Austin,

TX, 2016.

[18] NCCDC, “Collegiate Cyber Defense Competition

(CCDC)?: About.” [Online]. Available:

http://www.nationalccdc.org/index.php/competitio

n/about-ccdc. [Accessed: 08-May-2017].

[19] J. A. Amorim, M. Hendrix, S. F. Andler, and P. M.

Gustavsson, “Gamified Training for Cyber

Defence: Methods and Automated Tools for

Situation and Threat Assessment,” in NATO

Modelling and Simulation Group (MSG) Annual

Conference 2013 (MSG-111), 2013.

[20] Z. C. Schreuders and E. Butterfield, “Gamification

for Teaching and Learning Computer Security in

Higher Education,” in 2016 USENIX Workshop on

Advances in Security Education (ASE 16), Austin,

TX, 2016.

[21] Mark Gondree, Zachary N J Peterson, and Portia

Pusey, “Talking about Talking about

Cybersecurity Games,” ;login:, vol. 41, no. 1,

2016.

[22] A. R. Schrock, “Education in Disguise: Culture of

a Hacker and Maker Space,” InterActions: UCLA

Journal of Education and Information Studies, vol.

10, no. 1, 2014.

[23] J. Mirkovic and P. A. H. Peterson, “Class Capture-

the-Flag Exercises,” in 2014 USENIX Summit on

Gaming, Games, and Gamification in Security

Education (3GSE 14), San Diego, CA, 2014.

[24] “Facebook CTF is Now Open Source!” [Online].

Available:

https://www.facebook.com/notes/facebook-

ctf/facebook-ctf-is-now-open-

source/525464774322241/. [Accessed: 08-May-

2017].

[25] “CTFd/CTFd,” CTFd - CTFs as you need them

(GitHub). [Online]. Available:

https://github.com/CTFd/CTFd. [Accessed: 08-

May-2017].

[26] “mcpa-stlouis/hack-the-arch,” HackTheArch: A

free open source scoring server for cyber Capture

the Flag competitions (GitHub). [Online].

Available: https://github.com/mcpa-stlouis/hack-

the-arch. [Accessed: 08-May-2017].

[27] “Nakiami/mellivora,” Mellivora is a CTF engine

written in PHP (GitHub). [Online]. Available:

https://github.com/Nakiami/mellivora. [Accessed:

08-May-2017].

[28] “UnrealAkama/NightShade,” NightShade - A

simple capture the flag framework (GitHub).

[Online]. Available:

https://github.com/UnrealAkama/NightShade.

[Accessed: 08-May-2017].

[29] “picoCTF/picoCTF-Platform-2,” PicoCTF-

Platform-2: A genericized version of picoCTF

2014 that can be easily adapted to host CTF or

programming competitions (GitHub). [Online].

Available: https://github.com/picoCTF/picoCTF-

Platform-2. [Accessed: 08-May-2017].

[30] Razvan Beuran, Cuong Pham, Dat Thanh Tang,

Ken-ichi Chinen, Yasuo Tan, and Yoichi Shinoda,

“CyTrONE: An Integrated Cybersecurity Training

Framework,” presented at the 3rd International

Conference on Information Systems Security and

Privacy (ICISSP 2017), Porto, Portugal, 2017, pp.

157–166.

[31] D. Sadigh, S. A. Seshia, and M. Gupta,

“Automating Exercise Generation: A Step

Towards Meeting the MOOC Challenge for

Embedded Systems,” in Proceedings of the

Workshop on Embedded and Cyber-Physical

Systems Education, New York, NY, USA, 2013, p.

2:1–2:8.

[32] Christian Collberg, “The Tigress C

Diversifier/Obfuscator.” [Online]. Available:

http://tigress.cs.arizona.edu/. [Accessed: 05-May-

2017].

[33] Z. C. Schreuders and L. Ardern, “Generating

randomised virtualised scenarios for ethical

hacking and computer security education: SecGen

implementation and deployment,” in 1st UK

Workshop on Cybersecurity Training & Education

(VIBRANT 2015), Liverpool, UK.

[34] M. Hashimoto, Vagrant: Up and Running. .

[35] S. Walberg, “Automate System Administration

Tasks with Puppet,” Linux Journal, vol. 2008, no.

176, Dec. 2008.

